197 research outputs found

    Ultrasound measurement of joint cartilage thickness in large and small joints in healthy children: a clinical pilot study assessing observer variability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Loss of joint cartilage is a feature of destructive disease in JIA. The cartilage of most joints can be visualized with ultrasonography (US). Our present study focuses on discriminant validity of US in children. We studied reproducibility between and within a skilled and a non-skilled investigator of US assessment of cartilage thickness in small and large joints in healthy children.</p> <p>Methods and results</p> <p>In 11 healthy children (5 girls/6 boys), aged 9.6 years (9.3–10 years), 110 joints were examined. Cartilage thickness of the right and left hip, knee, ankle, 2<sup>nd </sup>metacarpophalangeal (MCP), and 2<sup>nd </sup>proximal interphalangeal (PIP) joint independently. The joints were examined twice, two days apart by a skilled and a non-skilled investigator. Mean cartilage thickness in the five joints was: hip 2.59 ± 0.41, knee 3.67 ± 0.64, ankle 1.08 ± 0.31, MCP 1.52 ± 0.27 and PIP 0.73 ± 0.15 mm. We found the same mean differences in CTh of 0.6 mm in the inter-observer part with regard of the PIP joint. Within investigators (intra-observer), the smallest mean difference of CTh was found in the MCP joint with -0.004 (skilled) and 0.013 mm (non-skilled).</p> <p>Conclusion</p> <p>We found the level of agreement between observers within a 95% Confidence Interval in assessment of cartilage thickness in hip-, knee-, ankle-, MCP-, and PIP joints in healthy children. Observer variability seems not to relate to joint size but to the positioning of the joints and the transducer. These factors seem to be of major importance for reproducible US measurements. The smallest difference in measurement of cartilage thickness <it>between observers </it>was found in the PIP joint, and <it>within observers </it>in the MCP joint and it seems that using EULAR standard US guidelines is feasible for a pediatric setting. The use of US in children is promising. Studies on larger groups of children are needed to confirm the validation and variability of US in children as well as determining the smallest detectable difference of US measures.</p

    Inter -and intraobserver variation of ultrasonographic cartilage thickness assessments in small and large joints in healthy children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an increasing interest among pediatric rheumatologist for using ultrasonography (US) in the daily clinical examination of children with juvenile idiopathic arthritis (JIA). Loss of joint cartilage may be an early feature of destructive disease in JIA. However, US still needs validation before it can be used as a diagnostic bedside tool in a pediatric setting. This study aims to assess the inter- and intraobserver reliability of US measurements of cartilage thickness in the joints of healthy children.</p> <p>Methods</p> <p>740 joints of 74 healthy Caucasian children (27 girls/47 boys), aged 11.3 (7.11 – 16) years were examined with bilateral US in 5 preselected joints to assess the interobserver variability. In 17 of these children (6 girls/11 boys), aged 10.1(7.11–11.1) years, 170 joints was examined in an intraobserver sub study, with a 2 week interval between the first and second examination.</p> <p>Results</p> <p>In this study we found a good inter- and intraobserver agreement expressed as a coefficient of variation (CV) less than 10% in the knee (CV = 9.5%<sub>interobserver </sub>and 5.9%<sub>intraobservserI</sub>, 9.3%<sub>intraobserverII </sub>respectively for the two intraobserver measurements) and fairly good for the MCP joints (CV = 11.9%<sub>interobserver</sub>, 12.9%<sub>intraobserverI </sub>and 11.9%<sub>intraobsevrerII</sub>). In the ankle and PIP joints the inter- and intraobserver agreement was within an acceptable limit (CV<20%) but not for the wrist joint (CV>26%). We found no difference in cartilage thickness between the left and right extremity in the investigated joints.</p> <p>Conclusion</p> <p>We found a good inter -and intraobserver agreement when measuring cartilage thickness with US. The inter- and intraobserver variation seemed not to be related to joint size. These findings suggest that positioning of the joint and the transducer is of major importance for reproducible US measurements. We found no difference in joint cartilage thickness between the left and right extremity in any of the examined joint of the healthy children. This is an important finding giving the opportunity of using the non-affected extremity as a reference when assessing articular joint cartilage damage in JIA.</p

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Flexor Hallucis Longus tendon rupture in RA-patients is associated with MTP 1 damage and pes planus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the prevalence of and relation between rupture or tenosynovitis of the Flexor Hallucis Longus (FHL) tendon and range of motion, deformities and joint damage of the forefoot in RA patients with foot complaints.</p> <p>Methods</p> <p>Thirty RA patients with painful feet were analysed, their feet were examined clinically for the presence of pes planus and range of motion (ROM), radiographs were scored looking for the presence of forefoot damage, and ultrasound examination was performed, examining the presence of tenosyovitis or rupture of the FHL at the level of the medial malleolus. The correlation between the presence or absence of the FHL and ROM, forefoot damage and pes planus was calculated.</p> <p>Results</p> <p>In 11/60(18%) of the feet, a rupture of the FHL was found. This was associated with a limited motion of the MTP1-joint, measured on the JAM (χ<sup>2 </sup>= 10.4, p = 0.034), a higher prevalence of pes planus (χ<sup>2 </sup>= 5.77, p = 0.016) and a higher prevalence of erosions proximal at the MTP-1 joint (χ<sup>2 </sup>= 12.3, p = 0.016), and joint space narrowing of the MTP1 joint (χ<sup>2 </sup>= 12.7, p = 0.013).</p> <p>Conclusion</p> <p>Rupture of the flexor hallucis longus tendon in RA-patients is associated with limited range of hallux motion, more erosions and joint space narrowing of the MTP-1-joint, as well as with pes planus.</p

    Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study

    Get PDF
    BACKGROUND: The ankle region is frequently involved in juvenile idiopathic arthritis (JIA) but difficult to examine clinically due to its anatomical complexity. The aim of the study was to evaluate the role of ultrasonography (US) of the ankle and midfoot (ankle region) in JIA. Doppler-US detected synovial hypertrophy, effusion and hyperemia and US was used for guidance of steroid injection and to assess treatment efficacy. METHODS: Forty swollen ankles regions were studied in 30 patients (median age 6.5 years, range 1-16 years) with JIA. All patients were assessed clinically, by US (synovial hypertrophy, effusion) and by color Doppler (synovial hyperemia) before and 4 weeks after US-guided steroid injection. RESULTS: US detected 121 compartments with active disease (joints, tendon sheaths and 1 ganglion cyst). Multiple compartments were involved in 80% of the ankle regions. The talo-crural joint, posterior subtalar joint, midfoot joints and tendon sheaths were affected in 78%, 65%, 30% and 55% respectively. Fifty active tendon sheaths were detected, and multiple tendons were involved in 12 of the ankles. US-guidance allowed accurate placement of the corticosteroid in all 85 injected compartments, with a low rate of subcutaneous atrophy (4,7%). Normalization or regression of synovial hypertrophy was obtained in 89%, and normalization of synovial hyperemia in 89%. Clinical resolution of active arthritis was noted in 72% of the ankles. CONCLUSIONS: US enabled exact anatomical location of synovial inflammation in the ankle region of JIA patients. The talo-crural joint was not always involved. Disease was frequently found in compartments difficult to evaluate clinically. US enabled exact guidance of steroid injections, gave a low rate of subcutaneous atrophy and was proved valuable for follow-up examinations. Normalization or regression of synovial hypertrophy and hyperemia was achieved in most cases, which supports the notion that US is an important tool in the management of ankle involvement in JIA

    Reliability and validity of ultrasound imaging of features of knee osteoarthritis in the community

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiographs are the main outcome measure in epidemiological studies of osteoarthritis (OA). Ultrasound imaging has unique advantages in that it involves no ionising radiation, is easy to use and visualises soft tissue structures. Our objective was to measure the inter-rater reliability and validity of ultrasound imaging in the detection of features of knee OA.</p> <p>Methods</p> <p>Eighteen participants from a community cohort, had both knees scanned by two trained musculoskeletal sonographers, up to six weeks apart. Inter-rater reliability for osteophytes, effusion size and cartilage thickness was calculated by estimating Kappa (κ) and Intraclass correlation coefficients (ICC), as appropriate. A measure of construct validity was determined by estimating κ between the two imaging modalities in the detection of osteophytes.</p> <p>Results</p> <p><it>Reliability: </it>κ for osteophyte presence was 0.77(right femur), 0.65(left femur) and 0.88 for both tibia. ICCs for effusion size were 0.70(right) and 0.85(left). Moderate to substantial agreement was found in cartilage thickness measurements. <it>Validity: </it>For osteophytes, κ was moderate to excellent at 0.52(right) and 0.75(left).</p> <p>Conclusion</p> <p>Substantial to excellent agreement was found between ultrasound observers for the presence of osteophytes and measurement of effusion size; it was moderate to substantial for femoral cartilage thickness. Moderate to substantial agreement was observed between ultrasound and radiographs for osteophyte presence.</p

    Role of lipid apheresis in changing times

    Get PDF
    During the last decades, LDL-apheresis was established as an extracorporeal treatment option for patients with severe heterozygous or homozygous familial hypercholesterolemia (FH) that is resistant to conventional treatment strategies such as diet, drugs, and changes in lifestyle. Nearly half a century ago, the first LDL-apheresis treatment was performed by plasma exchange in a child with homozygous FH

    A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics

    Get PDF
    Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer
    corecore