1,379 research outputs found

    Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolisation

    Get PDF
    Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.Poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) present complementary barrier properties, and their combination in multilayer assemblies (laminates) could provide materials with more effective barrier capacity for food packaging purposes. However, their low chemical affinity compromises adequate polymer adhesion. Surface free energy modification of thermo-processed PLA films through treatment with 1,6-hexanediamine was used to enhance adhesion with polar PVA aqueous solutions. Treatments of 1 and 3 min increased the polar component of the solid surface tension, while treatments above 10 min provoked a corrosive effect in the films structure. Extensibility analyses of PVA solutions loaded with carvacrol (15 wt.%) and different Tween 85 ratios on PLA-activated surfaces allowed the selection of the 1-min aminolysed surface for obtaining PLA-PVA bilayers, by casting PVA solutions on the PLA films. This study revealed that despite aminolisation enhancing the PLA surface affinity for aqueous PVA solutions, casting-obtained bilayers presented limited oxygen barrier effectiveness due to heterogeneous thickness of PVA layer in the laminates.The authors acknowledge the financial support provided by the Ministerio de Economia y Competitividad (MINECO) of Spain (project AGL2016-76699-R). The author A. Tampau thanks MINECO for the pre-doctoral research grant #BES-2014-068100.info:eu-repo/semantics/publishedVersio

    Serogroup C meningococci in Italy in the era of conjugate menC vaccination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess changes in the pattern of Invasive Meningococcal Disease (IMD) in Italy after the introduction of conjugate menC vaccine in the National Vaccine Plan 2005–2007 and to provide information for developing timely and appropriate public health interventions, analyses of microbiological features of isolates and clinical characteristics of patients have been carried out. In Italy, the number of serogroup C meningococci fell progressively following the introduction of the MenC conjugate vaccine, recommended by the Italian Ministry of Health but implemented according to different regional strategies.</p> <p>Methods</p> <p>IMD cases from January 2005 through July 2008 reported to the National Meningococcal Surveillance System were considered for this study. Serogrouping and sero/subtyping were performed on 179 serogroup C strains received at the National Reference Laboratory of the Istituto Superiore di Sanità. Antibiotic susceptibility testing was possible for 157 isolates. MLST (Multilocus sequence typing), <it>por</it>A VRs (Variable Region) typing, PFGE (Pulsed Field Gel Electrophoresis), VNTR (Variable Number Tandem Repeats) analyses were performed on all C:2a and C:2b meningococci (n = 147), following standard procedures.</p> <p>Results</p> <p>In 2005 and 2008, IMD showed an incidence of 0.5 and 0.3 per 100,000 inhabitants, respectively. While the incidence due to serogroup B remained stable, IMD incidence due to serogroup C has decreased since 2006. In particular, the decrease was significant among infants. C:2a and C:2b were the main serotypes, all C:2a strains belonged to ST-11 clonal complex and all C:2b to ST-8/A4. Clinical manifestations and outcome of infections underlined more severe disease caused by C:2a isolates. Two clusters due to C:2a/ST-11 meningococci were reported in the North of Italy in December 2007 and July 2008, respectively, with a high rate of septicaemia and fatal outcome.</p> <p>Conclusion</p> <p>Public health surveillance of serogroup C invasive meningococcal disease and microbiological/molecular characterization of the isolates requires particular attention, since the hyper-invasive ST-11 predominantly affected adolescents and young adults for whom meningococcal vaccination was not recommended in the 2005–2007 National Vaccine Plan.</p

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms

    Get PDF
    Background: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. Methods and Findings: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. Conclusions: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome

    Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study

    Get PDF
    [EN] Patients suffering from heart failure and left bundle branch block show electrical ventricular dyssynchrony causing an abnormal blood pumping. Cardiac resynchronization therapy (CRT) is recommended for these patients. Patients with positive therapy response normally present QRS shortening and an increased left ventricle (LV) ejection fraction. However, around one third do not respond favorably. Therefore, optimal location of pacing leads, timing delays between leads and/or choosing related biomarkers is crucial to achieve the best possible degree of ventricular synchrony during CRT application. In this study, computational modeling is used to predict the optimal location and delay of pacing leads to improve CRT response. We use a 3D electrophysiological computational model of the heart and torso to get insight into the changes in the activation patterns obtained when the heart is paced from different regions and for different atrioventricular and interventricular delays. The model represents a heart with left bundle branch block and heart failure, and allows a detailed and accurate analysis of the electrical changes observed simultaneously in the myocardium and in the QRS complex computed in the precordial leads. Computational simulations were performed using a modified version of the O'Hara et al. action potential model, the most recent mathematical model developed for human ventricular electrophysiology. The optimal location for the pacing leads was determined by QRS maximal reduction. Additionally, the influence of Purkinje system on CRT response was assessed and correlation analysis between several parameters of the QRS was made. Simulation results showed that the right ventricle (RV) upper septum near the outflow tract is an alternative location to the RV apical lead. Furthermore, LV endocardial pacing provided better results as compared to epicardial stimulation. Finally, the time to reach the 90% of the QRS area was a good predictor of the instant at which 90% of the ventricular tissue was activated. Thus, the time to reach the 90% of the QRS area is suggested as an additional index to assess CRT effectiveness to improve biventricular synchrony.This work was supported by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador CIBAE-023-2014, the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016 from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by Dirección General de Política Científica de la Generalitat Valenciana (PROMETEU 2016/088).Carpio-Garay, EF.; Gómez García, JF.; Sebastian, R.; López-Pérez, AD.; Castellanos, E.; Almendral, J.; Ferrero De Loma-Osorio, JM.... (2019). Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study. Frontiers in Physiology. 10:1-17. https://doi.org/10.3389/fphys.2019.00074S11710Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., … Messenger, J. (2002). Cardiac Resynchronization in Chronic Heart Failure. New England Journal of Medicine, 346(24), 1845-1853. doi:10.1056/nejmoa013168Abraham, W. T., Gras, D., Yu, C. M., Guzzo, L., & Gupta, M. S. (2010). Rationale and design of a randomized clinical trial to assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy: The Frequent Optimization Study Using the QuickOpt Method (FREEDOM) trial. American Heart Journal, 159(6), 944-948.e1. doi:10.1016/j.ahj.2010.02.034Ai, X., & Pogwizd, S. M. (2005). Connexin 43 Downregulation and Dephosphorylation in Nonischemic Heart Failure Is Associated With Enhanced Colocalized Protein Phosphatase Type 2A. Circulation Research, 96(1), 54-63. doi:10.1161/01.res.0000152325.07495.5aAkar, F. G., Nass, R. D., Hahn, S., Cingolani, E., Shah, M., Hesketh, G. G., … Tomaselli, G. F. (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 293(2), H1223-H1230. doi:10.1152/ajpheart.00079.2007ARBELO, E., TOLOSANA, J. M., TRUCCO, E., PENELA, D., BORRÀS, R., DOLTRA, A., … MONT, L. (2013). Fusion-Optimized Intervals (FOI): A New Method to Achieve the Narrowest QRS for Optimization of the AV and VV Intervals in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 25(3), 283-292. doi:10.1111/jce.12322Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., … Klein, H. (2004). Characterization of Left Ventricular Activation in Patients With Heart Failure and Left Bundle-Branch Block. Circulation, 109(9), 1133-1139. doi:10.1161/01.cir.0000118502.91105.f6Auricchio, A., Klein, H., Tockman, B., Sack, S., Stellbrink, C., Neuzner, J., … Spinelli, J. (1999). Transvenous biventricular pacing for heart failure: can the obstacles be overcome? The American Journal of Cardiology, 83(5), 136-142. doi:10.1016/s0002-9149(98)01015-7Barber, F., García-Fernández, I., Lozano, M., & Sebastian, R. (2018). Automatic estimation of Purkinje-Myocardial junction hot-spots from noisy endocardial samples: A simulation study. International Journal for Numerical Methods in Biomedical Engineering, 34(7), e2988. doi:10.1002/cnm.2988Barold, S. S., Ilercil, A., & Herweg, B. (2008). Echocardiographic optimization of the atrioventricular and interventricular intervals during cardiac resynchronization. Europace, 10(Supplement 3), iii88-iii95. doi:10.1093/europace/eun220Bertaglia, E., Migliore, F., Baritussio, A., De Simone, A., Reggiani, A., Pecora, D., … Stabile, G. (2017). Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing and Clinical Electrophysiology, 40(7), 850-856. doi:10.1111/pace.13104Bertini, M., Ziacchi, M., Biffi, M., Martignani, C., Saporito, D., Valzania, C., … Boriani, G. (2008). Interventricular Delay Interval Optimization in Cardiac Resynchronization Therapy Guided by Echocardiography Versus Guided by Electrocardiographic QRS Interval Width. The American Journal of Cardiology, 102(10), 1373-1377. doi:10.1016/j.amjcard.2008.07.015BLEEKER, G. B., SCHALIJ, M. J., MOLHOEK, S. G., VERWEY, H. F., HOLMAN, E. R., BOERSMA, E., … BAX, J. J. (2004). Relationship Between QRS Duration and Left Ventricular Dyssynchrony in Patients with End-Stage Heart Failure. Journal of Cardiovascular Electrophysiology, 15(5), 544-549. doi:10.1046/j.1540-8167.2004.03604.xBonakdar, H. R., Jorat, M. V., Fazelifar, A. F., Alizadeh, A., Givtaj, N., Sameie, N., … Haghjoo, M. (2009). Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace, 11(10), 1330-1337. doi:10.1093/europace/eup258Bordachar, P., Derval, N., Ploux, S., Garrigue, S., Ritter, P., Haissaguerre, M., & Jaïs, P. (2010). Left Ventricular Endocardial Stimulation for Severe Heart Failure. Journal of the American College of Cardiology, 56(10), 747-753. doi:10.1016/j.jacc.2010.04.038Boukens, B. J., Rivaud, M. R., Rentschler, S., & Coronel, R. (2014). Misinterpretation of the mouse ECG: ‘musing the waves ofMus musculus’. The Journal of Physiology, 592(21), 4613-4626. doi:10.1113/jphysiol.2014.279380Bradley, C. P., Pullan, A. J., & Hunter, P. J. (1997). Geometric modeling of the human torso using cubic hermite elements. Annals of Biomedical Engineering, 25(1), 96-111. doi:10.1007/bf027385422013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. (2013). European Heart Journal, 34(29), 2281-2329. doi:10.1093/eurheartj/eht150Brugada, J., Brachmann, J., Delnoy, P. P., Padeletti, L., Reynolds, D., Ritter, P., … Singh, J. P. (2014). Automatic Optimization of Cardiac Resynchronization Therapy Using SonR—Rationale and Design of the Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) Trial. American Heart Journal, 167(4), 429-436. doi:10.1016/j.ahj.2013.12.007Cano, O., Osca, J., Sancho-Tello, M.-J., Sánchez, J. M., Ortiz, V., Castro, J. E., … Olagüe, J. (2010). Comparison of Effectiveness of Right Ventricular Septal Pacing Versus Right Ventricular Apical Pacing. The American Journal of Cardiology, 105(10), 1426-1432. doi:10.1016/j.amjcard.2010.01.004Cazeau, S., Leclercq, C., Lavergne, T., Walker, S., Varma, C., Linde, C., … Daubert, J.-C. (2001). Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. New England Journal of Medicine, 344(12), 873-880. doi:10.1056/nejm200103223441202Chung, E. S., Leon, A. R., Tavazzi, L., Sun, J.-P., Nihoyannopoulos, P., Merlino, J., … Murillo, J. (2008). Results of the Predictors of Response to CRT (PROSPECT) Trial. Circulation, 117(20), 2608-2616. doi:10.1161/circulationaha.107.743120ClelandJ. G. F. DaubertJ.-C. ErdmannE. FreemantleN. GrasD. KappenbergerL. The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure.2005Coppola, G., Ciaramitaro, G., Stabile, G., DOnofrio, A., Palmisano, P., Carità, P., … Corrado, E. (2016). Magnitude of QRS duration reduction after biventricular pacing identifies responders to cardiac resynchronization therapy. International Journal of Cardiology, 221, 450-455. doi:10.1016/j.ijcard.2016.06.203Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002Crozier, A., Blazevic, B., Lamata, P., Plank, G., Ginks, M., Duckett, S., … Niederer, S. A. (2016). The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study. Journal of Molecular and Cellular Cardiology, 96, 93-100. doi:10.1016/j.yjmcc.2015.10.026Da Costa, A., Gabriel, L., Romeyer-Bouchard, C., Géraldine, B., Gate-Martinet, A., Laurence, B., … Isaaz, K. (2013). Focus on right ventricular outflow tract septal pacing. Archives of Cardiovascular Diseases, 106(6-7), 394-403. doi:10.1016/j.acvd.2012.08.005De Pooter, J., El Haddad, M., Timmers, L., Van Heuverswyn, F., Jordaens, L., Duytschaever, M., & Stroobandt, R. (2015). Different Methods to Measure QRS Duration in CRT Patients: Impact on the Predictive Value of QRS Duration Parameters. Annals of Noninvasive Electrocardiology, 21(3), 305-315. doi:10.1111/anec.12313Derval, N., Steendijk, P., Gula, L. J., Deplagne, A., Laborderie, J., Sacher, F., … Jaïs, P. (2010). Optimizing Hemodynamics in Heart Failure Patients by Systematic Screening of Left Ventricular Pacing Sites. Journal of the American College of Cardiology, 55(6), 566-575. doi:10.1016/j.jacc.2009.08.045DeskR. WilliamsL. HealthK. Characteristics and Distribution of M Cells in Arterially.1998Dou, J., Xia, L., Deng, D., Zang, Y., Shou, G., Bustos, C., … Crozier, S. (2012). A Study of Mechanical Optimization Strategy for Cardiac Resynchronization Therapy Based on an Electromechanical Model. Computational and Mathematical Methods in Medicine, 2012, 1-13. doi:10.1155/2012/948781DURRER, D., VAN DAM, R. T., FREUD, G. E., JANSE, M. J., MEIJLER, F. L., & ARZBAECHER, R. C. (1970). Total Excitation of the Isolated Human Heart. Circulation, 41(6), 899-912. doi:10.1161/01.cir.41.6.899Dutta, S., Mincholé, A., Quinn, T. A., & Rodriguez, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40-52. doi:10.1016/j.pbiomolbio.2017.02.007Elhakam Elzoghby, I. A., Attia, I., Azab, A. E., & Hammouda, M. (2017). Impact of Cardiac Resynchronization Therapy on Heart Failure Patients: Experience from One Center. Archives of Medicine, 09(04). doi:10.21767/1989-5216.1000232Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573FLEVARI, P., LEFTHERIOTIS, D., FOUNTOULAKI, K., PANOU, F., RIGOPOULOS, A. G., PARASKEVAIDIS, I., & KREMASTINOS, D. T. (2009). Long-Term Nonoutflow Septal Versus Apical Right Ventricular Pacing: Relation to Left Ventricular Dyssynchrony. Pacing and Clinical Electrophysiology, 32(3), 354-362. doi:10.1111/j.1540-8159.2008.02244.xGRAS, D., GUPTA, M. S., BOULOGNE, E., GUZZO, L., & ABRAHAM, W. T. (2009). Optimization of AV and VV Delays in the Real-World CRT Patient Population: An International Survey on Current Clinical Practice. Pacing and Clinical Electrophysiology, 32, S236-S239. doi:10.1111/j.1540-8159.2008.02294.xGreenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E., & Anderson, R. H. (1981). Left ventricular fibre architecture in man. Heart, 45(3), 248-263. doi:10.1136/hrt.45.3.248Guo, T., Li, R., Zhang, L., Luo, Z., Zhao, L., Yang, J., … Hua, B. (2015). Biventricular Pacing With Ventricular Fusion by Intrinsic Activation in Cardiac Resynchronization Therapy. International Heart Journal, 56(3), 293-297. doi:10.1536/ihj.14-260Gurev, V., Constantino, J., Rice, J. J., & Trayanova, N. A. (2010). Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model. Biophysical Journal, 99(3), 745-754. doi:10.1016/j.bpj.2010.05.028Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., & Ellenbogen, K. A. (2017). A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Canadian Journal of Cardiology, 33(12), 1736.e1-1736.e3. doi:10.1016/j.cjca.2017.09.013Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485Krum, H., Lemke, B., Birnie, D., Lee, K. L.-F., Aonuma, K., Starling, R. C., … Martin, D. (2012). A novel algorithm for individualized cardiac resynchronization therapy: Rationale and design of the adaptive cardiac resynchronization therapy trial. American Heart Journal, 163(5), 747-752.e1. doi:10.1016/j.ahj.2012.02.007Leclercq, C., Sadoul, N., Mont, L., Defaye, P., Osca, J., Mouton, E., … Fernandez-Lozano, I. (2015). Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. European Heart Journal, 37(5), 473-483. doi:10.1093/eurheartj/ehv422LEE, A. W. C., CROZIER, A., HYDE, E. R., LAMATA, P., TRUONG, M., SOHAL, M., … NIEDERER, S. (2017). Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 28(2), 208-215. doi:10.1111/jce.13134Lee, A. W. C., Costa, C. M., Strocchi, M., Rinaldi, C. A., & Niederer, S. A. (2018). Computational Modeling for Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 11(2), 92-108. doi:10.1007/s12265-017-9779-4Lee, H., Park, J.-H., Seo, I., Park, S.-H., & Kim, S. (2014). Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Developmental Biology, 14(1). doi:10.1186/s12861-014-0048-3Linde, C., Ellenbogen, K., & McAlister, F. A. (2012). Cardiac resynchronization therapy (CRT): Clinical trials, guidelines, and target populations. Heart Rhythm, 9(8), S3-S13. doi:10.1016/j.hrthm.2012.04.026Lopez-Perez, A., Sebastian, R., & Ferrero, J. M. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. BioMedical Engineering OnLine, 14(1). doi:10.1186/s12938-015-0033-5Mafi Rad, M., Blaauw, Y., Dinh, T., Pison, L., Crijns, H. J., Prinzen, F. W., & Vernooy, K. (2014). Different regions of latest electrical activation during left bundle-branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electro-anatomic mapping. European Journal of Heart Failure, 16(11), 1214-1222. doi:10.1002/ejhf.178Miri, R., Graf, I. M., & Dossel, O. (2009). Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study. IEEE Transactions on Biomedical Engineering, 56(11), 2573-2582. doi:10.1109/tbme.2009.2027692Miri, R., Reumann, M., Farina, D., & Dössel, O. (2009). Concurrent optimization of timing delays and electrode positioning in biventricular pacing based on a computer heart model assuming 17 left ventricular segments. Biomedizinische Technik/Biomedical Engineering, 54(2), 55-65. doi:10.1515/bmt.2009.013Miri, R., Reumann, M., Keller, D. U. J., Farina, D., & Dossel, O. (2008). Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2008.4649513MOLHOEK, S. G., BAX, J. J., BOERSMA, E., ERVEN, L. V., BOOTSMA, M., STEENDIJK, P., … SCHALIJ, M. J. (2004). QRS Duration and Shortening to Predict Clinical Response to Cardiac Resynchronization Therapy in Patients with End‐Stage Heart Failure. Pacing and Clinical Electrophysiology, 27(3), 308-313. doi:10.1111/j.1540-8159.2004.00433.xMora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739MUTO, C., OTTAVIANO, L., CANCIELLO, M., CARRERAS, G., CALVANESE, R., ASCIONE, L., … TUCCILLO, B. (2007). Effect of Pacing the Right Ventricular Mid-Septum Tract in Patients with Permanent Atrial Fibrillation and Low Ejection Fraction. Journal of Cardiovascular Electrophysiology, 18(10), 1032-1036. doi:10.1111/j.1540-8167.2007.00914.xO’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003Pitzalis, M. V., Iacoviello, M., Romito, R., Massari, F., Rizzon, B., Luzzi, G., … Rizzon, P. (2002). Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. Journal of the American College of Cardiology, 40(9), 1615-1622. doi:10.1016/s0735-1097(02)02337-9Pluijmert, M., Bovendeerd, P. H. M., Lumens, J., Vernooy, K., Prinzen, F. W., & Delhaas, T. (2016). New insights from a computational model on the relation between pacing site and CRT response. EP Europace, 18(suppl_4), iv94-iv103. doi:10.1093/europace/euw355Potse, M., Dube, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425-2435. doi:10.1109/tbme.2006.880875Potse, M., Krause, D., Bacharova, L., Krause, R., Prinzen, F. W., & Auricchio, A. (2012). Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace, 14(suppl 5), v33-v39. doi:10.1093/europace/eus272Prassl, A. J., Kickinger, F., Ahammer, H., Grau, V., Schneider, J. E., Hofer, E., … Plank, G. (2009). Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems. IEEE Transactions on Biomedical Engineering, 56(5), 1318-1330. doi:10.1109/tbme.2009.2014243PRINZEN, F. W., & PESCHAR, M. (2002). Relation Between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. Pacing and Clinical Electrophysiology, 25(4), 484-498. doi:10.1046/j.1460-9592.2002.00484.xVan Deursen, C., van Geldorp, I. E., Rademakers, L. M., van Hunnik, A., Kuiper, M., Klersy, C., … Prinzen, F. W. (2009). Left Ventricular Endocardial Pacing Improves Resynchronization Therapy in Canine Left Bundle-Branch Hearts. Circulation: Arrhythmia and Electrophysiology, 2(5), 580-587. doi:10.1161/circep.108.846022Prinzen, F. W., Vernooy, K., Lumens, J., & Auricchio, A. (2017). Physiology of Cardiac Pacing and Resynchronization. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, 213-248. doi:10.1016/b978-0-323-37804-8.00007-9Rickard, J., Karim, M., Baranowski, B., Cantillon, D., Spragg, D., Tang, W. H. W., … Varma, N. (2017). Effect of PR interval prolongation on long-term outcomes in patients with left bundle branch block vs non–left bundle branch block morphologies undergoing cardiac resynchronization therapy. Heart Rhythm, 14(10), 1523-1528. doi:10.1016/j.hrthm.2017.05.028Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., & Frangi, A. F. (2010). Effects of the Purkinje

    The origin and speciation of orchids

    Get PDF
    SummaryOrchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis.We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants.The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica.These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation

    Sleep and immune function

    Get PDF
    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations
    corecore