
Programming with Process Groups:
Group and Multicast Semantics*

Kenneth P. Birman /_-_?_ -'<---

Robert Cooper _ _/_ /J

Barry Gleeson

TR 91-1185
January 1991

,,/., --_/-c//_.-

/7
/-

Department'of Computer Science
Cornell University
Ithaca, NY 14853-7501

*The first Two authors are in the Dept. of Computer Science, Cornel University, and
were supported under DARPA/NASA grant NAG-2-593. The third author is with the
UNISYS Corporation, San Jose, Ca.

https://ntrs.nasa.gov/search.jsp?R=19910013409 2020-03-19T17:58:37+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42818391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Programming with Process Groups:

Group and Multicast Semantics*

Kenneth P. Birman Robert Cooper Barry Gleeson

TR-91-1185

January 29, 1991

Abstract

Process groups are a natural tool for distributed programming, and are increasingly important in dis-

tributed computing environments. However, there is little agreement on the most appropriate semantics

for process group membership and group communication. These issues are of special importance in the

Isis system, a toolkit for distributed programming. Isls supports several styles of process group, and

a collection of group communication protocols spanning a range of atomicity and ordering properties.

This flexibility makes Isis adaptable to a variety of applications, but is also a source of complexity that

limits performance. This paper reports on a new architecture that arose from an effort to simplify Isis

process group semantics. Our findings include a refined notion of how the clients of a group should be

treated, what the properties of a multicast primitive should be when systems contain large numbers of

overlapping groups, and a new construct callex! the causality domain. A system based on this architecture

is now being implemented in collaboration with the Chorus and Mach projects.

Keywords: distributed computing, fault-tolerance, Isis, process groups, virtual synchrony, causal

multicast, atomic broadcast

1 Introduction

Isis is a toolkit for distributed programming that provides a set of problem-oriented tools built around

process groups and reliable group multicast [BJ87,BSS90]. It is the semantics of these core group and

multieast mechanisms that this paper explores. Process groups are a natural abstraction and have bccn

"The ftrst two authora are in the Dept. of Computer Science, CorneU University, and were supported under DARPA/NASA

grant NAG-2-593. The third author is with the UNISYS Corporation, San Jose, Ca.



used in a number of distributed systems [C'Z85,OSS80,KTHB89,LLS90,PBS89,AGHR89]. However, the

precise characteristics of group facilities differ widely among the systems that use groups, as do the

protocols employed to implement them. The primary goal of this paper is to sort through the design choices

at this level, arriving at a process group architecture that is simple, powerful and appropriate.

Our analysis draws on experience with the Isls system, which has been distributed to more than 750 sites

since the first public software release in 1987. Isis is presently used in diverse settings such as brokerage

and banking applications, value-added telecommunications systems, wide-area seismic data collection

and analysis, factory floor automation, document flow, distributed simulation, scientific computing,

high-availability file management, reactive control, database integration, education and research [BC90].

Through participation in the design of a number of these distributed systems, we have gained insight into

the successhtl aspects of the technology, but also into aspects that need further work.

Successful Isis applications often share two characteristics:

• They dependon consistent, distributedprocess group state. Isis provides tools for reading and writing

replicated data, adapting to failures, transferring group data to new members, and viewing group

membership. Many Isis applications using these tools rely on the guarantee that group members see

mutually consistent sequences of updates for replicated information. For example, group members

are able to react to external events in a coordinated way, using the synchronized group membership

lists, without the need for an additional agreement protocol.

• They employ large numbers of groups. Isis was designed assuming that typical applications would

be organized into some (small) number of fault-tolerant distributed servers, each implemented using

a single process group. However, many Isis users seized upon groups as a fine-grained structuriHg

construct, building applications with large numbers of overlapping groups. This trend motivates

several of the architectural changes discussed below.

Groups are used in a variety of ways in Isis applications:

Groups a,_ services with clients. In this case, group members provide services to client programs,

either in a nxluest-reply style, or through a registration interface with repeated callbacks (e.g. a

broker's workstation might subscribe to a stock price publication service, receiving callbacks each

time the price changes). Multi-level servers are common, with the processes that implement one

service registering as clients of other services.

• Process groups for distributedor replicated objects. In these applications, which predominate amotag

current Isis uses, an object is typically an abstract data type with small state I that may change rapidly

ILarller datable-style objects would normally be managed using conventional database packages. Isis tools can be combm.'d

with such p_kaSes or subsystems, and t mechanism for dealing with databases is included within the toolkit.



Reasons for replicating objects include improved fault-tolerance, and increased performance through

concurrency or coherently replicated data.

Groups used for parallel programming. Several scientific computing projects have employed Isis

to obtain coarse grained parallelism and fault-tolerance in simulations and graphics applications,

running on networks of high-performance workstations.

Groups used for fault-tolerant, distributed system management. Isis has been used in application-

oriented monitoring and control software for high-reliability, autonomous, distributed systems. The

underlying application will often make no explicit use of Isis, although hooks may be included to

permit the monitoring system to intervene when necessary.

Groups used for transparent fault-tolerance. Here the components of a distributed system are

systematically replaced by fault-tolerant process groups.

The numbers and uses of groups differ substantially from the original expectations dating from when Isis

was developed. We have been forced to question many of the basic assumptions underlying the initial

architecture, and to ask how the system might be re-designed to simplify future development, improve

performance and exploit emerging operating systems and hardware technologies, such as communication

devices supporting high-speed multicast.

This paper focuses upon the following questions:

• Why is explicit system support for process groups and group communication necessary?

• What types of groups are needed in distributed systems, and what patterns of client-server interactions

should be supported?

• What should be the semantics of communication and membership in a single process group?

• How should these semantics be extended to multiple, overlapping groups?

• How can a process group system take advantage of the emerging generation of modular operating

systems?

2 Process groups

This section refines our terminology and confronts the first of the design questions with which the paper is

concerned. In Sec. 2.1 we consider the semantics of process group membership; group communication is

discussed in See. 2.2.



2.1 Group membership

A process group is a collection of communication endpoints that can be referenced as a single entity.

A communication endpoint would be referred to by a socket address in Unix, a send-fight in Mach, a

entity-ID in the V-System, a port UI in Chorus, or a capability in Amoeba. We assume multiple threads

sharing an address space (i.e. a process in Unix or Amoeba, a task in Mach, or an actor in Chorus).

This permits an address space to own several communication end-points, thus decoupling us from any

specific model of processes or memory. Following the conventions of other group-based projects and the

original Isis implementation, we will identify end-points with processes. However, although the current Isis

implementation permits only one end-point per process, this restriction is removed in our new architecture.

Why provide support for process groups?

The process group membership mechanism comprises the algorithms used to support joining and leaving

groups, and to query the current membership list. One might ask whether these operations are more

appropriately realized at the application level, or in a shared software subsystem such as Isis. Three

issues arise: the importance and generality of the group mechanism, the performance implications of an

application-level implementation, and the complexity of the solution.

• Generality. In Isis applications, process groups are obviously a basic and heavily used programming

construct. Assuming that a single, general mechanism can support such a diverse user commu-

nity (without becoming encumbered by numerous special features), system-level support for that

mechanism is justi fiable.

• Performance. One could attempt to avoid the cost of maintaining explicit group membership lists

at all times by re-computing group membership only when needed, perhaps using a caching and

validation mechanism. However, if there is more than one multicast or group membership query per

group change (as is usually the case), such an approach will increase costs. 2 Thus it is cheaper to

maintain accurate group membership information.

• Complexity. The protocols required to support process groups are subde and difficult to implcmcnt

correctly. If non-experts are to use group-based programming structures, such as replicated data.

there may be no choice but to implement the group mechanism in a shared subsystem.

2Actually. we are familiar with some applications in which changes to group membership axe more frequent than communicati_m

For example, consider an application in which messages axe sent to the set of idle servers in a compute service. If servers perform

short tasks, membership in this group could vary rapidly. Even so. our experience suggests that these ad-hoc groups tend to t-,,:

subsets of more stable enclosing groups. Useful communication structures may therefore be present, even when they arc n.,

immedht-" from the problem statement.



We conclude that a system-level group facility is needed, and that knowledge of group me,nbership will be

important at the application level.

2.2 Group communication

A group muhicast occurs when a thread sends a message to a process group. Various styles of multicast

are possible: asynchronous, all-reply, one-reply, k-reply, and so forth. Isis programmers find all of these

styles useful. Multiple threads may initiate multicasts to the same group concurrently, hence multicast

communication primitives often provide system-enforced ordering properties. Real-time systems may

support message priorities or multicast delivery deadlines: messages sent between correct processors are

guaranteed to be scheduled according to priority and/or to arrive within some limited delay) Other

potentially useful properties include failure atornicity, namely all-or-nothing delivery guarantees even

if processes or processors fail during a multicast, and membership atoraicity, the guarantee that group

membership changes are totally ordered and synchronized with group communication. We use the term

address expansion to refer to the phase of a multicast during which the system determines tile group

members to which a message will be delivered.

Figure 1 illustrates two extremes for group communication. In an unordered execution no atomicity

guarantees are provided. In a closely synchronous execution, one event occurs at a time, and multicast

messages are delivered atomically to the full membership of the group at a single logical instant, during

which both address expansion and delivery occurs. The virtually synchronous execution model supported

by Isis is indistinguishable from a closely synchronous execution for a correct program, but relaxes

synchronization to improve performance.

In some systems [LLS90,PBS89] only members of a group may multicast to it. This simplifies group

management but does not reflect the way programmers use groups. In such an approach, client programs

that wish to communicate with a service implemented by a group must either join the group (which does

not scale well), or use point-to-point communication with individual group members (raising difficult

fault-tolerance problems if the "agent" fails). Here, we assume that process groups will have both membcrs

and clients. In Isis clients identify themselves through the pg_client system call.

How should systems support group communication?

One might also ask why explicit system support for group communication is necessary. Most of the

arguments for system management of group membership also apply here and we do not repeat them.

3Protocol,t that enforce deadlines often impose suingent timing requirements upon the operating system. Moreover, they

frequently obtain determinism by introducing costly delays and idle periods. Few current Isis applications need deadlines ,,r

priorities, hence we have chosen to concentrate on "logical" properties, such as delivery ordering and atomicity, in this paper.



_W

Client ! (_ _ _"_ Client 2 Client I

Server

Clicm 2

Figure 1: (a) Unordered group communication; Co) Synchronous group communication.

However, a frequently-asked question is whether group communication should be implemented over RPC.

Many current operating systems are R.PC-based, and this protocol is often highly optimized and well

supported. Moreover, many styles of group communication are essentially extensions of RPC, and many of

the techniques used to support RPC carry over to group multicast protocols.

In principle, one could build a reliable multicast protocol over an RPC transport, and a group mechani._m

over this multicast. Given transactional RPC [LS83,Spe85], such a multicast could be made atomic, _vith

parallel threads doing RPCs to deliver the messages, and using a two-phase commit to ensure atom icity. O f

course, such a solution would also need to address the concerns of the remainder of this paper: multica_t

ordering, synchronization of multicast address expansion with group membership changes, etc. A protocol

with predictable behavior in all of these respects would be no simpler over RPC than any other technology.

The question, therefore, is one of performance.

Of special interest to us are applications that use asynchronous group communication to achieve high

performance. Communication is synchronous if it follows a request-reply style, whereby the thread that

sends a message blocks waiting for the reply. Asynchronous communication arises when the sending thread

does not block and no reply message is sent. Although underlying message transport layers still need tt)

exchange acknowledgement and flow-control messages, these impose little overhead and do not delay the

higher-level protocols. :' :_

Asynchronous communic_ atj0n has an obvious performance benefit if no replies are needed from the

destination processes. This benefit becomes a necessity when the number of destinations grows lar_:c.



Clients

(a)Peer Group (b) Client-Server Group (c) Diffusion Group (d) Hierarchical Group

Figure 2: Common group structures

because of the cost of collecting superfluous replies at the requester. Implementing an asynchronous

multicast communication protocol over an RPC layer would cause severe congestion at the sender. A second

factor is that multicast hardware would be very difficult to exploit from an RPC-based implementation.

We conclude that group communication should be supported directly by the system, and implemented over

asynchronous message passing or transport-level multicast.

2.3 Common styles of group usage.

From experience with Isis users, we have identified four group structures that continually reappear in Isis

programs (Fig. 2). Each responds to a different programming need.

Groups structures

A peer group is composed of a set of members that cooperate closely for some purpose. Fault-tolerance

and load-sharing are dominant considerations in these groups, which are typically small. In a client-server

group, a potentially large number of clients interacts with a peer group of servers. Requests may bc

multicast or issued as RI_s to some favored server after an initial setup. The servers either respond to

requests using point-to-point messages, or use multicast to atomically reply to the client while also sending

copies to one-another. The latter approach is useful for fault-tolerance: if a primary server fails, multica._t

atomicity implies that a backup server will receive a copy if (and only if) the client did. Thus, a backup

server will know which requests are still pending.

A special case of client-server communication arises in the diffusion group, which supports diffusio,,

multicasts. Here, a single message is sent by a server to the full set of clients and servers. In current l_is



applications,diffusiongroupsaretheonlysituationsin whicha typicalmulticasthasa largenumberof
destinations.Theuseof multicasthardwaretooptimizethiscaseis thusattractive.

Thesethreecasesareeasilydistinguishedatruntimein Isis. The only explicit actions by the programmer

are to register as a member (using the pg.,join system call) or client (pg_client), and to designate di ffusion

multicasts using an option to the Isis multicast system call. A single group may operate in both client-serve r

modes simultaneously.

The last common group structure is the hierarchical group. In large applications with a need for sharing,

it is important to localize interactions within smaller clusters of components. This leads to an approach in

which a conceptually large group is implemented as a collection of subgroups. In client-server applications

with hierarchical server groups, the client is bound, transparently, to a subgroup that accepts requests on its

behalf. A root group is responsible for performing this mapping, which is done using a stub linked into the

client's address space that routes messages to the appropriate subgroup. The root group sets up this binding

when a process becomes a group client, and may later re-bind the client to a different subgroup. Group

data is partitioned so that only one subgroup holds the primary copy of any data item, with others either

directing operations to the appropriate subgroup or maintaining cached copies. Multicast to the full set of

group members is supported, but is rarely needed in this architecture.

For brevity, we omit detailed discussion of two degenerate cases: one-time client-server interactions, and

groups used only to monitor membership, but never for communication. Both merit special treatment in

an implementation. For example, a large membership-only group should be supported as a client-server

structure, minimizing the number of processes informed on each membership change. The servers would

be informed of monitoring requests and would only communicate with a client when a monitor is triggered.

Multiple overlapping groups

Many Isis applications employ multiple, overlapping groups. In object-oriented applications group overlap

is often carried to an extreme. Here, each program is typically composed of some set of objects, and any

object that maintains distributed state is implemented by a group. A single process may thus belong to

many groups. Large numbers of groups also arise when Isis is used for transparent fault-tolerance in the

paxTe,ss pair style [BarS1], with a shadow process backing up each real process. Here, each communication

entity in the system is represented by a group containing two members: a primary and a backup. Most

communication becomes a three-way multicast: to the backup of the sender and the primary/backup

pair comprising the destination. Some Isls applications superimpose multiple groups on the same set of

processes. For example, in a stock trading application, a service that computes bid/offered prices for a

stock (a diffusion group) might also provide historical information on demand (a request-reply interaction)

Moreover, individual processes within the server set may well subscribe to other services.



Server Server

C'6enz _ Client
New Member New Member

Non-atomic Join Atomic Join with Share Transfer

3

Figure 3: (a) A non-atomic join (b) Atomic join.

Design choices for group and multicast primitives

The goal of this section is to explore the choices for group and multicast semantics within a single group.

Section 4 explores issues raised when multiple groups co-exist in a single application.

3.1 Atomicity

As stated earlier, a process group system may support two forms of atomicity: membership atomicity and

failure atomicity. The first provides the illusion of group membership that changes instantaneously as

members join, leave or fail. The second ensures that multicasts interrupted by a crash will be transparently

terminated. Isis supports both properties, and these have proved important to users of the system.

Consider first the atomicity of group join/leave/fail. It is difficult to program with process groups in which

the expansion of a multicast address from a group address to a list of members is not atomic (i.e. thcrc is

no guarantee concerning exactly which processes received a particular multicast, as illustrated in Fig. 3a).

In Isis, this is guaranteed to be the complete membership of the group, defined at a logical instant when

delivery occurs (Fig. 3.b).



Similarcomments apply to failure atomicity. Process group algorithms are greatly simplified by the ability

to send a multicast without the concern that an unlikely event, like a crash, will result in partial delivery.

When a group member fails, Isis further guarantees that other processes will receive the failure notification

only after having received all outstanding messages from the failed process, and that failures leave no gaps

in the causal message history. These properties eliminate bizarre failure sequences, such as the delivery of

a message from a process after system state maintained for that process has been garbage collected.

Although some systems, notably the V-System, have developed applications using non-atomic group

semantics, the primary use seems to be in name services that use multicast for service location. In this

context, the consequences of a missed reply or an inaccurate membership protocol are simply an occasional

loss of performance.

Isis tools and applications build other forms of atomicity on top of the membership and failure atomicity

semantics of groups. For example, the Isis state transfer tool copies data from an existing group member to

a joining process. (The application designer determines what the state should include.) State transfer is a

key to supporting groups with consistent distributed state. However, it is important that the state transferred

correspond to the programmer's notion of group state at the (logical) instant of the join. Obtaining this

property requires that state transfer be synchronized with the reception of messages that might change the

state. Specifically, all messages sent to the group before the new member was added must be delivered

before the state is sent. Messages delivered to the group after this event must include the new member.

Finally, the event by which the old and new members are informed of the membership change (through

a callback) must be coordinated to occur at the same point in the execution of each. We believe that in

the absence of strong atomicity properties, it would be impossible to define (much less implement) state

transfer.

Earlier, it was observed that membership atomicity is useful for another reason: it gives process group

members implidt knowledge about one-another's states. This permits each group member to use the same

deterministic function for choosing the primary site in a data replication algorithm, or for subdividing work

in a parallel computation, for example. Because of membership atomicity, this function operates only on

local data (the synchronized group membership list) but achieves group-wide consistency. Several Isis

tools are driven by atomic group membership changes, making no use of any other communication between

group members.

We conclude that in systems like Isis, atomic membership changes and atomic address expansion are both

needed.

10



3.2 Causal and total multicast orderings

Multicast ordering raises a number of subtleties. This section focuses on the choice between causal and

total ordering in a single group, while the following sections examine multicast ordering in systems with

large numbers of possibly overlapping process groups.

Although Isis supports a number of multicast ordering altematives, application builders are primarily

concerned with two of these, cbcast and abcast. The cbcast protocol delivers messages in the order they

were sent (the partialor happens before order that is natural in distributed systems [Lam78]). For example,

in Fig. 1.b, multicast a causally precedes multicasts b and c, but b and c are concurrent. Cbcast would

therefore deliver a before b or c, at all destinations but the relative delivery order used for b and c would be

unconstrained and might vary from process to process.

That el)cast does not order concurrent multicasts is not necessarily a drawback. Often, application-level

synchronization or scheduling mechanisms are used to serialize conflicting operations: further serialization

of multicasts is superfluous. Cbcast is attractive in such cases, because there is no built-in delay associated

with the algorithm. In fact cbcast never delays a message unless it arrives out of order.

The abeast protocol delivers messages to group members in a single mutually observed order. Rcfen-ing

to Fig. 1.b, this implies that processes st, s2 and s3 would receive multicasts a, b and c in the same order.

This extra ordering comes at a significant cost: any abcast protocol delays some (or all) messages during

the period when this order is being determined. For example, in one common implementation of abcast,

recipients of a message wait for an ordering message from a distinguished sequencer process. The nature

of the delay varies from protocol to protocol, but the presence of a delay of this sort is intrinsic to the abcast

ordering property.

The performance implications of abcast

The extra delay with abcast can lengthen the critical path of a distributed computation. In a common usage

of multicast, a process multicasts an operation to a group that includes itself, and upon receiving its own

multicast performs the operation. By acting on the operation after it has received its own multicast the

process is certain that it is performing the operation in an order consistent with the other members of its

group, and that the other members are guaranteed to receive the multicast and could take over the operation

should this process fail (because of failure atomicity). Where abcast is used, the sending process may

not act on the message until a total order for delivering it has been decided. Unless the sender is also the

sequencer (which is not generally the case) this delay will involve a remote communication. In contra>t

a cbeast implementation need never delay delivery of the message at the sending process, and in general

1!



deliveryatone destination is never delayed because of slow response at another destination. In this sense,

a cbcast implementation can be optimal.

Schmuck has shown that distributed algorithms can be built primarily from cbcast [Sch88,BJ89]. This

is done by demonstrating that most algorithms can be recoded in a style that enforces mutual exclusion

between conflicting operations, for which cbcast suffices. In Isis, this transformation is used extensively

for performance reasons: the abcast-based algorithms may be simpler to understand, but are often much

slower. In Isis, cbcast is at least a factor of two faster than abcast, and even more so if an operating system

context switch occurs when the abcast blocks.

The pervasiveness of causality obligations

Abcast may seem strictly stronger (more ordered) than cbcast, since concurrent multicasts are ordered.

However, abcast, in most definitions, is actually not required to use an order consistent with causality.

Consider a process that sends two asynchronous abcast messages. It would be normal to expect that these

be delivered in the order sent, and most abcast protocols have this property in the absence of failures.

However such a non-causal (or "mostly causal") abcast should not be used asynchronously. For these

reasons we believe that abcast should support both a total and a causal order. Such a causal abcast protocol

can be built over cbcast [BSS90]. 4

In discussing the option of building multicast over RPC, we stressed the need for asynchronous commu-

nication. Indeed, delay is often the most serious threat to performance in distributed systems. Delays arc

especially apparent in applications that maintain replicated data using read and write operations, with :J

locking or token passing scheme used to avoid conflicts. Any delay when doing a read or write operatit)n

may be visible to the user of such an application. On the other hand, the latency before all replicas are

updated is invisible unless it impacts on read or write response times, or on availability. Using a causally

consistent communication protocol, one can code completely asynchronous replicated data management

algorithms---regardless of whether that protocol is abcast or cbcast. The user programs as if updates wcrc

synchronous, and the causal ordering property, combined with failure atomicity, ensure that the executit)_l

respects this logical property [BJ87,BJ89,Sch88,LLS90]. Equally, a protocol that might violate causality i_

unsafe for asynchronous use, even if it still provides a total order. Unless causal obligations are observed.

the initiatorof an operation must wait until completion of the operation is acknowledged before procecding.

Otherwise the total order might enforce an arbitrary serialization that violates causality.

_l'hose familiar with the previous Isis work will wonder where the gbcast protocol fi_ into this. In the original versions _f

Isis, abcast and cbcast were completely unordered with respect to each other. Gbcast was totally ordered with respect to t_,Ll_

abcast and cbcast. The equivalent of gbcast is still present within the group join mechanism, and is implemented using a cbc',,t

that triggers a group flush prior to deliver. However, we have never seen an Isis user who actually needed gbcust at the applicat_,m

level. We now understand that the real need of application programmers is a causally ordered abcast, and that given this prim mt_...

8bcast can be viewed as a purely internal mechanism. This simplifies groups as seen by users.

12



By the same reasoning, it must be possible for point-to-point communication in a process group setting to

convey the causality obligations. For instance in a computation spanning two proc__sses, one process may

initiate an asynchronous multicast, and then send an RPC to the other process, which initiates a second

asynchronous multicast. The second multicast should causally follow the first. In Isis a point-to-point

cbcast achieves this effect.

The use of asynchronous communication raises a problem of message stability. A message is said to be

k-stable if its delivery is assured provided that no more than k failures occur, and is stable (where k is

omitted) if delivery is certain to occur. For example, suppose that a process, Pl, sends multicast a to

processes p2 and p3. Process p2 rew,eives a and sends multicast b top3. Ifa was not stable at the time of its

delivery to P2, the failure ofpt might prevent a from (ever) being delivered to P3. This represents a form of

communication deadlock, since messages from P2 to P3 will now be delayed indefinitely. A related issue

arises if process P2 takes an externally visible action based on the reception of a. Here, it may be that P2

should delay the action until a and its causal predecessors are stable, since failures might otherwise create a

situation in which an irreversible action was taken but no operational process in the system realizes this.

Although these problems can be avoided by delaying delivery of a message until it and all of its causal

antecedents are stable, this introduces a tradeoff between the levels of performance and safety needed in

the application. We favor allowing messages to be delivered before they become stable, and providing a

per-group pg_flush operation that delays the caller until stability is achieved for any asynchronous messages

pending in the group, and for their causal predecessors. We are also considering a system call to specify the

stability parameter k for a given group. An analogous problem arises in file systems, when output to a disk

is cached or buffered, and is typically solved in a similar way by providing a system call such as the Unix

fsync operation.

To summarize:

• Asynchronous operations am a key to good performance in distributed systems, regardless of the

underlying communication primitive.

• Asynchronous operations create causal delivery obligations, hence group communication should

respect causality.

• Cbcast is used to implement causal abcast, hence it should be the core communication protocol in

our process group architecture.

• (Causal) abeast is slowerthan cbcast and should be avoided by sophisticated users. Less sophisticated

users find abcast easier to understand and should avoid cbcast.

• The message stability problem closely resembles a common file system I/O problem, and czu_ bc

addressed by supporting communication system calls that have natural file system counterparts.

13



Group A Group B Group C

Figure4: A causalchainspanningmultiplegroups

4 Ordering properties that span group boundaries

The Isis system is notable for enforcing multicast ordering properties across group boundaries. Here wc

re-evaluate the usefulness of these semantics, while considering their cost and complexity.

Should causality be preserved between groups?

Cbcast ensures that sequences ofcausaUy related message events are processed in order. Where overlapping

groups are concerned, the question is whether causal ordering should be enforced when a chain of evcnts

leaves some group, spans other groups, and then some operation re-enters the original group.This happcn,_

in the example in Fig. 4, where the messages are causally ordered ml, m2, and so on through rn6. Message

mt shouldbe delivered before m6 at process Pt. Here, the conflict arises within a single group, between

the original operation and later, causally dependent one. In a sense, each chain of causally related events

represents an execution sequence, similar to a thread of control, that must be honored. Our belief iraan

asynchronous style of computation strongly argues that causality should be'preservedhere, l_oreover, since

the user of an objectmay be unaware o(its i-mpiementation, this guarantee should be completely aurora at, _.

requiring no overt action by the programmer.

14



Program I Program 2

As_.

Bl_kbo_

Blackboard

Task B_

®

Program 2 reads
@ task request from bag

Program 2 checks

(_) blackboardfor
configuration

•.. possible race condition with

respect to (_ ?

Figure 5: Application using a blackboard and a task-bag.

Should causality always be preserved between groups?

Consider a single program built of multiple independent subsystems. Any of these subsystems might be

composed of several objects, represented by process groups, between which causality should be preservcd.

Yet, the subsystems may be completely independent from one another, and in some settings (e.g. when an

application combines several subsystems that run at different priorities), the delays introduced by the nccd

to enforce inter-group causality would be inappropriate.

This motivates a notion of causality domains which partition the groups in a system. Causality is observcd

only between groups in the same domain. A causality domain resembles a Psync session [PBS89], but

contains many overlapping process groups. Following our policy of "safe" behavior for less-experienced

programmers, groups which are not explicitly placed into a causality domain reside in a common, default

domain. In Section 5, we propose a simple interface for defining these domains; the assumption is that

typical users would simply accept the default, while real-time programmers and developers of spccia[

tools, like debugging aids, would use the mechanism to avoid undesired interference with the underlying

application.

As art example, consider a user who employs a blackboard object and a task-queue object in a graphic_

15



application,bothimplementedto useasynchronousupdates(seeFigure5). A typicalexecutionsequence
mightinvolvepostingdataaboutaproblemon theblackboardandthenaddingnewtasksto thetasklist.
Idleserversremove these tasks and consult the blackboard object for control parameters. If these two

objects are placed in the same causality domain, all of the updates may be done asynchronously, without

worrying about a race whereby the blackboard update might not have arrived when the computation service

looks for its parameters. On the other hand, if the same application contains a monitoring or debugging

operation, such as periodically reporting the length of the task queue, one would place the monitoring group

in a different causality domain. By doing this, access to the instrumentation mechanism would never be

delayed by activity in the base system. Moreover, the act of monitoring would not introduce new causal

paths in the application, which might affect the behavior being monitored.

Should abcast be ordered between groups?

The total order achieved by abcast is used to serialize independent requests to a process group, providing

a simple form of mutual exclusion or concurrency control. When groups represent distinct objects, there

is generally no need for abeast ordering to be observed at group overlaps (i.e. when two or more objects

reside at the same process). Rather, each object is responsible for its own concurrency control (e.g. to

maintain one-copy semantics for replicated data), and the object implementations are usually separate

and non-interfering. In these cases a single-group abcast will ensure serializability, while the causality

semantics of abcast will ensure that the relative ordering of requests at different objects is observed.

However these assumptions, while common, do not always hold. An object could be known by more

than one group address, or there may be no direct mapping between groups and objects. One example

would be overlapping diffusion groups (see Section 2.2) consisting of the same set of server processes,

and intersecting sets of clients. One can imagine applications in which abcasts from the servers should be

ordered totally at the ovedapping client sets.

For a more abstract example, consider a distributed form of the dining philosopher's problem. For each

philosopher there is a process group that includes the pair of forks to use. One might use abcasts to

atomically claim or release the forks for a given philosopher. Notice that no two processes (forks) receive

the same pair of multicasts. Yet, abcast ordering is important here, because if abcast is not globallyordercd,

a cyclic request ordering could arise that would cause a deadlock. This example highlights a subtlety with

multiple group abcast semantics. There are two reasonable generalizations of single group ordering. In

the first, two concurrent abeasts, one to each of two overlapping groups, are ordered totally, but only at the

processes in the intersection of the groups. In the second, stronger, definition abcast delivery is globally

ordered. The first definition permits cycles in abcast delivery orderings; the second does not [GT90].

While we can create abstract examples to motivate multiple group abcast ordering, we have yet to sec

practical situations where this kind of ordering is necessary. Further, protocols that provide global order

16



aremorecostlythanprotocolsthatareordered only within a single group: in the ct,rr, + : Isis protocols, a

causal, locally ordered abcast is more than twice as fast as the best causal, globally ord+::.:-:l abcast protocol

we could devise. This perhaps argues for a notion of ordering domains, analogous to causality domains.

For example, one might provide a global abeast order within the subgroups of a hierarchical group, but not

between two "unrelated" groups. However, we are unconvinced that ordering domains would see much

use. For the moment, we are implementing single group abcast semantics and will re-evaluate this decision

in the light of further experience.

To summarize:

• In most cases, causality should be preserved when a communication chain leaves and re-enters a

group.

• Causality domains allow the scope of causality obligations to be restricted, in particular for applications

with subsystems that must not interfere with one another.

• The abcast ordering is normally not needed when multicasts to two different groups happen to

overlap. An exception arises when the two groups arise in a single object. Were this common, it

would argue for a notion of ordering domain similar to the one for causality.

Implementation issues

The Isis system has used two quite different implementations of both cbcast and abcast. The most recent

protocol suite is presented by Birman, Stephenson and Schiper [BSS90,Ste91]. Moreover, a number of

other protocols exist that could be used (perhaps with modifications) in support of the abstractions proposed

here. Our current preference is primarily based on engineering considerations, s

A related issue concerns the extent to which causality information should be hidden from users. Isis

currently uses a scheme in which causality data is managed by the system: this simplifies the user interface,

and Cue,cause causality crosses group boundaries) protects the integrity of a service from programming errors

in its clients. Other researchers, such as Peterson [PBS89] and Ladin ILLS90], have proposed schemes in

which users play a more direct role in maintaining, transmitting and reasoning about this information. Such

approaches allow a sophisticated user--or a clever compiler--to exploit application semantics inaccessible

SCompared with the previous Isis protocol [BJ87], this new protocol suite is better suited to direct implementation in the user's

address space because it does not rely on a piggybacking scheme. Piggybacking of messages intended for some process a into the

address space of process b raises troubling overhead and data integrity issues; our current scheme largely avoids these. Further. m

the new scheme, the work done by a process is primarily related to the number of multicasts sent and received by that process: th,:

prior Isis protocol had several sons of non-local overhead. However, none of these is a compelling argument, and there may ._

situations where the prior protocols, or some other solution, would be preferable.

17



to the rtmtime subsystem. Our approach, althou,,h simpler, may reduce concurrency by enforcing spurious

causal orderings.

The presentation of causality information points to the broader question of how process groups should

be presented within programming languages and object-oriented environments. Systematic study of these

issues will be needed if process groups are to become a common and widely used programming tool. One

of us (Cooper) is currently examining of these issues in the context of a distributed variant of Concurrent

ML [Rep90].

5 A process group architecture

In this section, we sketch an implementation architecture on the basis of the semantics decisions reached in

the preceding sections.

As seen in Fig. 6, our system architecture has three layers. The uppermost layer is a user-space library.

This implements support for the user's application, and might include the Isis toolkit interface, a process

pair implementation for transparent fault-tolerance, database transaction support, or other high-lcvcl

mechanisms. An intermediate layer implements the process group mechanism, providing group multicast,

membership and failure atomicity, and causality domains. This layer is intended to be implemented as a

separate module that interacts with higher and lower layers through fast inter-address-space calls or local

RPC. The resulting module could then be moved into the operating system if desired. Over Unix, it would

probably reside in a shared library within the user's address space. The lowest layer supports a weaker

notion of groups and multicast and is concerned primarily with network topology and the use of hardware

multicast transport protocols.

The system-call interface for the intermediate and lower layers of the system is shown in Tables I and

2. These interfaces are stackable: applications that do not need virtually synchronous communication can

bypass the upper-layer. Notable here is what has been omitted. Mechanisms such as the causal abcast and

the collection of replies to multicasts are left to tools executing in the user address space. The same is true

of group membership operations, such as joining a group or becoming a client.

Also omitted from the core layers are mechanisms for detecting process and machine failures, and

for implementing a group namespace. These were significant sources of complexity - in the initial Isis

implementation; in our new system, they will be provided by user-space utility programs. This will make it

easier to exploit pre-existing operating system or hardware services, such as hardware failure notificatior_

mechanisms. However, our scheme does place make certain assumptions about the failure detcctitm

module, as discussed by Ricciardi and Birman [RB90].

18



Applicadcm Program

Threads

Toolkit Library
pg_join & pg_client

Algorithms

/ Process Group &
cbcast

Module

/ I

vel"s J

Other Utilities

Deceit/FS

I MetaReactive Control

Symbolic

Group Names

Failure

Detection

Service m

dary

Tol_i_

Service ., Protocol Layer
(e.g. x-Kernel)

Mach or Chorus

Kernels

Figure 6: Proposed system architecture

19



Virtually synchronous process group interface

gid = pg_create(view) create group with initial view

pg_add(gid, pid, type) add process ID to group member/client list

pg_del(gid, pid, type) delete pid from member/client list

pg_monitor(gid, proc) proc is called on group view changes

view = pg_getview(gid) returns the current group view

cbid = cbcast(gid, msg) message is sent to members of group gid

pg..entry(gid, proc) proc is called when a message is delivered to group gid

pg__flush(gid) flush outstanding messages in this group

oldJd -- set_dflt_domain(did) sets default causality domain for calling thread

Table 1: Interface to proposed process group module

Group implementation interface to lower layers of system

phys_gid = phys..create(view) create physical group giving initial list of members

phys_add(phys.gid, pid) add member to group

phys.del(phys-gid, pid) delete member of group

phys.monito_phy.s_gid, proc) proc is called on member failures

phys_mcast(phys-gid, msg) reliable multicast of msg to group phys_gid

phys_entry(phys_gid, proc) proc is called when a message is received by group phys_gid

Table 2: Lower-level system interface

In our new scheme, operations that change the group view (membership or client list) are implemented

using cbcast to inform group members of the new view. Only members need an accurate copy of this list;

clients cache estimates of the membership, refreshing stale views as needed (this resembles the iterated

¢bcast algorithm [BJ87]). A distinguished member of each group initiates these calls, ensuring that only

one such operation is done at a time. The effect ofaU this is that the group implementation module contains

little more than an implementation of the causal multicast protocol [BSS90] and a mechanism for storing

group views. Details of these and other higher-level algorithms appear Stephenson's thesis [Ste91 ].

The layer below the process groups module is lacking in current operating systems. It includes a network

topology service which maps communication end-points (process addresses in the Isis implementation) to

transport protocol addresses, knows the devices of which the network is composed (subnetworks, bridges,

multicast ability), and knows the transport protocols that are available. Multicast operations are convened

into calls to multicast and point-to-point interfaces either on raw device drivers or protocol stacks such as

UDP/IP and the OSI stack. The x-Kernel supports this kind of dynamic layering of protocols and may form

the basis for the Isis transport layer.

20



Boththeat_,_",ic,aadrawgroup mechanisms includ':, mooitoring facilities. At t_L,,_r s • _, group levcl, a

callback is per;.otmed to the user-layer each time group membership changes. The user-process may also

query the "current" membership of a group (in a logical or virtually-synchronous sense). The group view

retumed will list members at the time of the last group-related event received by the process.

Monitoring at the physical layer has a simpler interface and semantics. This layer retries transmissions

until a destination is deemed faulty, at which point it first calls the physartonitor callback routine and then

reports that the message delivery failed. The phys..recast routine returns only when copies of the message

are known to have been delivered to all non-faulty members in the physical destination list.

The above sketch of the architecture omits a tremendous amount of detail. We have developed many of

the protocols and algorithms needed to convince us that the scheme can be made to work well, and will be

including these in a forthcoming specification document. We are also exploring the implementation aspects

jointly with members of the Amoeba, Chorus and Mach groups. Construction of the new system will begin

in early 1991.

6 Conclusions

Experience with real users can reshape one's perspective on a computer system. This has been the case

with the Isis system, which entered into wide academic and commercial use with generally positive but

sometimes surprising results. Our experiences support the belief that distributed systems should implement

processgroupsatabasiclevel.

The mechanisms undedying this support need not be as exhaustive as in the present Isis system, which

provides a bewildering variety of group membership and multicast ordering options to its users. Our

understanding of the system and its users has now reached a point where we can argue that these be reduced

to two mechanisms (atomic group membership and causal multicast) over which the virtually synchronous

toolkit can be rebuilt.

Our paper makes two types of contributions. The first of these is at the level of group structures, particularly

by refinement of the notion of group client. Our approach recognizes that clients are more numerous that

servers, but that their communication patterns and use of group semantics are restricted. We expect these

styles of client-server groups to be durable because they are directly based on uses observed in practice.

Although new group and multicast protocols are to be expected, these group structures should continue to

present programmers with the interface they actually need.

Our second major contribution is the argument that asynchronous communication, combined with failure

atomicity and causal ordering, is a sufficient solution to most communication needs. Although a total

21



ordering is sometimes necessary, such ordering imposes unavoidable delays and should bc implemcntcd on

top of a causal communication primitive.

7 Acknowledgements

The material presented here was arrived at through discussions with many others. We thank Micah Beck,

Tushar Chandra, Rich Draves (CMU), Brad Glade, Keith Marzullo, Doug On" (Chorus), Franklin Reynolds

(OSF'), Mark Rozier (Chorus), Fred Schneider, Pat Stephenson, Robbert Van Renesse, and Mark Wood.

Our architecture was also influenced by the work of Franz Kaashok (Vrije), Paulo Ven'ssimo (INESC), a_d

by the ANSA project. And we thank Maureen Robinson for producing the figures.

References

[AGHR89]

[B at81 ]

[BC90]

[BJ87]

Franqois Armand, Michel Glen, FredEric Herrmann, and Marc Rozier. Revolution 89 or

Distributing UNIX brings it back to its original virtues. Technical Report CS,q'R-89-36.1,

Chorus systbmes, 6 Avenue Gustave Eiffel, F-78182, Saint-Quentin-en-Yvelincs, France,

August 1989.

Joel E Bartlett. A NonStop kernel. In Proceedings of the Eighth A CM Symposium on Operating

Systems Principles, pages 22-29, Pacific Grove, California, December 1981. ACM SIGOPS.

Kenneth Birman and Robert Cooper. The ISIS project: Real experience with a fault tolerant

programming system. Technical Report TR90-1138, Comell University Computer Science

Department, Ithaca, NY, July 1990.

Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems, 5(1):47-76, February 1987.

[BJ89]

[BSS90]

Ken Birman and Thomas Joseph. Exploiting replication in distributed systems. In Sapc

Mullender, editor, Distributed Systems, pages 319-368, New York, 1989. ACM Press,

Addison-Wesley.

Ken Birman, Andre Schiper, and Pat Stephenson. Fast causal multicast. Technical Report

TRgO-II05, Cornell University Computer Science Department, Ithaca, NY, April 199().

Submitted to ACM Transactions on Computer Systems.

[CZ85] David Cheriton and Willy Zwaenepoel. Distributed process groups in the V kernel. ,4CX/

Transactions on Computer Systems, 3(2):77-107, May 1985.

22



[GT90]

[KTHB891

[Lam78]

[LLS90]

[LS83]

[OSS80]

[PBS89]

[RB90]

[Rep90]

[Sch88]

[Spe85]

[Ste91]

Ajei Gopal and Sam Toueg. On the specification of broadcast. In Proceedings of the Second

IEEE International Workshop on Future Trends of Distributed Computing Systems, pagcs

54-56, Cairo, Egypt, October 1990. IEEE Computer Society.

M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flyrm Hummel, and Henri E. Bal. An

efficient reliable broadcast protocol. Operating Systems Review, 23(4):5-19, October 1989.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-

tions of the ACM, 21(7):558-565, July 1978.

Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: Exploting the semantics of

distributed services. In Proceedings of the Tenth ACM Symposium on Principles of Distributed

Computing, pages 43-58, Qeubec City, Quebec, August 1990. ACM SIGOPS-SIGACT.

Barbara Liskov and R. Scheilter. Guardians and actions: Linguistic support for robust,

distributed programs. ACM Transactions on Programming Languages and Systems, 5(3):381-

404, July 1983.

John Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: an experiment in distributed

operating structure. Communications of the ACM, 23(2):92-105, February 1980.

Larry L. Peterson, Nick C. Bucholz, and Richard Schlichting. Preserving and using con-

text information in interprocess communication. ACM Transactions on Computer Systems,

7(3):217-246, August 1989.

Aleta Ricciardi and Ken Birman. A formalism for fault-tolerant applications in asynchronous

systems. In Fourth SIGOPS Eueopean Workshop, September 1990.

John H. Reppy. Concurrent Programming with Events--The Concurrent ML Manual (version

0.9). Department of Computer Science, Comell University, Upson Hall, Ithaca, NY 14853,

November 1990.

Frank Schmuck. The use of Efficient Broadcast Primitives in Asynchronous Distributed

Systems. PhD thesis, Comell University, 1988.

Alfred Spector. Distributed transactions for reliable systems. In Proceedings of the Tenth

A CM Symposium on Operating Systems Principles, pages 127-146, Orcas Island, Washington,

December 1985. AC'M SIGOPS.

Pat Stephenson. Fast Causal Multicast. PhD thesis, Cornell University, January 1991. To

appear.

23



qv


