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A novel spontaneous model 
of epithelial-mesenchymal 
transition (EMT) using a primary 
prostate cancer derived cell line 
demonstrating distinct stem-like 
characteristics
Naomi Harner-Foreman†,*, Jayakumar Vadakekolathu*, Stéphanie A. Laversin‡, 
Morgan G. Mathieu§, Stephen Reeder, A. Graham Pockley, Robert C. Rees & David J. Boocock

Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and 
the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: 
epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous 
model of EMT which involves four phenotypically distinct clones derived from a primary tumour-
derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT 
and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) 
and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable 
of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, 
vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited 
aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed 
no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like 
properties, whereas the other was the least aggressive of all clones. These findings demonstrate the 
existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not 
all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to 
further interrogate the biology of EMT in prostate cancer.

Prostate cancer is a major cause of morbidity and mortality in men, particularly in the developed world. Despite 
advances in detection and treatment methods, disease relapse is a common occurrence and progressive hormone 
refractory metastatic prostate cancer remains an incurable disease.

In recent years, the cancer stem cell (CSC) hypothesis has emerged as a compelling but controversial model 
for cancer progression1–3. In addition to tumour initiation, cancer stem cells are considered to be accountable 
for tumour differentiation, tumour maintenance, dissemination, drug resistance and relapse following therapy 
in various cancers4–11. Of late, there has been much evidence to suggest that cancer cells reactivate the latent 
embryonic programme known as epithelial to mesenchymal transition (EMT) in order to acquire the invasive 
and migratory properties that are necessary for the successful completion of the invasion-metastasis cascade12. 
Intriguingly, the EMT programme has been implicated in the generation of cells with the properties of stem cells 
in breast cancer models13,14. Since metastasis is accountable for the vast majority (~90%) of cancer-associated 
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mortalities and CSCs are implicated in therapy failure and subsequent cancer relapse, it is apparent that EMT 
and CSCs are of utmost clinical relevance. An improved understanding of the events and processes concerning 
these phenomena is therefore likely to reveal new therapeutic opportunities for preventing and treating aggressive 
disease in many clinical settings.

As with many other solid cancer models, EMT is believed to play a critical role in the metastatic spread of 
prostate cancer15. In vitro and in vivo models of EMT in prostate cancer have provided insight into several mecha-
nisms that are involved in EMT, of which androgen deprivation16 and TGF-β  signalling17 are of particular clinical 
relevance. To date, the majority of observations concerning EMT in cancer have been derived from in vitro cell 
models, in which EMT is mainly induced by ectopic expression of EMT-inducing transcription factors or by stim-
ulation with growth factors such as TGF-β 13,18–20. Unlike many other cancers, the availability of cell lines that are 
derived from primary prostate tumours is limited21. Moreover, the standard cell lines for prostate cancer research, 
such as PC3, DU145 and LNCaP, are derived from metastatic rather than primary disease22. Understanding the 
invasive/migratory and tumour initiating properties in a cell line derived from primary tumour site may provide 
relevant information in the triggering of the initial metastatic cascade. In this study, we therefore examined the 
less commonly used, primary tumour-derived cell lines: OPCT-1, OPCT-2, P4E6, in addition to the commercially 
available, metastasis-derived PC-3 and DU145 cell lines, for evidence of spontaneous EMT events in normal cul-
ture conditions. We then derived and interrogated phenotypically distinct, stable clonal OPCT-1 progenies with 
differential features of EMT potential.

Results
A summary of the processes involved in the identification, interrogation and generation of a spontaneous human 
prostate cancer EMT model is given in Fig. 1.

OPCT-1 is an appropriate cell line for the investigation of EMT in human prostate cancer. Five 
androgen-independent human prostate cancer cell lines, two derived from metastatic lesions (DU145, PC3) and 
three derived from primary tissues (P4E6, OPCT-1, OPCT-2), were selected for the purpose of this study. Upon 
microscopic examination, phenotypic differences in cellular morphology (i.e. cobblestone vs fibroblastoid), were 
apparent (Fig. 2a). We therefore speculated that the cell lines might exhibit distinct patterns of epithelial and/or 
mesenchymal protein expression. To test this possibility, we examined the expression of several EMT-associated 
markers (E-cadherin, vimentin, cytokeratin, fibronectin, N-cadherin, Snail and Slug), by immunofluorescence.

Widely used to identify cells of epithelial origin, E-cadherin is a key component in the formation of cell-cell 
adherens-type junctions in epithelial tissues. Although typically expressed between cells at the cell surface, dur-
ing the development of most epithelial cancers E-cadherin-mediated cell-cell adhesion is lost and changes in 
expression from the membrane to the cytoplasm are often observed23–25. Vimentin is an intermediate filament 
protein which is ubiquitously expressed by mesenchymal cells, as such, it is the most commonly used marker for 
identifying cells of mesenchymal origin26. Immunofluorescent staining with E-cadherin and vimentin antibodies 
revealed that all five cell lines expressed E-cadherin. However, the staining intensity, distribution and frequency 
of expression of vimentin varied markedly across the cell lines (Fig. 2b). Metastatic disease-derived cell lines, 
PC3 and DU145, demonstrated focal vimentin expression, as did P4E6 cells (Fig. 2b). In contrast, the primary 
tumour-derived cell lines, OPCT-1 and OPCT-2, exhibited differential non-focal expression of vimentin, with 
sophisticated networks of vimentin fibres throughout some cells and lower levels of vimentin appearing around 
the nucleus in other cells (Fig. 2b). Of the five prostate cancer cell lines examined, only OPCT-1 and OPCT-2 
contained cells expressing the mesenchymal marker fibronectin (Supplementary Figure 1; summarised in Fig. 2c). 
Regarding OPCT-1, fibronectin was predominantly co-expressed with vimentin (Fig. 2d). Conversely, fibronec-
tin expression was not confined to vimentin-positive cells in the OPCT-2 cell line (data not shown). The overall 
data obtained from this screening are summarised in Fig. 2c. Of the cell lines screened, OPCT-1 was comprised 
of the most distinct populations: E-cadherin-positive/vimentin-negative cells; which formed colonies, vimen-
tin/fibronectin-positive, spindle-shaped cells; which were situated between the colonies and dual E-cadherin/
vimentin-positive cells (Fig. 2d). Remarkably, the single vimentin-positive cells in this cell line grew in isolation 
and demonstrated fibroblastoid morphologies, a feature which is consistent with cells of mesenchymal origin. 
Furthermore, unlike DU145, PC3, P4E6 and OPCT-2, OPCT-1 demonstrated positive staining for all of the 
EMT-associated markers examined (Fig. 2c). To assess the characteristics of this cell line with regard to basal 
intermediate and luminal origin within the prostate, we have employed a quantitative real-time PCR based assay 
to determine the expression of markers that distinguish the hierarchy of prostate cancer cells (AR, PSA, cyto-
keratin 18, 14, 8, 5 and p63) alongside three widely used human prostate cancer cell lines - LNCAP, DU-145 and 
PC-3. We found that this cell line has an intermediary phenotype with high expression of cytokeratin-5 and low 
expression of CK14 and no detectable p63 (Supplementary Figure 7).

Based on these findings, the OPCT-1 cell line was selected as the basis for the derivation of clones that would 
be used for further investigation of EMT in human prostate cancer.

Clonally-derived OPCT-1 cultures exhibit distinct EMT-associated protein expression patterns.  
To confirm that the vimentin-positive OPCT-1 cells had not arisen as a result of stromal contamination during 
the initial derivation of the cell line, and also to demonstrate that the OPCT-1 cell line contained a population 
of cells which were transitioning between epithelial and mesenchymal states, we performed a limiting dilution 
cloning assay. After 21 days, a total of 51 clones were obtained, expanded, cryopreserved at three passages, and 
then screened for the expression of E-cadherin and vimentin by immunofluorescence. Although high levels of 
E-cadherin were detected in all of the clones, a large variation in the number of vimentin-positive cells within each 
clone was evident, and vimentin was detected in all but two of the 51 clones examined (Supplementary Table 1). 
Expression of both E-cadherin and vimentin by clonally-derived populations of OPCT-1 cells confirmed that the 
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vimentin-positive cells had not arisen as a result of stromal contamination. Furthermore, apparent morphological 
differences between vimentin-positive/E-cadherin negative and E-cadherin-positive/vimentin-negative cells in 
many of the clones suggested that they contained both epithelial and mesenchymal populations. Intriguingly, 
variation in the levels of vimentin expression across the clones revealed that individual OPCT-1 cells differed in 
their ability and frequency to transdifferentiate (Summarised in Supplementary Table 1).

We subsequently shortlisted 12 clones of interest, all of which were screened for morphological and pro-
tein expression changes following successive freezing and passaging (Supplementary Figure 2). From these, four 
phenotypically stable and distinct clones were selected for further investigation. The clones were designated 
P5B3, P6D4, P2B9 and P4B6, and ranged from very low to high with regard to vimentin expression (Fig. 3a). 
All observations of the OPCT-1 clones were carried out within four passages. The phenotypes of the OPCT-1 
clones, as observed by immunofluorescence, remained stable throughout the study: with P5B3 and P6D4 
consistently exhibiting the smallest, and P2B9 and P4B6 repeatedly demonstrating the largest populations of 
vimentin-positive cells.

Prior to further characterisation of the four OPCT-1 clones of interest, we verified their ability to generate 
mixed E-cadherin/vimentin-positive populations from a single cell. The use of a cell sorter to seed single cells 
directly into fluorescence-compatible 96 well plates enabled minimal handling of the (re)cloned cells prior to 

Figure 1. Flow chart demonstrating the steps involved in the identification of a prostate cancer cell line 
with non-exogenously induced EMT events, followed by the generation and interrogation of a model to 
investigate the relationship between EMT and CSCs in human prostate cancer. 
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conducting immunofluorescence, directly in the wells in which they had grown. This method therefore ensured 
that the presence of mixed cell populations could not have been due to contamination during cell culture. This 
assay confirmed that cells expressing both epithelial (E-cadherin) and mesenchymal (vimentin) markers arose in 
single-cell-derived populations of OPCT-1 clones (Fig. 3b, representative images). Though E-cadherin expression  
in the clonal progenies was present in the selected clones, the staining indicated non-membranous expression and 
therefore represented a non-functional E-cadherin. We therefore re-stained the clones using confocal micros-
copy and generated stacked images of 30–40 sections from each of the clones to ascertain their localisation.  
To quantitatively determine the membrane expressing E-cadherin cells, we scored three images (300 cells) 
from each of the clones and expressed the percentage of membrane E-cadherin expressing cells as a bar graph 
(Supplementary Figure 3). The data showed that all the clones except clone P2B9 had a significant proportion of 
the cells expressing membrane localised E-cadherin. Even though a number of non-membrane expressing cells 
were observed in clones P5B3, P6D4 and the Parental cell line, there were no significant differences observed. 
However, in clone P4B6, all the epithelial cells stained for strong membrane localised E-cadherin.

We quantitatively assessed the number of vimentin-positive cells that were present in each of the four clones 
and the parental cell line using flow cytometry (Fig. 3c, representative data, and D). Differences in vimentin 
expression between the clones were highly significant (p <  0.0048; Kruskal Wallis statistics =  14.94; df =  4). 
Moreover, these data supported the immunofluorescence-based observations and confirmed that the percentage 
of vimentin-positive cells in clones P5B3 (0.42%) and P6D4 (0.26%) was lower than that of parental OPCT-1 
(1.02%), whereas clones P2B9 (6.22%) and P4B6 (25.69%) comprised a larger number of vimentin-positive cells 
(i.e. were enriched).

Real-time quantitative PCR and Western blot analyses further supported our observations regarding vimen-
tin and E-cadherin expression (Fig. 4a and c). To further characterise the OPCT-1 clones, we investigated the 
expression of two additional EMT-associated markers (fibronectin and N-cadherin) by Western blotting, real 
time quantitative PCR and immunofluorescence (Fig. 4a and c and Supplementary Figure 4). The expression pat-
terns of these mesenchymal proteins confirmed earlier observations that two of the clones (P5B3 and P6D4) were 
highly epithelial, whereas two (P2B9 and P4B6) contained mesenchymal populations. However, the expression 

Figure 2. Identification of OPCT-1 as a suitable model for the study of spontaneous EMT in prostate 
cancer. (a) Bright field images of human prostate cancer cell lines derived from metastatic lesions: DU145 
and PC3, and primary tissues: P4E6, OPCT-1 and OPCT-2 (Image magnification at x10). (b) Dual 
immunofluorescent staining of DU145, PC3, P4E6, OPCT-1 and OPCT-2 using antibodies against E-cadherin 
(red) and vimentin (green) (n =  3). (c) Table summarising the results of the IF screening of DU145, PC3, P4E6, 
OPCT-1 and OPCT-2 cells for the expression of several EMT-associated markers. (d) Summary composite 
of OPCT-1 stained with common markers used to investigate EMT: Cytokeratin pan/vimentin, E-cadherin/
vimentin, fibronectin/vimentin. Scale bar: 50 μ M.
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of five EMT-associated transcription factors was not consistent with vimentin-positivity. qRT-PCR data revealed 
that the mRNA levels of the EMT-activator, ZEB1 were highest in the most vimentin-positive clone (P4B6), fol-
lowed by the second most vimentin positive clone (P2B9) (Fig. 4d). Clone P2B9 also demonstrated high levels 

Figure 3. (a) Representative bright field images of four OPCT-1 clones of interest; P5B3, P6D4, P2B9 and P4B6 
and their corresponding dual immunofluorescent (IF) staining profile using antibodies against E-cadherin 
(red) and vimentin (green). Nuclear staining (blue) was achieved using mounting media with DAPI. (n =  3). 
(b) Dual immunofluorescent staining of re-cloned clones P5B3, P6D4, P2B9, P4B6 and parental OPCT-1. 
Column i–iv are the representative images of separate wells from across the three assays. Scale bar: 50 μ M. (c) 
Representative flow cytometric data of vimentin-positive cells present in each of the clones and parental OPCT-
1, % of vimentin-positive cells are given in the bottom right quadrant. Intracellular staining of vimentin was 
achieved using mouse anti-human vimentin-PE and mouse IgG1k-PE isotype control antibody was used as a 
staining control. (d) Bar graph showing the percentage of vimentin-positive cells, each bar represents % median 
expression and the error bars represent the interquartile range. Significant differences were calculated, using the 
non-parametric Kruskal Wallis test (p =  0.0048; Kruskal Wallis statistic < 14.94; df =  4.) (n =  4).
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of SNAI1 and SNAI2 expression. However, the vimentin-low clone P5B3 showed the highest SNAI1 levels at the 
mRNA level (Fig. 4d). Interestingly, the mRNA expression signatures of the transcription factors TWIST and 
FOXC2 did not correlate with other EMT-associated markers in this model (Fig. 4d). Consistent with observa-
tions which revealed the presence of mesenchymal populations in clone P4B6, transcription factors Zeb1, Snail 

Figure 4. (a,b) Representative Western blot images of selected EMT and cancer stem cell associated marker 
expression by clones P5B3, P6D4, P2B9, P4B6 and parental OPCT-1 (n =  5). Beta-actin was used as a loading 
control in each set of the experiments. (c) Relative gene expression of common EMT associated marker 
genes fibronectin, E-cadherin, vimentin and N-cadherin (n =  3). (d) Quantitative gene expression analysis of 
common EMT transcription factors ZEB1, TWIST, SNAI1, SNAI2 and FOXC2. (e) Quantitative gene expression 
analysis of embryonic stem cell genes NANOG, OCT4 and SOX2. Real-time PCR values were normalised to 
the housekeeping gene HPRT (n =  3), expression of each gene was normalised to its highest expressing sample 
among the five genotypes studied. Each bar represents the mean of three independent experiments and the error 
bars represent the standard deviation. (f) Dual immunofluorescence staining of vimentin (green) and integrin  
α 2β 1 (red) in parental and all clonal progenies at two magnifications 10×  (left column) and 20×  (right 
column). Scale bar: 50 μ M. (g) Dot plot showing the flow cytometry surface staining of CD44 and CD24 
molecules on parental and clonal progenies of OPCT-1. (h) Staining intensity of CD44 assessed by mean 
fluorescence (n =  4). (i) Staining intensity of CD24 assessed by mean fluorescence (n =  4). (j) Western blot 
image showing expression of CD44 v & s variants. Unprocessed original scans of the blots are shown in 
Supplementary Figure 9.
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and Slug were upregulated at the protein level in this clone (Fig. 4b and Supplementary Figure 4). However, this 
was not consistent with clone P2B9, the second most vimentin-positive clone (Fig. 4b). These data suggest that 
EMT events may be governed by distinct molecular mechanisms, even in clonal populations derived from the 
same primary tumour.

Prostate cancer stem cells and EMT-derived mesenchymal cells are mutually exclusive. Having 
developed and characterised a model representing a range of epithelial and mesenchymal phenotypes, it was then 
employed to explore previously observed phenomena, in the context of EMT.

In 2005, Collins et al. identified putative prostate cancer stem cells using a panel of markers which had also 
been used to identify normal prostate stem cells27 and in 2008, Mani et al. revealed that EMT generates cells with 
the properties of cancer stem cells13. We therefore postulated that EMT of prostate cancer cells may give rise to 
cells with the properties of prostate stem cells. To address this, we examined the expression of three reported pros-
tate cancer stem cells markers, CD44, CD24 and Integrin α 2β 1, by the OPCT-1 clones. In addition, we examined 
the expression of three stem cell-associated transcription factors that are known to play a key role in the mainte-
nance of self-renewal and pluripotency: Nanog, Oct4 and Sox2. We predicted that these markers would be more 
highly expressed in clones P2B9 and P4B6, both of which contain mesenchymal populations.

CD44+  and CD24−  cells have been reported in prostate cancer cell models as putative tumour initiating/
cancer stem cells28–30. Interestingly, all the OPCT-1 clones expressed CD44, a family of proteins shown to regulate 
growth, survival, differentiation and migration of cancer cells29 (Supplementary Figure 5). The detection of CD44 
was also carried out using Western blotting, flow cytometry and immunofluorescence. With the Western blot 
analysis, CD44 expression was detected in all clonal progenies and also the parental cell line. The highest expres-
sion of CD44 was observed in the clones P2B9 and P4B6, which which contain EMT-derived, vimentin-positive 
populations (Fig. 4j). Conversely, the lowest levels of CD44 were observed in clones P5B3, P6D4 and parental 
(Fig. 4j). Similar patterns of CD44 expression were observed by flow cytometry (Fig. 4g and h). Two isoforms of 
CD44 have been reported in many cancers, a commonly expressed CD44s and less commonly expressed CD44v. 
A variant switching of CD44v to CD44s has been reported in breast cancer cell lines with EMT30. Expression of 
CD44s was found to be markedly increased in both clones P2B9 and P4B6 (Clones with a higher incidence of 
EMT events). However, we also detected the CD44v isoform in these clones. CD44s expression was found to 
be a function of EMT events in these clones, with the highest expression in P4B6 (the clone having the highest 
percentage of EMT-derived mesenchymal  cells) and the second highest in P2B9 (the clone having the next most 
EMT-derived mesenchymal cells) (Fig. 4j).

Expression of CD24 was also assessed using flow cytometry. CD24 showed a marked difference in surface 
expression between the clones, with the highest expression in clones P4B6 and P6D4, followed by the parental 
cell line (assessed by mean fluorescence). However, the surface expression of CD24 was found to be significantly 
lower in clones P5B3 and P2B9 (Fig. 4g and I). The co-expression pattern of CD44 and CD24 on the surface of 
the clonal progenies and the parental cell lines, showed that there are distinct variations in surface expression 
patterns, especially in the parental cell line, with a distinctive CD44+  CD24−  population and this phenotype has 
been reported in several cancers as having a high tumour-initiating potential29,30.

Integrin α 2β 1 is a transmembrane receptor for extracellular matrix proteins (such as collagen and laminin), 
adhesion molecules (such as E-cadherin), and several other ligands (including matrix metalloproteinase-1). 
Among other functions, it is known to play a role in the generation and organisation of extracellular matrix 
proteins, and to mediate interactions between adhesion molecules on adjacent cells31. Dual immunofluo-
rescent staining for vimentin and Integrin α 2β 1 revealed differential expression patterns (Fig. 4f). Since the 
EMT-derived, vimentin-positive cells failed to demonstrate Integrin α 2β 1 expression, these data revealed that 
EMT-derived prostate cancer cells and the prostate cancer stem cells identified by Collins et al.27 are mutually 
exclusive. Importantly, this experiment failed to support the hypothesis that EMT of prostate cancer cells gives 
rise to prostate cancer stem cells.

Oct4, Sox2 and Nanog are transcription factors that are responsible for the regulation and maintenance of 
pluripotency in embryonic stem cells32. Their similar role in epithelial cancers had been investigated in many 
studies33,34. To understand their regulation in a model with different EMT potential, we investigated the expres-
sion patterns of these transcription factors in the clones, at both the mRNA and protein level.

At the mRNA level, the highest expression of NANOG was detected in clones P4B6 and P2B9, both of which 
contained mesenchymal populations (Fig. 4e). However, OCT4 and SOX2 mRNA expression did not correlate 
with the vimentin positivity: OCT4 expression was highest in clone P2B9, but low in clone P4B6, and SOX2 
expression was lower in both clones that were enriched for mesenchymal cells. Overall, these data revealed a 
correlation between NANOG expression and EMT characteristics, but failed to reveal the same correlation with 
OCT4 and SOX2.

Western blot analysis demonstrated that all three of the stem cell-associated transcription factors were pres-
ent at the protein level in clone P4B6 (Fig. 4b). These data suggest a correlation between EMT and pluripotency. 
However, the second most vimentin-positive clone (P2B9) showed very low protein expression of these transcrip-
tion factors. Interestingly the most epithelial clone (P5B3) was also found to express the above transcription factors; 
thereby indicating that EMT events and the expression of pluripotency factors are unrelated in this model (Fig. 4b).

Expression of EMT-associated markers does not necessarily correspond with aggressive  
stem-like behaviour. Having profiled the OPCT-1 clones with regard to expression of EMT and 
CSC-associated markers, we conducted in vitro and in vivo assays to determine whether the expression of 
EMT-associated markers corresponded with properties attributed to an aggressive, migratory, cancer stem 
cell-like phenotype.
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Cancer stem cells have been shown to demonstrate increased clonogenic capacity compared with other cancer 
cells, and clonogenic assays have been used to identify populations of prostate cancer cells with stem-like charac-
teristics35. Herein, the clonogenicity of the four OPCT-1 clones and parental OPCT-1 cells was determined using 
an assay, wherein cells were seeded at low (clonal) density and allowed to grow prior to counting the number of 
colonies. The cells which formed the largest number of colonies were deemed the most “clonogenic”. Highly sig-
nificant differences were observed in the clonogenic abilities of the clones (non-parametric Friedman ANOVA, 
(p <  0.0003, Friedman statistic <  21.01, df =  4) (Fig. 5a and c). Clone P4B6 and clone P5B3 possessed the highest 
and lowest clonogenicities, respectively. This assay confirmed that the two most vimentin-positive clones, clone 
P4B6 and clone P2B9, were also the most clonogenic. Hence, this assay appeared to demonstrate a correlation 
between EMT and clonogenicity. However, the colonies formed by these clones were very dissimilar; clone P2B9 
formed small colonies comprised of few cells, whereas clone P4B6 formed large, diverse colonies that were com-
prised of many cells (Fig. 5a).

Sphere-forming assays are widely employed to assess stemness in cancer cell populations36. We therefore 
examined the sphere-forming capacity of each of the OPCT-1 clones and parental OPCT-1. Although all four 
clones were capable of anchorage-independent growth (Fig. 5, b and d, Primary spheres), the sphere-forming 
abilities of the clones differed significantly (p <  0.0001, Kruskal-Wallis statistic < 54.60, df =  4). Our data revealed 
that clone P4B6 and clone P2B9 were the most and least sphere-forming populations, respectively. Although the 

Figure 5. Assessment of stem cell characteristics of OPCT-1 clonal progenies. (a) Representative images of 
the colonies. Cells were plated at clonal density, cultured for a period of 10 days, fixed with ethanol and stained 
with crystal violet prior to enumerating the colonies. (b) Representative bright field and immunofluorescence 
images from the sphere-forming assay performed on clones P5B3, P6D4, P2B9, P4B6 and parental OPCT-1. 
Cells were plated in ultra-low adherent 24-well plates at clonal density in normal medium, and cultured over 
a period of 12 days (n =  3). Scale bar: 50 μ M. (c) Bar graph showing the number of colonies obtained from 
parental and each of the OPCT-1 clones, each bar represent the mean ±  SEM. Significant differences were 
calculated by the nonparametric Friedman test. (p =  0.0003, Friedman Statistic <  21.01, df =  4). (d) Bar graph 
showing number of primary sphere-formation., each bar represents the mean of three assays and the error 
bars represent the SEM. Significant differences were calculated by the non-parametric Kruskal-Wallis test. 
(p =  0.0001, Kruskal-Wallis statistic <  54.60, df =  4), Dunn’s multiple comparison test was used for pairwise 
comparisons. the number of cells seeded in each assay is indicated on the Y axis.
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clone which was most capable of forming spheres was also the most vimentin-positive (P4B6), the second most 
vimentin-positive clone (P2B9) was the least capable of sphere-formation in non-adherent conditions (Fig. 5b 
and d). Moreover, clones P5B3 and P6D4, which showed fewer EMT marker characteristics, formed more spheres 
than clone P2B9 (Fig. 5b and d). Therefore, EMT does not necessarily bestow enhanced sphere-forming ability.

As clone P2B9 was less capable of forming spheres than parental OPCT-1, this clone appeared to possess a 
smaller cancer stem/progenitor cell population than the parental cell line from which they were derived, despite 
being enriched for vimentin-positive, EMT-derived cells. In contrast, clones P5B3, P6D4 and P4B6 formed more 
spheres than parental OPCT-1.

We also used immunofluorescence to investigate the expression of E-cadherin and vimentin in the primary 
spheres (Fig. 5b). Interestingly, vimentin-positive cells were observed in all of the spheres, irrespective of the 
clones from which they were generated (Fig. 5b). Furthermore, vimentin-positive cells were present in both the 
centre and on the surface of the spheres. Surprisingly, clone P5B3 formed spheres with a relatively high number of 
vimentin-positive cells. This was unexpected, as this clone possessed a very low population of vimentin-positive 
cells in 2D culture conditions. Consistent with what was observed in 2D culture, clone P4B6 formed spheres with 
the largest population of vimentin-positive cells. Spheres formed by clone P6D4 demonstrated the highest levels 
of E-cadherin and the lowest levels of vimentin expression. Interestingly, E-cadherin expression was low on the 
perimeter of the spheres (Fig. 5b).

Aldehyde dehydrogenase 1 (ALDH1), an enzyme involved in stem cell survival and early differentiation, 
has been used to identify both adult tissue stem cells and cancer stem cells, and several studies have associated 
ALDH1hi populations with increased migration, drug resistance and tumourigenicity37–42. To further characterise 
our model, the ALDH1 activity of the clones and parental OPCT-1 was assessed using a commercially-available 
flow cytometry assay. Representative flow cytometric data of the clone with the smallest ALDH1hi popula-
tion, P5B3 (13.82%) and the clone with the largest ALDH1hi population, P6D4 (45.45%), are shown in Fig. 6a. 
Interestingly, ALDHhi populations were observed in each of the cell lines examined (Fig. 6b). Moreover, the 
differences in the percentage of ALDH1hi cells among the clones were statistically significant (non-parametric, 
Kruskal-Wallis ANOVA, p <  0.0244, Kruskal-Wallis statistic < 12.89). These flow cytometric data illustrate that 
ALDH1hi cells presented as a shift in the population, rather than a distinct population of cells (Fig. 6a). This shift 
is typical of cells from solid malignancies and is consistent with the results observed with the recommended 
control cell line, SK-BR-3 (data not shown). The vimentin-low clone P5B3 exhibited the smallest population 
of ALDH1hi cells (13.82%) and the vimentin-high clones P4B6 and P2B9 contained very high percentages of 
ALDH1hi cells: 42.85% and 33.9%, respectively. Overall, this assay failed to demonstrate a direct correlation 
between EMT-associated marker-positivity and ALDH1 activity. Furthermore, the abundance of ALDHhi cells 
observed brings the value of this assay in this model into question.

Variable drug resistance of EMT derived clones. Drug resistance is a property which is attributed 
to cancer stem cells, and studies have also shown that EMT-generated mesenchymal cancer cells demonstrate 
resistance to chemotherapeutic agents6,9,43. We therefore investigated the chemotherapeutic sensitivity of OPCT-1 
and the four clones. For this study, we selected docetaxel, the “standard of care” for patients with metastatic, 
castrate-resistant prostate cancer44. The half maximal inhibitory concentration (IC50) of parental OPCT-1 was 
determined using titrated concentrations of docetaxel and the 3H-thymidine proliferation assay. The docetaxel 
IC50 dose of parental OPCT-1 was calculated as 5.617 nM (Fig. 6g). We subsequently subjected the OPCT-1 clones 
and parental OPCT-1 to treatment with the determined IC50 dose, double the IC50 dose (11 nM) and medium 
alone, prior to assessing proliferation using the 3H-thymidine assay (Fig. 6h). Significant differences in the prolif-
eration rates of the clones in response to different docetaxel treatments were observed (p <  0.014715, F <  2.318, 
Factorial ANOVA using STATISTICA software) (Fig. 6h). The mean inhibitory effect of each drug dose on pro-
liferation was calculated as a percentage (Fig. 6h). This assay revealed that the vimentin-low clone P6D4 was the 
most resistant: only 10% inhibition with the IC50 dose and 14% inhibition with double the IC50 dose. Conversely, 
the vimentin-low clone P5B3 was the most sensitive to treatment with docetaxel: 41% inhibition with the IC50 
dose and 60% inhibition with double the IC50 dose. Clones P6D4 and P4B6 were more resistant to docetaxel treat-
ment than parental OPCT-1, whereas clones P5B3 and P2B9 were more sensitive than the parental cell line. These 
data demonstrate that cells capable of activating EMT do not necessarily exhibit enhanced resistance to treatment 
with chemotherapeutic agents.

EMT-derived prostate cancer cells demonstrate enhanced migratory capacity, but are not  
necessarily more invasive. The in vitro scratch assay is a simple method for measuring cell migration45. 
The method usually involves creating a “scratch” in a cell monolayer, capturing images of the closure of the scratch 
and quantifying the migration rate of the cells. The assay showed that the clone P4B6 migrated significantly faster 
than all other and the four clones and the parental cell line (Fig. 6c and d), indicating a strong migratory pheno-
type. The cells that were stained with antibodies directed against vimentin and E-cadherin, demonstrated that 
vimentin-positive cells in the clones P2B9 and P4B6 migrated into the scratch (Fig. 6c–e). We did not observe any 
vimentin-positive cells in/along the scratches of clones P5B3, P6D4 and parental OPCT-1. Moreover, only clone 
P4B6 showed enhanced migratory capacity.

It is currently widely accepted that cancer cells induce the latent EMT programme in order to break away from 
the primary tumour, invade surrounding tissues and metastasise to distant sites12,46–49. As such, EMT is largely 
implicated in metastasis. We used our prostate cancer model to explore potential links between EMT and inva-
siveness. To that end, Matrigel invasion assays were conducted using the OPCT-1 clones and parental OPCT-1 
in order to determine the percentage invasion for each (Fig. 6f). Our data revealed significant differences in 
invasiveness across the clones and parental OPCT-1 (non-parametric Friedman ANOVA, p <  0.0024, Friedman 
statistic < 18.49). As anticipated, the most vimentin-positive clone (P4B6) was clearly the most invasive, with a 
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median percentage invasion of 17.5%. (Fig. 6f). However, the second most vimentin-positive clone (P2B9) was 
the least invasive clone, with a median of 4.5% invasion. These data therefore indicate that cells that are capable of 
activating EMT are not inevitably more invasive than epithelial cancer cells.

Cells capable of undergoing EMT are not necessarily more tumourigenic. Cancer stem cells are 
believed to be solely responsible for tumourigenesis, tumour differentiation, tumour maintenance and tumour 
progression50. Several groups have identified, isolated and injected CSCs into immunocompromised mice in 
order to assess their tumourigenicity and differentiation potential compared with CSC-depleted populations51,52. 

Figure 6. (a) The results of the Aldefluor assay, with representative flow cytometric data from which the 
percentage of ALDH1hi cells present in each of the clones and parental OPCT-1 was determined. Representative 
data showing the least and the most ALDH1 activity as a density dot-plot. Side scatter is represented on the 
Y-axis and ALDH1 staining is represented on the X-axis. Representative isotype control staining is also given 
(n =  3). (b) Percentge of ALDH1 high cells in parental and clonal progenies of OPCT-1. Data presented as 
median ±  interquartile range. Significant differences were calculated by the nonparametric Kruskal-Wallis test 
(p =  0.0244, Kruskal-Wallis statistic =  12.89, df =  4 n =  4). (c) Representative images from the in vitro scratch 
assay showing wound closure after 24 h of wounding. (d) Percentage of wound closure after 24 h represented 
as bar graph. (e) Dual immunofluorescent staining was used to determine the phenotype of migratory cells, 
E-cadherin (red) and vimentin (green). Scale bar: 50 μ M. (f) Results of the Matrigel invasion assay. Data are 
presented as the median ±  interquartile range. Significant differences were calculated by the nonparametric 
Friedman test. (p =  0.0024, Friedman statistic =  18.49 n =  3). (g) Dose response curve of parental OPCT-1 cell 
line to docetaxel measured using the thymidine proliferation assay. The cell line was treated with a range of 
concentrations of docetaxel to reveal a dose-dependent growth response. The IC50 concentration of the drug 
was calculated using GraphPad Prism software (n =  3). The y-axis represents the normalised drug response, the 
x-axis represents the drug concentration used in Log molar scale. The calculated IC50 (5.62 nM) is given on the 
graph. (h) Bar graph demonstrating the proliferation of the OPCT-1 clones and parental OPCT-1 treated with 
control media, the docetaxel IC50 dose (5.5 nM) and double the docetaxel IC50 dose (11 nM) of parental OPCT-
1, assessed using the thymidine proliferation assay. Data were analysed by means of a Factorial ANOVA using 
STATSTICA software (p =  0.014715, F <  2.318, n =  5).
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In 2008, Mani et al., demonstrated that induction of EMT in immortalised human mammary epithelial cells 
generated cells with properties of stem cells13. We used the OPCT-1 clones to investigate a possible correlation 
between EMT and enhanced tumourigenesis in prostate cancer. After injecting 2.5 ×  106 cells per clone and 
parental OPCT-1 subcutaneously, we monitored tumour development over a period of 52 days (Fig. 7a). On 
completion of the experiment, the mice were euthanised, and the tumours were excised, snap-frozen in OCT, 
cryostat-sectioned and stained by immunofluorescence (Fig. 7c). Clear differences in the tumourigenicities of the 
clones were observed (Fig. 7a and b). Vimentin-high clone P4B6 formed tumours which were significantly larger 
(P ≤  0.01) than those formed by the other clones and parental OPCT-1, in every mouse. Furthermore, this was the 
only clone to form tumours in all of the mice injected (Fig. 7b). In contrast, clone P2B9 only formed a tumour in 
one of five mice. In keeping with the in vitro data, which revealed a non-aggressive phenotype, clone P5B3 failed 
to form tumours in any of the six mice injected. Interestingly, clone P6D4 was the second most tumourigenic of 
the clones and formed tumours in three out of five mice. Sections were stained using an antibody to murine MHC 
class I H2Kd mouse MHC molecule, which confirmed their human origin (Supplementary Figure 8).

Figure 7. (a) In vivo tumourigenesis assay. Clones P5B3, P6D4, P2B9, P4B6 and parental OPCT-1 were injected 
subcutaneously into the right flanks of male athymic nude mice (6 animals per cell line). Tumour growth was 
monitored using calliper measurements and mice were euthanised once one of the tumours reached 1 cm in 
diameter. Data are presented as the mean tumour area ±  SD. Statistical significance was calculated using the 
Student’s t-test (significance indicated as asterisks). (b) Representative tumours excised from tumour-bearing 
mice arranged in descending order of the clones’ in vitro vimentin positivity. (c) Immunofluorescent staining of 
tumour sections derived from clones P5B3, P6D4, P2B9, P4B6 and parental OPCT-1 for E-cadherin (red) and 
vimentin (green) expression. Representative images. (× 10, × 20 and × 40 magnification, n =  3). Scale bar: 50 μ M.
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Immunofluorescence staining of the sectioned tumours revealed patterns of E-cadherin and vimentin protein 
expression which were not consistent with what had been observed in in vitro cultured cells (Fig. 7c). Intriguingly, 
clone P6D4 formed gland-like structures with areas of high E-cadherin positivity, as well as structures surrounded 
by vimentin-positive cells. Moreover, vimentin-positive cells were not observed in the tumour formed by clone 
P2B9. It is important to note that the “vacuoles” observed in the P2B9 tumour are likely to have been artefacts 
created during sectioning, as this tumour was the smallest and most difficult to section. Clone P4B6 and parental 
OPCT-1 formed tumours with tight cell-cell contact and fewer glandular structures than clone P6D4. These cells 
formed tumours with vimentin-positive cells predominantly located along the periphery.

These data revealed that the two clones capable of activating EMT (P4B6 and P2B9) behaved very differently 
in vivo. Despite the fact that the most vimentin-positive clone (P4B6) was more tumourigenic than the parental 
cell line, taken together this experiment failed to demonstrate a direct correlation between EMT and enhanced 
tumourigenesis in prostate cancer.

Discussion
Cancer cell plasticity and cancer stem cells remain largely elusive topics in cancer biology. Although EMT has 
been studied extensively using breast cancer cell lines and murine models, there is a need to develop our under-
standing of the role and properties of EMT in other human malignancies, including prostate cancer. Herein, we 
report the derivation and interrogation of phenotypically distinct clones from a primary prostate cancer cell line 
with the ability to activate the EMT programme, without artificial induction.

One of the main limitations of prostate cancer research is the lack of availability of cell lines that are derived 
from primary prostate carcinoma53. The commonly used cell lines PC3 and DU145 are derived from metastatic 
tumour lesions of bone and brain, respectively. Our data reveal that these cell lines are not appropriate for the 
study of spontaneous EMT events in prostate cancer, and we identify the primary cell-derived OPCT-1 cell line 
as a suitable alternative.

The induction of EMT in cultured cancer cells has been achieved using a variety of methods, including 
ectopic expression of transcription factors13,54, growth factors35, and enzymes55, incubation with growth factors56, 
cytokines57, enzymes58 and androgen deprivation16. Indeed, to date, the vast majority of EMT studies in cancer 
have examined artificially-induced EMT-derived cells. To our knowledge, we are the first to derive and interro-
gate a spontaneous model of prostate cancer EMT.

We derived four phenotypically distinct clones from the OPCT-1 cell line and investigated a number of 
features which have been attributed to cancer stem cells. Examination of several EMT-associated markers 
at both the mRNA and protein level revealed that only two of the clones were capable of activating the EMT 
programme. Based on previous findings, we anticipated that the two EMT-positive clones (P4B6 and P2B9) 
would exhibit an aggressive/stem cell phenotype, as characterised by enhanced sphere-forming ability, height-
ened resistance to chemotherapeutic agents, expression of stem cell markers, high ALDH activity, enhanced 
clonogenicity, and tumour-forming capacity in vivo1,39,59. We were intrigued to discover that P4B6 exhibited 
an aggressive and stem cell-like phenotype, whereas clone P2B9 was non-aggressive, and even less aggressive/
stem cell-like than the EMT-negative clone P6D4. Due to this disparity, we were unable to confirm that EMT of 
prostate cancer cells generates cells with the properties of stem cells, as it was evident that this statement could 
not always be substantiated.

Based on the biological context in which they occur, EMTs have been classified into three subtypes48. Type 1 
EMT events are critical for implantation, embryogenesis and organ development, Type 2 EMT events are acti-
vated in the context of inflammation; they are associated with wound healing, tissue regeneration and organ 
fibrosis, and Type 3 EMT events are involved in tumour progression and metastasis. Unlike Type 1 and Type 3 
EMT events, which generate mesenchymal cells, Type 2 EMT events generate fibroblasts from mature epithelial 
cells59,60. We have shown that EMT of prostate cancer cells can give rise to distinct progeny, with contrasting 
characteristics. The highly aggressive stem-like phenotype displayed by clone P4B6 is consistent with several 
studies which have implicated EMT in the generation of CSCs13,14,35. In contrast, the non-aggressive charac-
teristics of clone P2B9 demonstrate that EMT of prostate cancer cells does not necessarily generate cells with 
the properties of stem cells. Our data therefore reveal that Type 3 EMT events can be further categorised into 
events which give rise to aggressive stem-like cells and those which generate non-aggressive, non-stem-like 
progeny.

In 2005, Collins et al., identified putative prostate cancer stem cells using a panel of markers which had 
been previously exploited to identify normal prostate stem cells (CD44, CD133, Integrin α 2β 1)27. Although the 
EMT-positive clone P4B6 clearly demonstrated stem cell properties (as indicated by high expression of CD44, 
Nanog, Oct4 and Sox2 in addition to their high performance in in vitro and in vivo assays), we observed that the 
EMT-derived, vimentin-positive cells did not express Integrin α 2β 1.

High expression of CD44 with low/no expression of CD24 in prostate cancer cells has been reported to 
have high tumour initiating capacity in prostate cancer cell models28. From the surface expression studies 
of these molecules in the OPCT-1 parental and clonal progenies, we observed that the reported cancer 
stem cell population was present in the parental cell line but not in any other clones, irrespective of their 
high tumourigenic potential (particularly lacking in clone P6D4 and P4B6). Also, CD44 and CD24 surface 
expression levels varied significantly, with high levels of CD44 expression evident in both clones comprising 
mesenchymal populations (P2B9 and P4B6). High surface expression of CD24 was observed in OPCT-1 
(Parental), clone P6D4 and P4B6, which were also highly tumourigenic in the mouse xenograft model. As 
such, this study supports the concept that there are multiple stem-like aggressors in cancer, and thereby 
emphasises the importance of a multiple-approach strategy to combatting cancer, rather than focussing on 
one population (such as CSCs).
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CD44 isoform class switching (CD44v to CD44s) has been reported in prostate and breast cancer cell lines 
as a mechanism of EMT61,62. As with the FACS data, Western blotting also showed an overall decrease in CD44 
expression levels in the parental, P5B3 and P6D4 cell lines, with a weak band at 80 kDa indicating the CD44s iso-
form. However, CD44s expression was found to be increased in the two clones, P2B9 and P4B6. This high expres-
sion of the CD44s isoform in the clones comprising EMT-derived cells was in agreement with existing literature 
that CD44s expression increases with mesenchymal characteristics62. However, we have also noted the presence 
of the CD44v isoform (associated with the epithelial phenotype) in the same clones, which is consistent with the 
fact that these clones comprise a mixed population of epithelial and mesenchymal cells.

While the argument of increased epithelial traits holds true in terms of CD44v expression, the clones com-
prised of epithelial and mesenchymal populations were fundamentally different in their membrane expressed 
E-cadherin (an indicator of functional epithelial cells). Considering the lack of membrane inserted E-cadherin (a 
critical component of cell-cell adhesion) and with noticeable EMT events, the low invasive and migratory prop-
erties observed with clone P2B9 in the wound healing and trans-well assays were surprising. In contrast to clone 
P2B9, clone P4B6 demonstrated the highest levels of membrane inserted E-cadherin (an indicator of functional 
epithelial characteristics) in their epithelial compartment (Supplementary Figure 3). This clone is also highly 
tumourigenic and shows high expression of stem cell/pluripotent genes (Fig. 4) along with other functional 
stem cell traits (Fig. 5). Clone P4B6 possesses stem-cell characteristics in addition to non-exogenously induced 
EMT capacity in 2D and sphere-forming culture conditions. These features may account for its aggressive/high 
tumourigenic potential consistent with the observations made by Mani et al., (2008)13, whereas the second most 
tumourigenic clone P6D4, did not have any observed EMT events in 2D culture systems. However, P6D4 stained 
positive for vimentin only in the tumours (Fig. 7), indicating that these cells might be more prone to undergoing 
EMT in the presence of exogenous stimuli.

Contrasting evidence about the relationship between EMT and cancer stem cells exists in the literature. While sev-
eral studies using induced models of EMT have demonstrated a positive correlation between EMT and cancer stem 
cell traits13, other studies have convincingly demonstrated in prostate and bladder cancer that the loss of epithelial 
characteristics leads to a decrease in self-renewal and pluripotency characteristics and reduced metastatic potential63.  
In this study, the most tumourigenic clone P4B6 demonstrated tumour-initiating and invasive properties, thereby 
indicating  that this clone may be epigenetically programmed for undergoing EMT while retaining its core stem 
cell characteristics. Moreover, the co-operation between the epithelial and transitioned mesenchymal components 
within this clone may be another contributing factor for its aggressive characteristics. It is also worth noting that the 
absence of the expression of a key marker of prostate cancer stem cells, Integrin α 2β 1, in vimentin-positive cells in 
clone P4B6, may support the observation made by Celià-Terrassa et al., that EMT can suppress major attributes of 
epithelial tumour-initiating cells63.

While EMT has been widely accepted in the dissemination of cancer cells from the primary site, the repop-
ulation of these cells in distant organs would require tumour initiating capacity in a completely different envi-
ronment. Two independent studies by Tsai et al. and Ocana et al. in 201264,65, with two elegant mouse models of 
metastasis, showed the importance of EMT in cancer cell dissemination from the primary tumour (extensive 
review in Nieto et al.66). However, successful recolonisation of circulating tumour cells in the lung required the 
acquisition of epithelial characteristics or otherwise MET (mesenchymal to epithelial transition). Suppression of 
epithelial characteristics in mesenchymal subpopulations has been shown to lead to the loss of tumour-initiating 
characteristics63,64 indicating the decoupling of stem cell properties from EMT characteristics when cells acquire 
mesenchymal status. We have shown that cells capable of activating the EMT programme can lack stem cell and 
invasive traits (clone P2B9), indicating the existence of two key parameters for a metastatic phenotype in that 
clone. This suggests that the EMT occurring in P4B6 might be transient and thereby preserving the self-renewal 
potential, as proposed by Celia-Terrassa et al.63. Cell cooperativity proposed by Tsuji et al. which may have rele-
vance to our model, introduced that co-operation between EMT and non-EMT cells is necessary for an effective 
metastatic process67. Their model proposed that mesenchymal cells help to break the surrounding tissue, which 
enables the non-EMT cells to escape into the blood stream and only the epithelial cells, which retain self-renewal 
properties, can establish well differentiated metastases.

Though the complete biological mechanisms governing the spontaneous EMT events observed in this model 
have not been fully elucidated, the available data suggests that there may be a link between the expression of 
transcription factor ZEB1 and CD44s in the most aggressive clone, P4B6. ZEB1 and CD44s expression was found 
to be lower in P2B9 compared to P4B6. We anticipate ZEB1 expression still plays a significant role in EMT in 
both clones, however, the quantitative levels (relatively higher in clone P4B6 compared to P2B9) determine the 
aggressive phenotype68. The complete picture of the molecular mechanisms governing the phenotypic differences 
observed between the clones will only be elucidated though complete transcriptomic/proteomic profiling of these 
cells.

The model developed in the present work provides a valuable resource for the investigation of EMT in 
human prostate cancer. Unlike artificially-induced models of EMT, the EMT-derived cells in this study express 
endogenous levels of EMT-associated proteins. As such, these clones can be utilised to derive an authentic 
EMT-signature, which could be extended to clinical applications. Furthermore, the OPCT-1 clones have been 
characterised both in vitro and in vivo; thus, can be utilised to identify the molecular signatures that confer 
aggression. These clones provide a significant resource and considerable scope for future studies that are focussed 
on interrogating the fundamental mechanisms involved in cancer progression. They will also be of significant 
value for studies based on biomarker discovery and the identification of ‘druggable’ or immunotherapeutic tar-
gets that can be exploited for the development of new approaches for the treatment and management of prostate 
cancer.
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Methods
The overall workflow for this study is given in Fig. 1.

Cell Culture. The primary disease-derived prostate cancer cell lines P4E6 (kindly provided by Professor N. 
Maitland, The University of York) and OPCT-1 and OPCT-2 (generously donated by Onyvax Ltd) were main-
tained in KSFM media (Gibco) supplemented with 2% (v/v) FCS. P4E6 were maintained in the same media, also 
containing pituitary extract (50 μ g/mL) and epidermal growth factor additives (5 ng/mL). The description of P4E6 
has been published elsewhere69. Derivation of OPCT-1 and OPCT-2 has been previously briefly described70,71 and 
the details of these cell lines are also available from Asterand Bioscience. OPCT-1 has been used previously in the 
literature72–74. Briefly, OPCT-1 cell lines are derived from a 68 year old patient (TNM Stage T1cN0M0; Gleason 
score of 6 [3 +  3]) and OPCT-2 were derived from a 58 year old patient (T2aN0M0 and Gleason score of 5 [2 +  3]) 
and immortalised via replication-defective retrovirus transferring the transforming HPV16 or HPV18 E6 and E7 
genes. Both the cell lines were characterised as tumour derived with its chromosomal instability and various other 
assays and we have independently confirmed the reported chromosomal abnormalities in our OPCT-1 cell line 
by karyotyping. All cells were incubated in a 5% (v/v) CO2-humidified atmosphere at 37 °C. Cells were harvested 
using Trypsin-Versine (Lonza). The metastatic disease-derived human prostate cancer cell lines, PC3 and DU145, 
were purchased from the American Type Culture Collection (ATTC). PC3 cells were maintained in HAM’S F12 
media (Lonza) supplemented with 10% (v/v) foetal calf serum (FCS), 1% (w/v) L-glutamine (Lonza) and 1% 
(v/v) non-essential amino acids (NEAA) (Lonza). DU145 cells were maintained in DMEM media (Lonza) sup-
plemented with 10% (v/v) FCS, 1% (w/v) L-glutamine, 1% (v/v) NEAA and 1% (v/v) sodium pyruvate (Lonza).

Immunofluorescence. Cells were washed and fixed with 4% (w/v) paraformaldehyde prior to incubation 
with primary monoclonal and polyclonal antibodies: murine anti-E-cadherin DH01 monoclonal antibody (mAb) 
(clone DCS-266, Invitrogen), murine anti-cytokeratin pan polyclonal antibody (Sigma), rabbit anti-vimentin 
mAb (clone SP20, Abcam), murine anti-fibronectin mAb (clone IST-9, Abcam), murine anti-N-Cadherin mAb 
(clone 32/N-Cadherin, BD Biosciences), goat polyclonal anti-SNAI1 (E-18) antibody (Santa Cruz Biotechnology), 
goat polyclonal anti-SLUG (D-19) antibody (Santa Cruz Biotechnology), mouse IgG isotype control (AbD 
Serotec), rabbit IgG isotype control (Pierce Biotechnology), goat IgG isotype control (Pierce Biotechnology) 
diluted in blocking solution (1X DPBS-0.1% (v/v) TWEEN containing 10% (w/v) BSA) for one hour at room 
temperature. Cells were subsequently washed and incubated with the secondary antibodies (chicken anti-rabbit 
Alexa Fluor 488, donkey anti-goat Alexa Fluor 568, goat anti-rabbit Alexa Fluor 488, goat anti-mouse Alexa Fluor 
568 (Thermo Scientific), diluted in blocking solution, for a further one hour at room temperature. After wash-
ing, the coverslips were mounted in VECTASHIELD® mounting medium with DAPI (Vector Laboratories) and 
imaged using an Olympus BX51 fluorescence microscope. Following examination of the five prostate cancer cell 
lines using the aforementioned panel of antibodies against well-established epithelial and mesenchymal markers, 
OPCT-1 was selected for further study. All proceeding methods were conducted on the OPCT-1 cell line only.

Derivation of OPCT-1 clones. Single-cell clones were derived from the OPCT-1 cell line by introducing the 
cells into 96 well plates at a dilution yielding < 1 cell per well (0.33 cells per well). The wells were microscopically 
examined to ensure that only one cell had been seeded per well. Plates were maintained at 37 °C in a 5% (v/v) 
CO2-humidified atmosphere and were examined twice a week for the presence of single colonies. After 21 days, 
51 clones were transferred from the 96 well plates into six well plates and these were subsequently screened for 
the expression of CD44, E-cadherin and vimentin by immunofluorescence. Four clones with different E-cadherin 
and vimentin expression profiles were selected for further study, and these were subsequently re-screened for 
the expression of E-cadherin and vimentin after further passaging. The phenotypic stability of the four OPCT-1 
clones, on the basis of E-cadherin and vimentin expression, was monitored by immunofluorescence throughout 
the study.

Assessment of membrane localised E-cadherin. Stacked confocal images were generated for all 
the clones and the parental cells using anti E-cadherin antibody (Cell Signalling Technologies, Rabbit, Clone 
24E10). All the clones were fixed and permeabilised prior to the staining as previously described. The images 
were acquired using confocal microscope (Leica TCS SP5 confocal microscope). FITC conjugated anti-rabbit 
IgG secondary antibody (DAKO) was used for the staining detection. A total of three images were acquired from 
three independent wells with HP PL FLUOTAR 20.0 ×  0.50 dry objective to cover enough field of view with suf-
ficient number of cells (0.84 μ M step size with 30–40 sliced images stacked). Cells with membrane expression of 
E-cadherin was scored using three independent images from each clones (300 cells).

Cell Sorting – Re-cloning of OPCT-1 clones. Single-cell suspensions of the four OPCT-1 clones were 
sorted into fluorescence-compatible 96 well plates (BD Biosciences) at a density of one cell per well (32 wells per 
clone), using a Beckman Coulter MoFlo XDP High-Speed Cell Sorter. The plates were incubated at 37 °C, 5% 
(v/v) CO2 for 14 days, after which the cells were fixed with 4% (w/v) paraformaldehyde, stained for the expression 
of E-cadherin and vimentin and imaged using an Olympus BX51 fluorescence microscope. This assay was con-
ducted on three separate and independent occasions.

Flow Cytometry. Cells were harvested by trypsinisation, counted using the trypan blue exclusion method, 
and 1 ×  106 cells were transferred to 12 ×  75 mm polycarbonate tubes. The cells were then washed twice in 2 mL 
flow cytometry buffer (0.5% (w/v) BSA in DPBS) by centrifugation at 400 g for three min at 4 °C. Cells were then 
fixed in 2% (w/v) paraformaldehyde for 10 min at 37 °C, washed, and then permeabilised with 1 mL 90% (v/v) 
ice-cold methanol on ice for 30 min. Following permeabilisation, the cells were washed and then incubated with 
a PE-conjugated murine anti-vimentin mAb (clone RV202, BD Biosciences) or the corresponding PE-conjugated 
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mouse isotype control (IgG1κ -PE, BD Biosciences), in accordance with the manufacturer’s instructions. CD44 
and CD24 staining was achieved by staining the cells without permeabilisation using FITC conjugated antiCD44 
(eBioscience, clone 24E10) and APC conjugated CD24 (eBioscience, clone eBioSN3) antibodies. Prior to 
flow cytometric analysis, the cells were washed twice and then re-suspended in 300–400 μ L of Isoton solution 
(Beckman Coulter) on ice. Cells were analysed using a Beckman Coulter Gallios flow cytometer. Histograms and 
dot plots were derived and analysed using Beckman Coulter Kaluza version 1 software.

Western Blot Analysis. Total cell lysates were prepared for each of the four OPCT-1 clones and parental 
OPCT-1 by lysing the cells in the presence of 50 mM Tris, pH 7.5, 5 mM EDTA and 1% (w/v) SDS on ice. Next, 
30 μ g of total protein from each sample was prepared with sample reducing buffer (0.5 M Tris-HCL (pH 6.8), 2% 
(w/v) SDS, 10% (v/v) glycerol, 1% (w/v) DTT) at a ratio of 3:1 (lysate: reducing buffer) and was resolved on an 
SDS gel with Tris/Glycine/SDS gel running buffer (Geneflow). The samples were subsequently transferred onto 
nitrocellulose membranes prior to probing with mouse anti-E-cadherin DH01 mAb (clone DCS-266, Invitrogen), 
rabbit anti-vimentin mAb (clone SP20, Abcam), murine anti-fibronectin mAb (clone IST-9, Abcam), murine 
anti-N-Cadherin mAb (clone 32/N-Cadherin, BD Biosciences), murine anti-CD44 mAb (clone 156-3C11, Cell 
Signalling Technology) and murine anti-β -actin mAb (clone AC-74, Sigma). After probing with the primary anti-
bodies, the membranes were washed and probed with horseradish peroxidase (HRP) conjugated goat anti-mouse 
or rabbit anti-goat polyclonal antibodies (Dako), as appropriate. The membranes were then washed and exposed 
using RapidStep ECL reagent (Calbiochem) for times that depended on the abundance of the protein (typically 
~1 minute), before being imaged using a CCD camera (Fuji Systems).

RNA Isolation, cDNA Synthesis and qRT-PCR
RNA isolation from cultured cells was executed using RNA Stat-60 (Amsbio, UK). Cells were grown to 80% con-
fluence and the medium was completely removed before cell lysis. Isolations were performed according to man-
ufacturer protocols, without any modifications. Harvesting of cells using trypsin/EDTA prior to RNA isolation 
was avoided in order to minimise potential effects on antigen expression. The RNA pellets were dissolved in 30 μ L  
of nuclease-free water (Ambion), and purified using the RNeasy Mini kit (Qiagen). RNA quantity and quality 
was assessed using a NanoDrop 8000, and further confirmed using an Agilant Bioanalyzer and RNA6000 nano 
kits. cDNA synthesis was performed using Superscript III (Invitrogen-Life Technologies) reverse transcriptase, 
according to the manufacturer guidelines; using 2 μ g of total RNA and 0.2 μ g of oligo (dT)15 (Promega). All primer 
sequences were either selected from previously published literature, or, if unavailable in the published literature, 
designed using Primer 3.0 software (v. 0.4.0, Whitehead Institute for Biomedical Research, Massachusetts, USA). 
Primers were synthesised from Eurofins MWG Operon (Germany) at HPSF purity. Pre-designed primers for 
basal, intermediate and luminal characterisation of the cell lines were purchased from Sigma Aldrich (KiCqStart 
SYBR Green Primers). The primers used for the study are provided in Supplementary Table 2. Real-time quan-
titative PCR was employed to examine the gene expression patterns using SYBR Green Master Mix (Bio-Rad), 
according to the manufacturer’s instructions. Thermal cycling was performed using a Rotor-Gene PCR cycler 
(Qiagen). The efficiencies were calculated using Rotor-Gene software.

Sphere-Forming Assay. Preliminary studies optimised this assay in terms of medium composition, plate 
format, cell density and duration of culture. Single-cell suspensions were plated in triplicate wells of an ultra-low 
adherent 24-well plate at a density of 10,000 cells per well, and were cultured in KSFM 2% (v/v) FCS at 37 °C, 5% 
(v/v) CO2. After 12 days, spheres were observed microscopically and counted by two individuals; an average of 
the counts was taken. This assay was conducted in triplicate wells in three separate experiments.

Clonogenic Assay. Single-cell suspensions were plated at the clonal density of 125 cells per well of a six-well 
plate, two wells per clone. Following ten days in culture, the colonies were fixed for 15 min at 4 °C with 4% (w/v) 
paraformaldehyde and stained with crystal violet solution (0.5% (w/v) crystal violet in 70% (v/v) ethanol) for 
15 min at room temperature. The colonies were washed with DPBS and allowed to dry, prior to counting under a 
light microscope. Colonies with fewer than 32 cells were excluded from the counts. This assay was conducted in 
duplicate wells in three separate experiments.

Aldefluor Assay. The Aldefluor stem cell assay (Stem Cell Technologies) was conducted in accordance with 
the manufacturer’s instructions. In order to avoid loss of staining, as a result of ALDH1 efflux from the cells, 
samples were kept covered on ice at all times and analysed immediately using a Beckman Coulter Gallios flow 
cytometer. Furthermore, the order in which the cells were analysed was changed in each repeat of the experiment. 
This assay was conducted on four separate occasions. Histograms and dot plots were derived using the Beckman 
Coulter Kaluza version 1 software. The percentage of ALDH1hi cells was determined by gating around a density 
plot of control cells (treated with DEAB reagent), applying the same gate to the test cells and subtracting the num-
ber of cells within the control gate from the number of cells within the test gate. The mean percentage of ALDH1hi 
cells present in each clone, as compared with parental OPCT-1, was calculated.

[3H]-Thymidine Incorporation Proliferation and Drug Assay. Briefly, 1 ×  104 OPCT-1 cells were 
plated in 32 wells of a 96 well plate and incubated for approximately 20 h at 37 °C, 5% (v/v) CO2. Following incu-
bation, the supernatant was removed and replaced with 200 μ L control medium (medium only) and medium 
containing docetaxel at 1, 3, 10, 30, 100, 300, 1000 nM. The plate was then incubated for 48 h at 37 °C, 5% (v/v) 
CO2. Following incubation, [3H]-Thymidine (final concentration of 0.037 MBq/mL) was added to the cells 
and the cells were incubated for a further 20 h at 37 °C with 5% (v/v) CO2. Culture supernatants were removed 
using a Filtermate Harvester (Perkin-Elmer), following which, cells were incubated for 15 min with 30 μ L of 
Trypsin-Versine, prior to being harvested onto the Unifilter plate (Perkin-Elmer). The plate was allowed to dry for 
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2 h at room temperature before being overlaid with 40 μ L of Microscint-O scintillation fluid and analysed using 
an NXT Top-Count microplate scintillation counter. This assay was conducted in quadruplicate on five separate 
occasions. The data obtained were used to plot a dose-response curve and ascertain the docetaxel IC50 for parental 
OPCT-1, using GraphPad Prism 5 software.

The docetaxel IC50 for parental OPCT-1 was determined as 5.617 nM. To determine their relative sensitivities 
to the drug, the proliferation of the OPCT-1 derived clones was assessed in normal media and media containing 
5.5 nM and 11 nM docetaxel, using the approach described above.

Invasion and Migration Assays
Scratch Migration Assay. The invasive assays were performed using a classic wound healing assay. The 
cells were seeded and grown to confluency in a 24 well tissue culture plate. Cells were treated with 10 μ g/mL of 
mitomycin C for 2 hours (concentration determined previously as optimal for cell growth arrest and viability. 
Supplementary Figure 6). Cells were washed three times with sterile PBS and replaced with normal tissue cul-
ture media with 2% serum prior to wounding. The wound was imaged at 0 and 24 h at the same field of vision 
with the help of a guide-line previously drawn underneath the plates (Carl Zeiss, 5X magnification). The wound 
area was calculated using Axiovision REL software (version 4.8.1.0) and the % of wound closure was calculated 
from time 0 to 24 h. For immunofluorescence staining of the migratory cells, fluorescence-compatible 96-well 
plates (BD Biosciences) were coated by incubation with 30 μ L poly-L-lysine (Sigma Aldrich) per well for one 
hour. Unbound poly-L-lysine was removed from each well prior to seeding cells in quadruplicate wells at the 
high density of 5 ×  104 cells per well. After 24 h, 200 μ L pipette tips coated with poly-L-lysine were used to create 
a scratch in the confluent monolayer, at the centre of each well. The cells were washed twice with sterile DPBS, 
prior to being cultured in serum-free KSFM media for 12 h at 37 °C, 5% (v/v) CO2. Cells were then fixed with 4% 
(w/v) paraformaldehyde for 15 min at 4 °C, and their expression of E-cadherin and vimentin was determined by 
immunofluorescence, as described previously. This assay was performed on three separate occasions.

In Vitro Matrigel Invasion Assay. This assay was conducted using 24 well Biocoat Matrigel Invasion 
Chambers containing BD Falcon Cell Culture Inserts with 8 μ m pore-size PET membranes that had been treated 
with Matrigel matrix in accordance with the manufacturer’s instructions (BD Biosciences), with an additional 
step introduced to optimise the counting procedure. Cells were stained with propidium iodide (PI) (0.1 mg/
mL) prior to counting the invading cells. Plates were then scanned and imaged using an ELISPOT plate reader 
(Cellular Technology Ltd.), and the images were analysed using ImmunoSpot software (n =  3).

In vivo tumourigenesis
Thirty male athymic nude mice (six weeks of age), were purchased from Harlan Laboratories, UK. Animals were 
housed and experiments performed in accordance with Animals (Scientific Procedures) Act 1986 (UK Home 
Office regulations), under Nottingham Trent University Project License (PPL) 40/3563 and the study protocols 
approved by the institutional Project License holder, in a pathogen-free animal facility. Cells were injected at 
a density of 2.5 ×  106 with 100 μ L 1:6 serum-free KSFM medium: Matrigel (BD Biosciences), subcutaneously 
into the right flank (6 mice per cell line/clone). Tumour development was measured twice weekly using calliper 
measurements until one of the tumours reached a diameter of 1 cm, at which time the experiment was termi-
nated. Tumours were then extracted, mounted on cork boards with OCT, snap-frozen in liquid nitrogen-cooled 
2-butanol and stored at − 80 °C, prior to cryostat sectioning.

After sectioning the tumours onto sialinised slides at a thickness of 6 μ m, the specimens were fixed with 4% 
(w/v) paraformaldehyde for 15 min at 4 °C, and the expression of E-cadherin and vimentin was determined by 
immunofluorescence, as previously described. In order to rule out the murine stromal contamination in the 
implanted tumours, all the sections were stained with murine MHC class I H-2Kd antibody (BioLegend SF1-1.1).

Statistical analysis
Unless stated, data are presented as mean ±  standard error of the mean (SEM), or median ±  interquartile range, 
where percentages are presented. Data are presented as overall significance between the clones and parental 
OPCT-1 in a given test represented, in some figures, by asterisks with the significance levels p ≤  0.05 (*), p ≤  0.01 
(**), and p ≤  0.001 (***). When investigating overall significance between the clones and parental OPCT-1, 
non-parametric testing was performed using the Friedman test, for instances in which the same number of repli-
cates was used, or a Kruskal-Wallis test, when the number of replicates varied. Significant differences between the 
clones and parental OPCT-1 were investigated using the Dunn’s Multiple Comparison (Post-Hoc) test.
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