413 research outputs found

    The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Millions of people are diagnosed with non-melanoma skin cancers (NMSC) worldwide each year. While surgical approaches are the standard treatment, some patients are appropriate candidates for radiation therapy for NMSC. High dose rate (HDR) brachytherapy using surface applicators has shown efficacy in the treatment of NMSC and shortens the radiation treatment schedule by using a condensed hypofractionated approach. An electronic brachytherapy (EBT) system permits treatment of NMSC without the use of a radioactive isotope.</p> <p>Methods</p> <p>Data were collected retrospectively from patients treated from July 2009 through March 2010. Pre-treatment biopsy was performed to confirm a malignant cutaneous diagnosis. A CT scan was performed to assess lesion depth for treatment planning, and an appropriate size of surface applicator was selected to provide an acceptable margin. An HDR EBT system delivered a dose of 40.0 Gy in eight fractions twice weekly with 48 hours between fractions, prescribed to a depth of 3-7 mm. Treatment feasibility, acute safety, efficacy outcomes, and cosmetic results were assessed.</p> <p>Results</p> <p>Thirty-seven patients (mean age 72.5 years) with 44 cutaneous malignancies were treated. Of 44 lesions treated, 39 (89%) were T1, 1 (2%) Tis, 1 (2%) T2, and 3 (7%) lesions were recurrent. Lesion locations included the nose for 16 lesions (36.4%), ear 5 (11%), scalp 5 (11%), face 14 (32%), and an extremity for 4 (9%). Median follow-up was 4.1 months. No severe toxicities occurred. Cosmesis ratings were good to excellent for 100% of the lesions at follow-up.</p> <p>Conclusions</p> <p>The early outcomes of EBT for the treatment of NMSC appear to show acceptable acute safety and favorable cosmetic outcomes. Using a hypofractionated approach, EBT provides a convenient treatment schedule.</p

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 B.C

    Get PDF
    International audienceThis article presents the conception and the conceptual results of a modelling representation of the farming systems of the Linearbandkeramik Culture (LBK). Assuming that there were permanent fields (PF) then, we suggest four ways that support the sustainability of such a farming system over time: a generalized pollarding and coppicing of trees to increase the productivity of woodland areas for foddering more livestock, which itself can then provide more manure for the fields, a generalized use of pulses grown together with cereals during the same cropping season, thereby reducing the needs for manure. Along with assumptions limiting bias on village and family organizations, the conceptual model which we propose for human environment in the LBK aims to be sustainable for long periods and can thereby overcome doubts about the PFs hypothesis for the LBK farming system. Thanks to a reconstruction of the climate of western Europe and the consequent vegetation pattern and productivity arising from it, we propose a protocol of experiments and validation procedures for both testing the PFs hypothesis and defining its eco-geographical area

    The Shark Assemblage at French Frigate Shoals Atoll, Hawai‘i: Species Composition, Abundance and Habitat Use

    Get PDF
    Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao Mh ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289–1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling

    Properties of g→b¯b at small opening angles in pp collisions with the ATLAS detector at √s=13 TeV

    Get PDF
    The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to b-quark pairs is a unique probe into the properties of gluon fragmentation because identified b-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the g→b¯b process are measured using 33 fb−1 of √s=13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-kt jet algorithm with radius parameter R=0.2, are used to probe angular scales below the R=0.4 jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into b-quarks

    Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    This Letter presents a search for new light resonances decaying to pairs of quarks and produced in association with a high-pT photon or jet. The dataset consists of proton–proton collisions with an integrated luminosity of 36.1 fb−1at a centre-of-mass energy of √s=13TeV recorded by the ATLAS detector at the Large Hadron Collider. Resonance candidates are identified as massive large-radius jets with substructure consistent with a particle decaying into a quark pair. The mass spectrum of the candidates is examined for local excesses above background. No evidence of a new resonance is observed in the data, which are used to exclude the production of a lepto-phobic axial-vector Z boson

    A measurement of the soft-drop jet mass in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Jet substructure observables have significantly extended the search program for physics beyond the Standard Model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log 10 ρ 2, where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb −1 of √s =13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations
    corecore