13,509 research outputs found

    Validation of in situ applicable measuring techniques for analysis of the water adsorption by stone

    Get PDF
    As the water adsorbing behaviour (WAB) of stone is a key factor for most degradation processes, its analysis is a decisive aspect when monitoring deterioration and past conservation treatments, or when selecting a proper conservation treatment. In this study the performance of various non-destructive methods for measuring the WAB are compared, with the focus on the effect of the variable factors of the methods caused by their specific design. The methods under study are the contact-sponge method (CSM), the Karsten tube (KT) and the Mirowski pipe (MIR). Their performance is compared with the standardized capillary rise method (CR) and the results are analysed in relation to the open porosity of different lithotypes. Furthermore the effect of practical encumbrances which could limit the application of these methods was valuated. It was found that KT and CSM have complementary fields of investigation, where CSM is capable of measuring the initial water uptake of less porous materials with a high precision, while KT was found commodious for measuring longer contact times for more porous lithotypes. MIR showed too many discommodities, leading to unreliable results. To adequately compare the results of the different methods, the size of the contact area appears to be the most influential factor, whereas the contact material and pressure on the surface do not indicate a significant influence on the results. The study of these factors is currently being extended by visualization of the water adsorption process via X-ray and neutron radiography in combination with physico-mathematical models describing the WAB

    On The Development of a Dynamic Contrast-Enhanced Near-Infrared Technique to Measure Cerebral Blood Flow in the Neurocritical Care Unit

    Get PDF
    A dynamic contrast-enhanced (DCE) near-infrared (NIR) method to measure cerebral blood flow (CBF) in the neurocritical care unit (NCU) is described. A primary concern in managing patients with acquired brain injury (ABI) is onset of delayed ischemic injury (DII) caused by complications during the days to weeks following the initial insult, resulting in reduced CBF and impaired oxygen delivery. The development of a safe, portable, and quantitative DCE-NIR method for measuring CBF in NCU patients is addressed by focusing on four main areas: designing a clinically compatible instrument, developing an appropriate analytical framework, creating a relevant ABI animal model, and validating the method against CT perfusion. In Chapter 2, depth-resolved continuous-wave NIR recovered values of CBF in a juvenile pig show strong correlation with CT perfusion CBF during mild ischemia and hyperemia (r=0.84, p\u3c0.001). In particular, subject-specific light propagation modeling reduces the variability caused by extracerebral layer contamination. In Chapter 3, time-resolved (TR) NIR improves the signal sensitivity to brain tissue, and a relative CBF index is be both sensitive and specific to flow changes in the brain. In particular, when compared with the change in CBF measured with CT perfusion during hypocapnia, the deconvolution-based index has an error of 0.8%, compared to 21.8% with the time-to-peak method. To enable measurement of absolute CBF, a method for characterizing the AIF is described in Chapter 4, and the theoretical basis for an advanced analytical framework—the kinetic deconvolution optical reconstruction (KDOR)—is provided in Chapter 5. Finally, a multichannel TR-NIR system is combined with KDOR to quantify CBF in an adult pig model of ischemia (Chapter 6). In this final study, measurements of CBF obtained with the DCE-NIR technique show strong agreement with CT perfusion measurements of CBF in mild and moderate ischemia (r=0.86, p\u3c0.001). The principle conclusion of this thesis is that the DCE-NIR method, combining multidistance TR instrumentation with the KDOR analytical framework, can recover CBF values that are in strong agreement with CT perfusion values of CBF. Ultimately, bedside CBF measurements could improve clinical management of ABI by detecting delayed ischemia before permanent brain damage occurs

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    Get PDF
    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems

    Web Services Support for Dynamic Business Process Outsourcing

    Get PDF
    Outsourcing of business processes is crucial for organizations to be effective, efficient and flexible. To meet fast-changing market conditions, dynamic outsourcing is required, in which business relationships are established and enacted on-the-fly in an adaptive, fine-grained way unrestricted by geographic distance. This requires automated means for both the establishment of outsourcing relationships and for the enactment of services performed in these relationships over electronic channels. Due to wide industry support and the underlying model of loose coupling of services, Web services increasingly become the mechanism of choice to connect organizations across organizational boundaries. This paper analyzes to which extent Web services support the dynamic process outsourcing paradigm. We discuss contract -based dynamic business process outsourcing to define requirements and then introduce the Web services framework. Based on this, we investigate the match between the two. We observe that the Web services framework requires further support for cross - organizational business processes and mechanisms for contracting, QoS management and process-based transaction support and suggest ways to fill those gaps

    Ancient and historical systems

    Get PDF

    Dependability analysis of web services

    Get PDF
    Web Services form the basis of the web based eCommerce eScience applications so it is vital that robust services are developed. Traditional validation and verification techniques are centred around the concept of removing all faults to guarantee correct operation whereas Dependability gives an assessment of how dependably a system can deliver the required functionality by assessing attributes, and by eliminating threats via means attempts to improve dependability. Fault injection is a well-proven dependability assessment method. Although much work has been done in the area of fault injection and distributed systems in general, there appears to have been little research carried out on applying this to middleware systems and Web Services in particular. There are additional problems associated with applying existing fault injection technologies to Web Services running in a virtual machine environment since most are either invasive or work at a machine level. The Fault Injection Technology (FIT) method has been devised to address these problems for middleware systems. The Web Service-Fault Injection Technology (WS-FIT) implementation applies the FIT method, based on network level fault injection, to Web Services to create a non-invasive dependability assessment method. It allows targeted perturbation of Web Service RFC parameters as well as more traditional network level fault injection operations. The WS-FIT tool includes taxonomies that define a system under test, fault models to apply and failure modes to be detected, and uses these taxonomies to generate fault injection campaigns. WS-FIT has been applied to a number of case studies and has successfully demonstrated its effectiveness. It has also been successfully applied to a third-party system to evaluate dependability means. It performed this dependability assessment as well as allowing debugging of the means to be undertaken uncovering unknown faults

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research
    • …
    corecore