9,242 research outputs found

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Nanodiamond landmarks for subcellular multimodal optical and electron imaging.

    Get PDF
    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable "zooming-in" to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery

    Quantitative Imaging of Protein-Protein Interactions by Multiphoton Fluorescence Lifetime Imaging Microscopy using a Streak camera

    Full text link
    Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in multiphoton FLIM methods and also present a description of a novel multiphoton FLIM system using a streak camera that was developed in our laboratory. We provide an example of a typical application of the system in which we measure the fluorescence resonance energy transfer between a donor/acceptor pair of fluorescent proteins within a cellular specimen.Comment: Overview of FLIM techniques, StreakFLIM instrument, FRET application

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Probing subtle fluorescence dynamics in cellular proteins by streak camera based Fluorescence Lifetime Imaging Microscopy

    Full text link
    We report the cell biological applications of a recently developed multiphoton fluorescence lifetime imaging microscopy system using a streak camera (StreakFLIM). The system was calibrated with standard fluorophore specimens and was shown to have high accuracy and reproducibility. We demonstrate the applicability of this instrument in living cells for measuring the effects of protein targeting and point mutations in the protein sequence which are not obtainable in conventional intensity based fluorescence microscopy methods. We discuss the relevance of such time resolved information in quantitative energy transfer microscopy and in measurement of the parameters characterizing intracellular physiology

    Light-sheet microscopy: a tutorial

    Get PDF
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer ReviewedPostprint (published version

    Confocal and multiphoton imaging of intracellular Ca<sup>2+</sup>

    Get PDF
    This chapter compares the imaging capabilities of a range of systems including multiphoton microscopy in regard to measurements of intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; within living cells. In particular, the excitation spectra of popular fluorescent Ca&lt;sup&gt;2+&lt;/sup&gt; indicators are shown during 1P and 2P excitation. The strengths and limitations of the current indicators are discussed along with error analysis which highlights the value of matching the Ca&lt;sup&gt;2+&lt;/sup&gt; affinity of the dye to a particular aspect of Ca&lt;sup&gt;2+&lt;/sup&gt; signaling. Finally, the combined emission spectra of Ca&lt;sup&gt;2+&lt;/sup&gt; and voltage sensitive dyes are compared to allow the choice of the optimum combination to allow simultaneous intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; and membrane voltage measurement
    corecore