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Abstract 

A dynamic contrast-enhanced (DCE) near-infrared (NIR) method to measure 

cerebral blood flow (CBF) in the neurocritical care unit (NCU) is described.  A 

primary concern in managing patients with acquired brain injury (ABI) is 

onset of delayed ischemic injury (DII) caused by complications during the 

days to weeks following the initial insult, resulting in reduced CBF and 

impaired oxygen delivery. 

The development of a safe, portable, and quantitative DCE-NIR 

method for measuring CBF in NCU patients is addressed by focusing on four 

main areas: designing a clinically compatible instrument, developing an 

appropriate analytical framework, creating a relevant ABI animal model, and 

validating the method against CT perfusion. In Chapter 2, depth-resolved 

continuous-wave NIR recovered values of CBF in a juvenile pig show strong 

correlation with CT perfusion CBF during mild ischemia and hyperemia 

(r=0.84, p<0.001). In particular, subject-specific light propagation modeling 

reduces the variability caused by extracerebral layer contamination. In 

Chapter 3, time-resolved (TR) NIR improves the signal sensitivity to brain 

tissue, and a relative CBF index is be both sensitive and specific to flow 

changes in the brain. In particular, when compared with the change in CBF 

measured with CT perfusion during hypocapnia, the deconvolution-based 

index has an error of 0.8%, compared to 21.8% with the time-to-peak method. 

To enable measurement of absolute CBF, a method for characterizing the AIF 

is described in Chapter 4, and the theoretical basis for an advanced analytical 

framework—the kinetic deconvolution optical reconstruction (KDOR)—is 

provided in Chapter 5. Finally, a multichannel TR-NIR system is combined 

with KDOR to quantify CBF in an adult pig model of ischemia (Chapter 6). In 

this final study, measurements of CBF obtained with the DCE-NIR technique 

show strong agreement with CT perfusion measurements of CBF in mild and 

moderate ischemia (r=0.86, p<0.001). 
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The principle conclusion of this thesis is that the DCE-NIR method, 

combining multidistance TR instrumentation with the KDOR analytical 

framework, can recover CBF values that are in strong agreement with CT 

perfusion values of CBF. Ultimately, bedside CBF measurements could 

improve clinical management of ABI by detecting delayed ischemia before 

permanent brain damage occurs. 

 

Keywords 

Near-infrared spectroscopy, cerebral blood flow, time-resolved, dynamic 

contrast-enhanced, delayed ischemic injury, acquired brain injury  
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Chapter 1 

INTRODUCTION 

The objective of this introductory chapter is to provide the reader with an 

appreciation of why the topic of this doctoral thesis—the development and 

validation of near-infrared (NIR) methods to quantify cerebral blood flow 

(CBF) in the neurocritical care unit (NCU)—was studied. First, the rationale 

for this work will be provided within the context of the clinical problem: 

acquired brain injury (ABI). This will involve a description of the pathological 

mechanisms underlying some of the most common conditions treated in the 

NCU—traumatic brain injury (TBI) and nontraumatic subarachnoid 

hemorrhage (SAH). The importance of quantifying CBF for the management 

of these patients will be highlighted, and current methods for measuring CBF 

will be described. After establishing the motivation for this work, the 

theoretical basis of dynamic contrast-enhanced (DCE) NIR techniques, which 

encompasses the methods developed in this work, will be provided. In 

particular, the specific challenges of applying DCE-NIR methods to an adult 

head to measure CBF will be highlighted. This final point represents the 

main knowledge gap that this thesis will address.  

1.1. Rationale 

The neurocritical care unit (NCU) has emerged as a specialized intensive care 

unit responsible for the treatment of life-threatening neurological illnesses. 
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Often, patients admitted to the NCU are comatose or paralyzed and present 

with injuries to other parts of the body, making their management difficult. 

In a collaborative effort, neurointensivists, neurosurgeons, diagnosticians and 

nurses are responsible for the clinical management of NCU patients to 

ensure the best chance for survival (Diringer et al 2001). Acquired brain 

injuries—including TBI, diffuse acquired brain injury, stroke, and SAH from 

traumatic or aneurysmal origin—comprise the majority of cases for which 

patients are admitted to the NCU. For the purpose of this thesis, discussion 

will be limited entirely to ABI and principally those injuries caused by TBI 

and its sequelae, as well as SAH. 

 

Figure 1.1: Prognosis of traumatic brain injury. 

The approximate outcomes of 1.7 million TBIs that occurred annually in the United States 

during years 2002-2006. Of the 275,000 hospitalizations, 52% of individuals died or suffered 

permanent disability. (Figure adapted from Langois 2010 and Baron and Jallo 2007).  

From an epidemiological standpoint, TBI is the single most common 

cause of death and disability among children and young adults (Langlois 

2000). At least 1.7 million people sustain a TBI each year in the United 

States (figures from 2002-2006, when the US population was approximately 

300 million); 275,000 of those individuals are subsequently hospitalized and 

about 52,000 of those injuries are ultimately fatal (CDC 2010). The term 

“traumatic brain injury” reflects an etiology (i.e., a brain injury sustained in 
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trauma) rather than a specific pathology, which can be complex and 

multifaceted. Therefore, TBI is further stratified according to mechanism 

(blunt or closed injury versus penetrating or open injury), spatial pattern of 

disease (focal or diffuse), and severity of primary brain damage (Glasgow 

coma scale). Proper classification of TBI can help establish a prognosis, and 

provide insight into possible complications that are likely to follow. For 

example, a focal pattern of TBI is likely to result in cerebral contusions, 

hemorrhages, and hematomas (Baron and Jallo 2007). 

In addition to TBI, the NCU supports patients with non-traumatic ABI 

such as ischemic stroke and subarachnoid hemorrhage. In particular, SAH 

accounts for about 5% of strokes, but remains among the most life-

threatening neurological diseases and affects primarily adults under the age 

of 60. In fact, because SAH affects preferentially young individuals—with a 

mean age of 50 years (Nieuwkamp et al 2005)—the number of years of 

potential life lost by SAH accounts for about 25% of all stroke-related 

diseases (Johnson et al 1998; Hop et al 1997). Therefore, SAH has a societal 

impact comparable with ischemic stroke. Nontraumatic SAH—for which 85% 

of cases are secondary to the rupture of an aneurysm (Sehba et al 2012)—

occurs when blood extravasates into the CSF-filled space between the 

arachnoid membrane and pia mater known as the subarachnoid space. The 

mortality rate of SAH is 40%, and includes approximately 10-20% of patients 

who die before receiving advanced medical care (Sehba et al 2012). 

Furthermore, SAH patients are susceptible to serious complications following 

the initial injury, which will be further discussed in the subsequent section 

(van Gijn J 2001).    
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1.2. Complications in acquired brain injury 

1.2.1. Clinical presentation 

Following the primary brain injury caused by either TBI or SAH, the 

principal concern of the NCU is to minimize complications during the acute 

recovery stage that compromise the outcome of the patient. Complications 

that develop secondary to the initial injury represent the single greatest 

threat to the outcome of the patient, as a significant portion of neurological 

damage develops during the days to weeks following hospitalization, rather 

than during the primary insult. Most often, these complications result from 

impaired blood flow which prevents adequate oxygen delivery to the brain 

tissue, resulting in permanent "secondary brain injury" or “delayed ischemic 

injury” (DII) (Wartenberg 2011; Coles 2004). Although DII is the 

manifestation of a pathological cascade beginning within hours of brain 

injury, it is a target for intervention since it tends to progress gradually while 

the patient is in the NCU. Therefore, a primary concern of the NCU is to 

detect and minimize these complications, which include intracranial 

hypertension, edema, vasospasm, and other bleeding disorders (Rincon and 

Mayer 2007), before permanent brain injury results. 

 Intracranial hypertension, in which intracranial pressure (ICP) 

becomes elevated, is among the most important complications that occur in 

brain injury patients. An increase in ICP usually results from a mass effect—

either edematous or hemorrhagic in nature (Steiner and Andrews 2006). 

Since the skull acts as a closed container, ICP becomes elevated when the 

overall volume of three elements—brain parenchyma volume, blood volume, 

and cerebrospinal fluid (CSF)—increases. To some degree, slight variations in 

one element can be compensated by the other two according to the Monro-

Kellie doctrine (Mokri 2001). Figure 1.2 shows a schematic of this 

compensatory mechanism. 
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Figure 1.2: Compensatory mechanism  

In a normal state, the intracranial pressure (ICP) is tightly regulated. When a mass effect 

occurs due to some underlying pathology, a small increase in volume can be accommodated 

by reductions in blood volume and cerebral spinal fluid (CSF). Larger increases overwhelm 

the compensatory mechanisms and brain tissue expansion causes elevated ICP leading to 

herniation and distortion.  

Compensation occurs as either blood volume, or more often CSF, is reduced to 

accommodate the expanding lesion. In the latter case, CSF is reabsorbed and 

the production of new CSF is reduced in the presence of slightly elevated ICP 

(Cutler et al 1968). Continued expansion of the mass will result in 

progression through four stages of intracranial hypertension: total 

compensation, partial compensation, decompensation, and vasomotor 

paralysis (Barlow and Stewart 2007).  

A principle cause of intracranial hypertension is brain edema, which 

increases the brain parenchymal volume. Defined as the swelling of brain 

tissue, brain edema can be vasogenic or cytotoxic in origin (Ropper 1984). In 

vasogenic edema, the blood-brain barrier is disrupted by the primary or 

secondary injury, allowing the extravasation of fluid and proteins across the 
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otherwise tightly regulated endothelium and into the interstitial space of the 

brain parenchyma. As a result, an osmotic gradient is created, drawing water 

into the interstitum. In cytotoxic edema, the primary insult causes a 

disruption in brain energy metabolism, resulting in a depletion of energy 

stores needed to maintain ion homeostasis (Liang et al 2007). The resulting 

increase in interstitial osmolality draws water across the blood-brain barrier 

and causes a subsequent increase in intracranial pressure. Edema of the 

brain can result in secondary brain injury if the increase in parenchyma 

volume overwhelms the compensatory mechanisms described in the previous 

paragraph.  

An additional cause of intracranial hypertension is the development of 

a hematoma, a localized collection of blood outside of the vessels, which can 

pool between the dura mater and the skull (i.e., epidural hematoma) or 

between the dura mater and the arachnoid mater (i.e., subdural hematoma). 

Epidural and subdural hematomas are examples of extra-axial hemorrhage 

(Wilberger et al 1991)―bleeding that occurs outside of the brain tissue but 

within the skull. In addition to extra-axial hemorrhage, intra-axial or 

cerebral hemorrhage can also occur. When cerebral hemorrhage occurs 

secondary to brain injury, it is usually due to penetrating head trauma or 

acceleration-deceleration trauma (Udstuen and Claar 2001). In all of these 

examples, elevated ICP is a principle concern. In some circumstances, this 

can be mitigated by early evacuation of the hematoma (Wilberger et al 1991). 

 Delayed ischemic injury is also a primary concern in SAH, and 

develops in approximately one third of patients within the first two weeks. 

The main cause of DII in SAH patients is the development of vasospasms—

spontaneous spasms in cerebral blood vessels leading to vasoconstriction—

which have a high rate of mortality and must be treated aggressively 

(Crowley et al 2011). The risk of developing vasospasm following aneurysmal 

SAH appears to be related to blood clot burden, and is likely triggered by an 
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inflammatory response within the blood-vessel wall that manifests sometime 

between days 4 and 12 post-SAH. The fact that the amount of blood seen on 

the initial CT scan is the best predictor of the occurrence of vasospasm in 

aneurysmal SAH (Hijdra et al 1988) also suggests that vasospasm induction 

is blood-mediated. Cerebral vasospasm can also occur in TBI, and while the 

importance of vasospasm in aneurysmal SAH has been well-studied, 

considerable controversy surrounds the exact relationship between TBI and 

vasospasm (Werner and Engelhard 2007). Unlike in SAH, where vasospasm 

seems to be directly related to factors released by the blood clot, TBI-related 

vasospasms are frequently detected in patents without CT evidence of 

bleeding (Taneda et al 1996). This calls into question whether all vasospasms 

share the same pathophysiology, and underlines the challenge in managing 

patients for whom vasospasm-related complications may not be easily 

predicted based on CT imaging. 

1.2.2. Clinical management 

There is a growing body of evidence that suggests that the NCU has 

improved both survival and outcome in patients with ABI (English et al 2012; 

Varelas et al 2006). For example, a reduced mortality rate following 

intracerebral hemorrhage was observed in patients admitted to NCUs 

compared to general intensive care units (Diringer and Edwards 2001). 

Improvements in patient recovery has been principally due to the NCU’s 

ability to manage the complications associated with secondary brain injury, 

which combine standard clinical practice of intensive care medicine with 

interventions that target specific complications such as elevated ICP, reduced 

CBF, and hemorrhage. 

 Osmotherapy is considered the first-line method for managing raised 

ICP and involves the rapid infusion of mannitol or hypertonic saline. 

Mannitol, a crystalline sugar alcohol, creates an osmolar gradient in the 
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brain, drawing water across the blood-brain barrier (Muizelaar et al 1984). A 

similar ICP-lowering effect is achieved by the infusion of hypertonic saline. 

When administered repeatedly, osmotherapy can be an effective means to 

manage raised ICP, notwithstanding the additional risks that require careful 

monitoring of electrolyte status and serum osmolarity. In addition to 

osmotherapy, decompressive craniectomy can be used to reduce ICP. 

Decompressive craniectomy involves removing part of the skull to allow the 

expansion of the brain parenchyma in the presence of uncontrollable elevated 

ICP. Despite being used for more than a century to manage brain swelling 

and ICP, its current use is controversial. Several previous studies (Hofmeijer 

et al 2009; Vahedi et al 2007; Jüttler et al 2007) reported neutral findings, 

and while a meta-analysis of these studies suggests a benefit to craniectomy 

in certain patient subgroups, further research is needed before routine 

decompression craniectomy can be recommended (Mitchell et al 2009). 

 While there is no general consensus on the treatment or prevention of 

DII following SAH, current treatment recommendations include prophylactic 

nimodipine (Barker et al 1996), along with the so-called "triple H" therapy 

(hypervolemia, hypertension, and hemodilution) (Weyer et al 2006). The 

motivation behind these treatments is to prevent contraction of cerebral 

arterial smooth muscle cells and/or to counter the effects of increased 

vascular resistance by increasing cerebral perfusion pressure and reducing 

blood viscosity. For instance, nimodipine, a dihydropyridine-type calcium 

channel blocker, inhibits the influx of extracellular calcium which acts on 

smooth muscle cells to effect vasoconstriction. As a standard-of-care, the only 

proven therapy for vasospasm is nimodipine (Weyer et al 2006); however, 

"triple-H" therapy may be indicated for individual patients on a case-by-case 

basis. 

 In addition to the management of DII, best evidence-based practices 

generally indicated for intensive care patients remain important for 
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neurotrauma patients. These include ensuring optimal oxygenation through 

proper ventilation, maintaining appropriate levels of glucose and nutrition, 

and monitoring temperature homeostasis. In particular, the injured brain is 

thought to have low tolerance to hypoglycemia, and is a concern unique to 

neurocritical care (Vespa et al 2006). 

1.3. Assessing delayed ischemic injury 

1.3.1.  Current clinical methods 

While many of the management options discussed in the previous section are 

effective in alleviating some of the deleterious complications that develop 

during recovery, a principle challenge is detecting the onset of DII in NCU 

patients. First, it is often difficult to differentiate between clinical features 

resulting from the primary injury and those symptoms that develop 

subsequently. Early signs of DII present as general neurological defects or 

reduced consciousness, which can also be attributed to other causes (e.g., 

effect of sedatives, hypotension, heart failure). In addition, many NCU 

patients are comatose or heavily sedated, and clinical features are unreliable 

for these individuals (Vergouwen et al 2010). 

 Electroencephalography (EEG) is used to monitor cerebral electrical 

activity (i.e., voltage fluctuations that result from neuronal activation in the 

cortex). Several studies have investigated the use of EEG to detect DII in 

SAH patients (Vespa et al 1997; Claassen et al 2004a) and TBI (Claasen et al 

2004b), in part by identifying clinical features associated with energy failure. 

In particular, epileptic activity, which can be accurately detected using EEG, 

could exacerbate brain energy impairments and increase glutamate-mediated 

excitotoxicity (Vespa et al 1998). As well, a relationship between increased 

seizure activity and cerebral hyperglycolysis has been documented in several 

studies (Engel et al 1983; Evans et al 1984; Theodore et al 1983). 

Hyperglycolysis, which occurs acutely after severe TBI, is indicative of 
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impaired oxygen metabolism and can also occur during a major reduction in 

CBF (Bergsneider et al 1997). In general, SAH and TBI produce a wide 

variety of EEG abnormalities, some of which may be predictive of DII 

(Rivierez et al 1991; Claassen et al 2004). However, in all cases, large sets of 

EEG data must be interpreted by an expert, which is time consuming and 

subjective, making general clinical thresholds for directing patient therapy 

unlikely. 

 Intracranial pressure monitoring has become a mainstay of the NCU 

as a standard surrogate of CBF. Because these methods are invasive, their 

use is generally limited to poor-grade SAH (Wartenberg 2011) and severe TBI 

(Brain Trauma Foundation 2008). Being a surrogate of CBF, there is 

considerable controversy surrounding its use in directing patient therapy, 

since large variations in optimal thresholds are likely to exist due to 

differences in cerebral autoregulation (Jaeger et al 2007). Four randomized 

clinical trials reported no significant relationship between ICP monitoring 

and survival in TBI patients (Mauritz et al 2007; Mauritz et al 2008; 

Thompson et al 2008; Griesdale et al 2010), and two additional studies 

demonstrated conflicting results (Lane et al 2000; Shafi et al 2008). A 

sytematic review of these studies found that the benefit of routine ICP 

monitoring in severe TBI is not established and further research is needed 

(Mendelson et al 2012).  

The gold standard in the diagnosis of vasospasm is cerebral 

angiography, despite having a specificity of only 50% (Uterberg et al 2001). In 

addition to angiography, vasospasm is monitored using transcranial Doppler 

(TCD), which can detect elevated blood flow velocities that occur with vessel 

narrowing (Sloan et al 1989). However, like in the case of ICP monitoring, 

vessel narrowing is only a surrogate of CBF, and not all patients with 

vasospasm develop DII (Vergouwen 2011). Furthermore, DII can occur in 

regions where large-vessel narrowing was not observed, but regional 
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hypoperfusion and oligemia were nevertheless present (Dhar et al 2012). 

Taken together, these studies suggest that vessel narrowing detected by 

angiography, or the resulting elevated blood flow velocity detected with TCD, 

are not reliable markers of DII, especially when neurological assessment is 

unavailable (Vajkoczy et al 2003). 

 Recently, thermal diffusion flowmetry (TDF) has been described as a 

potential method to measure absolute CBF and has been validated against 

XeCT in adult sheep. (Vajkoczy et al 2000). While the ability of TDF to 

measure CBF in absolute units is a positive step, the TDF technique is 

invasive, requiring microprobes to be inserted directly into the cortical 

parenchyma. The degree to which this might result in complications, such as 

intracerebral hemorrhage or infection, is not yet known. Another limitation of 

this technique is that it is only able to provide local CBF measurements from 

a very small region of tissue. As such, a single microprobe placed in the 

region of brain most susceptible to SAH-related vasospasm could miss up to 

20% of cases (Vajkoczy et al 2003), likely requiring the placement of multiple 

microprobes with additional patient risk.   

 Finally, xenon-enhanced computed tomography (XeCT) has emerged as 

a promising method of measuring CBF in NCU patients (Yonas et al 1996), in 

part due to the advent of portable CT units that can be used at the patient 

bedside (Kim et al 2009). Like other CT perfusion methods, XeCT provides 

only a single snapshot of CBF and the use of ionizing radiation, as well as the 

expensive nature of inhaled xenon gas, precludes its use for frequent serial 

measurements. 
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1.3.2.  Clinical value of measuring cerebral blood flow 

In a normal, healthy adult, CBF is maintained by autoregulation at 

approximately 50 ml min-1 100g-1. However, in pathological conditions, 

autoregulation is disrupted or overwhelmed and CBF can decrease to critical 

levels. When this occurs, depletion of high-energy phosphates—the brain’s 

energy stores—occurs rapidly. If CBF falls below about 17 ml min-1 100g-1, 

electrocortical activity is lost, as evinced by EEG, and increased anaerobic 

metabolism occurs (Sharbrough et al 1973). Further reduction of blood flow 

below 10 ml min-1 100g-1 results in the loss of ion homeostasis (due to failed 

membrane integrity) and leads to an efflux of potassium from neurons. 

Cytotoxic edema and subsequent cell death follow quickly (Astrup et al 1981). 

In addition, the progression of tissue state from ischemia to infarction 

depends on the duration of the insult. For example, extremely low CBF (less 

than 5 ml min 100g) can result in an infarction within minutes. On the other 

hand, when CBF is held at around 18 ml min-1 100g-1, permanent damage 

occurs only after several hours (Astrup et al 1981). This dependency of 

infarction on insult duration has been well established in the treatment of 

acute stroke, where tissue is salvaged by prompt recanalization.  

  As highlighted in the previous section, complications that occur 

following ABI―including elevated ICP from edema, hemorrhage or 

hematoma, and SAH-induced vasospasm―can severely reduce CBF and 

result in DII and poor patient outcome (Rincon and Mayer 2007). Current 

clinical methods to detect DII are limited, and involve monitoring surrogates 

of CBF (e.g., ICP, CPP, blood velocity, etc.). A cursory review of literature 

supports two principle conclusions. First, each of these methods may be 

indicated for certain patients on a case-by-case basis; however, the systematic 

use of any of these techniques is not supported by current evidence. Second, 

emerging evidence supports the use of guideline-driven management of 

severe TBI patents (who present with heterogeneous features that are 
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unreliable for steering intervention) which has been shown to improve 

patient outcome (Griesdale et al 2012). Presumably, measurements of CBF, 

for which well-defined thresholds exist, have the potential of informing these 

clinical guidelines.  

 In an early study by Yonas and colleagues, CBF measurements by 

XeCT were acquired in fourteen SAH patients exhibiting symptoms of 

vasospasm (Yonas et al 1989). Regions of CBF above 18 ml min-1 100g-1 did 

not progress to infarction, whereas areas with CBF lower than 12 ml min-1 

100g-1 resulted in conversion to infarction. For regions between 12 - 18 ml 

min-1 100g-1, infarct conversion was variable. Although the sample size of the 

study was too small to accurately determine optimal thresholds for CBF 

predictive of infarct conversion, the determination of such a threshold could 

enable more individualized treatment to the patients with the most to gain 

(i.e., with CBF values close to the threshold for which infarct conversion is 

variable).  

 Thermal-diffusion flowmetry was used to evaluate regional CBF in 

fourteen patients with high-grade SAH. In each patient, two TDF 

microprobes were inserted into the white matter of regions of the brain 

supplied by the artery that was affected by the aneurysm (which included the 

internal carotid artery, the anterior communicating artery, and the middle 

cerebral artery). Thermal-diffusion flowmetry values of CBF predicted 

symptomatic vasospasm in these patients with 85% sensitivity and 97% 

specificity when a threshold of 10 ml min-1 100 g-1 was used. While the 

threshold used in this study was lower than loss of neuron function 

thresholds (i.e., 18 ml min-1 100g-1)―likely due to the lower blood flow in 

white matter where the probes were implanted―the reliability of TDF 

measurements was greater than TCD. 
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   Most recently, CT perfusion was acquired in 85 SAH patients to 

determine a diagnostic threshold value with optimal sensitivity and 

specificity to DII (Dankbaar et al 2010). Values of CBF and mean transit time 

(MTT) were able to distinguish DII with greater than 70% accuracy. 

However, since imaging was only performed at a single time-point, more 

transient instances of vasospasm may have gone undetected. 

 The handful of studies investigating the ability of CBF measurements 

to predict subsequent development of DII in high-risk SAH patients suggests 

a CBF diagnostic threshold exists, and that a direct assessment of CBF can 

confirm vasospasm and enable aggressive treatment (Powers et al 1985; 

Soucy et al 1990). For this reason, the ability to directly measure CBF in 

patients with SAH has been highly sought by clinicians (Vajkoczy et al 2003). 

While the role of CBF measurements in TBI is less clear, it is well 

established that CBF less than 18 ml min-1 100g-1 is present in about one 

third of TBI cases, and is correlated with poor outcome and early mortality 

(Bouma and Muizelaar 1995). Given the importance of proper stratification of 

patients in the randomized clinical trials of future therapies for ABI, CBF 

thresholds are likely to have an important role. The limitations of current 

methods highlight the need for a non-invasive bedside technique to measure 

CBF in NCU patients. Dynamic contrast-enhanced NIR techniques are well 

suited to this goal, and the remainder of this chapter will provide the 

necessary background on DCE methods in general, and in particular, on the 

DCE-NIR method that was developed for NCU applications.  

1.4. Dynamic contrast-enhanced measurement of 

cerebral blood flow 

1.4.1. History in humans 

The pioneering work in the field of quantitative CBF measurement was 

accomplished largely by Kety and Schmidt, who in 1945 described a method 
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of measuring CBF based on the Fick principle (Kety and Schmidt 1945). This 

method utilized the highly diffusible gas nitrous oxide as a blood flow tracer. 

Cerebral blood flow was calculated by measuring the time-varying 

concentration of nitrous oxide in arterial blood and venous blood samples 

from the jugular bulb. A significant advancement in CBF measurements was 

achieved using radiolabeled 85Kr instead of nitrous oxide, as this provided a 

means of assessing regional CBF by placing scintillation counting devices at 

various locations on the scalp (Lassen and Munck 1955). This approach was 

further improved by the use of radioactive 133Xe, and through the work of 

Obrist who modified the Kety-Schmidt equation to account for three tissue 

compartments: extracerebral tissue, gray matter (which has a higher blood 

flow (BF)), and white matter (which has a lower BF) (Obrist et al 1967). 

Furthermore, the arterial input function (AIF) could be determined non-

invasively from end-tidal 133Xe measurements instead of requiring carotid 

artery catheterization, making the technique more desirable clinically. 

Diffusible tracer methods proved very popular in subsequent imaging 

approaches, including the first truly tomographic method of quantifying 

cerebral blood flow achieved using positron emission tomography (PET) and 

H2
15O (Frackowiak et al 1980). 

 Around the same time, Axel published the theoretical groundwork for 

DCE CT that implemented a sequence of scans following an intravenous 

bolus injection of contrast to determine CBF (Axel 1980). Unfortunately, the 

method required ultrafast acquisition times with little inter-scan delay 

times―something the CT scanners at the time were unable to accomplish. As 

well, the proposed method for analyzing the dynamic CT data relied on a 

number of assumptions and was prone to subject-dependent effects (such as 

the tissue hematocrit level) (Gobbel et al 1990). Nevertheless, the 

groundwork by Axel laid the foundation for CT perfusion, which would 
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receive considerable attention as CT technology and analytical methods 

improved over the next decade. 

1.4.2. Current techniques  

During the 1990s, CT scanners were developed with the capability of 

performing repeat scans with acquisition times of about 100 milliseconds and 

interscan delays of about 1-2 seconds, so that quantitative CBF 

measurements with dynamic CT imaging became feasible (Brix et al 1999). 

As a result, CT perfusion has emerged as a robust, reliable, and accurate tool 

to quantify CBF and is capable of providing parametric maps of CBF as well 

as cerebral blood volume (Cenic et al 2000), mean transit time (Eastwood et 

al 2002), and bolus arrival time (Eastwood et al 2002; Mayer et al 2000). 

Current CT perfusion techniques can be considered variations on the 

methodology outlined by Axel: CT slices are acquired at a high temporal 

resolution during the injection of a bolus injection of contrast agent. The 

analysis consists of reconstructing the time-series of images, defining the AIF 

and voxel or region-of-interest (ROI) specific tissue concentration curves, and 

performing kinetic analysis on these curves to recover kinetic parameter 

maps. Most techniques differ by the manner in which they perform the final 

step of kinetic analysis: mainly, whether they use a compartment-based 

approach (Miles 1991; Mullani and Gould 1983) or deconvolution approach 

(Cenic et al 2000; Eastwood et al 2002). The latter approach will be discussed 

in following section. In addition to CT perfusion, CBF measurements can be 

made using XeCT, DCE magnetic resonance imaging (MRI) (typically in 

conjunction with a gadolinium-based tracer) or with the MRI arterial spin 

labeling (ASL) technique (Wintermark et al 2005). In recent years, there has 

been a rekindled interest in XeCT due to the development of portable and 

intraoperative CT devices (Kim et al 2010). However, limitations of the device 

include the high costs of xenon gas and the use of ionizing radiation (120 
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mGy CTDIw), which makes it unsuitable for bedside measurements of CBF on 

a continual basis.   

1.4.3. Tracer kinetic modeling 

The DCE NIR techniques presented in this thesis, in addition to CT 

perfusion, rely on a bolus injection of a contrast agent to provide 

hemodynamic information about a tissue region-of-interest (ROI). In this 

context, the contrast agent acts as a blood flow tracer, which by definition is a 

substance that behaves in the same manner as blood as it travels through the 

tissue of interest (Lassen and Perl 1979). The transport of the tracer through 

the microvasculature of the tissue can be described by constructing a kinetic 

model and applying it to time-dependent measurements of the tracer 

concentration. For example, the blood flow (F) to an organ can be determined 

using the Fick principle if the time-dependent concentration of tracer in the 

organ, Q(t), in the arterial blood, Ca(t), and the venous blood draining the 

organ, Cv(t), are measured. In this case, the following expression describes 

the dynamic behaviour of the tracer: 

 ).()(
)(

tFCtFC
dt

tdQ
va    (1.1) 

The most common type of model used in kinetic analysis is the Kety model, 

which describes the behaviour of a highly diffusible tracer in a single tissue 

compartment. Compartment models form the basis of the radioactive and 

stable Xenon CT techniques and the radioactive H2O PET methods described 

in the previous section.  

 There is a fundamental problem with applying compartmental models 

to non-diffusible, intravascular tracers (e.g., iodine-based CT contrast agents, 

and optical tracers such as indocyanine green (ICG) that bind to vascular 

proteins) because the intravascular space (IVS) dynamics are much faster 
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than the minimal extravascular space (EVS) component. Therefore, the tissue 

cannot be treated as a single, well-mixed compartment. Instead, it is more 

appropriate to consider the tissue vascular bed as a mesh of microvessels 

supplied by a single input and draining to a single output (Fig. 1.3), where 

each possible path from the artery to the vein has a specific transit time. In 

this case, the concentration of tracer in the tissue at a given time point is a 

function of its collective path through the capillary bed, as well as the AIF.  

 

Figure 1.3: Blood flow through a capillary bed. 

The convolution theory of kinetics treats the capillary bed as a black box, with an arterial 

input, a venous output, and a transfer function based on the distribution of transit times 

required by possible paths through the mesh. 

The path that a particular tracer molecule takes is nondeterministic, 

but a distribution of transit times, h(t), can be described for a bulk set of 

tracer molecules (Meier 1954). This distribution describes the effect of a time-

invariant linear system on the input, Ca(t), such that the venous output can 

be modeled as: 

 ,)()()(

0

 

t

av duuthuCtC   (1.2) 

where u is a dummy variable in the convolution. Equation 1.2 provides a 

definition for Cv(t) that is not dependent on any modeling assumptions, such 

as instantaneous equilibrium, and by substitution, Eq. 1.1 becomes: 
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thtFCtFC
dt

tdQ
aa    (1.3) 

where * represents the convolution operator. To simplify Eq. 1.3, a more 

convenient and closely related function, R(t), called the impulse residue 

function is used to describe the dynamics of the system. R(t) is defined as the 

fraction of dye remaining in the system at time, t, following the injection of 

an idealized bolus (i.e., a Dirac delta function), and is given by: 

 ,)(1)(
0



t

duuhtR   (1.4)  

Substituting R(t) for h(t), Eq. 1.3 becomes 

 ).()()( tFRtCtQ a    (1.5) 

A deconvolution method (also called nonparametric analysis) is used to solve 

Eq. 1.5, and does not require any explicit assumptions regarding the 

underlying behaviour of the tracer beyond that required by the definition of a 

linear time-invariant system. In other words, knowledge of the number 

compartments and their distribution volumes are not necessary. However, 

deconvolution is a mathematically difficult problem from the perspective of 

real data analysis. In particular, even small amounts of noise in the 

measured functions Ca(t) and Q(t) are amplified during linear inversion due 

to the ill-conditioned nature of the inverse problem. Consider the matrix form 

of Eq. 1.5 following discretization: 

    RCQ AF   (1.7) 

where the arterial input function, Ca(t), is now represented by the Toeplitz 

matrix: 
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The function FR(t) can be solved in a least squares sense by optimizing: 

  2
minarg QRCA

R
F

F
  (1.9) 

where is the Euclidean norm. Because of the redundancy of information in 

CA, the problem is ill-conditioned, and minimization of Eq. 1.9 is highly 

susceptible to experimental noise. A complete discussion of rank-deficient and 

ill-posed problems is outside the scope of this thesis, but the reader is invited 

to refer to (Hansen 1987) for more information. To stabilize the minimization 

of Eq. 1.9, a number of options exist including truncated singular value 

decomposition, Tikhonov regularization, and mathematical constraints based 

on a priori knowledge (Dehghani et al 2007). All three methods have benefits 

and limitations depending on the information that is desired. Since this 

thesis is mainly concerned with the measurement of blood flow, it is assumed 

that the principle parameter of interest is F. As previously mentioned, the 

nonparametric method is useful when an explicit mathematical model of R(t) 

is unavailable. However, there are some basic assumptions about the shape 

of R(t) that can be inferred from an understanding of the basic physiology of 

microcirculation that are unlikely to be violated even under pathological 

conditions, and these form the basis for mathematical constraints that help 

stabilize the deconvolution (Lee 2005). These assumptions are: 

(i)  Tracer injected into a periphery vein will require a minimum 

amount of time to travel to the heart and be pumped to the 

tissue region-of-interrogation. 

.



21 

(ii)  R(t) represents the residue function of a Dirac delta function; in 

this unique case, the entire bolus of dye would reach the tissue 

at a single instant in time.  

(iii)   In addition to (ii), there would be a finite amount of time before 

the first molecule of dye left the region of interrogation. 

(iv)  The dye must enter the tissue via an artery and exit via a vein 

(i.e., no retrograde flow will occur). 

These assumptions, which are all derived from a basic understanding of 

physiology, will be satisfied under almost any clinically relevant condition; 

however, from a mathematical point-of-view, they can be used to construct 

rigid and powerful constraints that provide stability to the deconvolution. 

Assumption (i) defines a finite delay between the injection and appearance of 

dye, called the lag time, L, during which Q = 0. Assumptions (ii) and (iii) 

defines a plateau equal to unity that begins after L time, and lasts for a finite 

period of time called the minimum transit time, M. These provide the 

equality constraints for R(t), mainly   
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Assumption (iv) essentially implies that R(t) must be monotonically 

decreasing, that is 

 MLt
dt

tdR
 0

)(
  (1.11) 

Finally, since there is no physical representation of negative tracer amount, 

R(t) must be non-negative for all t. This final constraint enables the use of 

the non-negative least-squares (NNLS) numerical method (Lawson and 

Hanson 1974). The nonparametric method described above has been 
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validated in CT perfusion using microspheres (Cenic et al 1999). For the 

studies in this thesis, MATLAB was used to minimize Eq. 1.9 subject to the 

inequality and equality constraints outlined above. 

To a large degree, the use of DCE methods to measure CBF—and 

tracer kinetics in general—have been confined to more established medical 

imaging modalities such as CT, PET and MRI. However, in recent years, 

kinetic modeling has been increasingly used in optics in combination with 

light absorbing dyes. A major benefit of most optical techniques is that data 

can be collected at high temporal resolution and with a high signal-to-noise 

ratio (SNR). As a result, DCE methods are well suited to applications in 

optics, and recent studies have established biomedical optics as fertile ground 

for the advancement of new tracer kinetic methods and applications. In 

particular, the deconvolution method has been used to measure CBF in 

piglets (Brown et al 2002, Tichauer et al 2006, Diop et al 2010) and 

premature newborns (Arora et al 2013) and it provides a foundation for the  

analytical approaches used in Chapters 2-6 of this thesis. 

1.5. Theoretical basis of near-infrared methods 

1.5.1. Near-infrared scatter 

Light scatter, (i.e. the deviation of light from a straight trajectory), is the 

dominant interaction with tissue in the near-infrared range between 700 - 

1000 nm. The main causes of scatter in this range are Mie scatter and 

Fresnel reflection. A third type, Rayleigh scatter, represents interaction 

between light and very small particles, and is increasingly important at 

shorter wavelengths of light; therefore, it is outside the scope of this thesis. 

As light propagates through tissue, it interacts with cell membranes, tissue 

boundaries, and organelles; at each interface, light is reflected and refracted 

by these objects, and therefore experiences a deviation in trajectory. The 

majority of scattering in mammalian cells is thought to arise from structures 
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within the cell, i.e. organelles (Mourant et al 1998). Mie scatter characterizes 

the interaction of light with spherical particles of size similar to its 

wavelength, and is described by the Mie solution to Maxwell's equations (Mie 

1908). Most organelles such as nuclei (3-10 μm) and mitochondria (1 μm) can 

be approximated as spheres or ellipsoids, and can therefore be described by 

Mie scatter. 

 A significant portion of scatter in brain tissue occurs by cell 

membranes, which are comprised of lipoproteins (Cope 1991). Since cells are 

significantly larger than the wavelength of NIR light, it is best to consider 

them as a set of randomly oriented flat, dielectric reflecting films (Cope 

1991). The reflection and transmission of an incident plane wave of light as it 

moves between two media of differing refractive indices is described by the 

Fresnel equations. For a single, well defined interface, the amplitude and 

phase of the transmitted and reflected light can be readily determined if the 

angle of incidence and indices of refraction of the two media are known. 

However, it would be impossible to produce an analytical solution for the 

interaction of light between the roughly 1 x 108 cellular interfaces and 

organelles that typically exist within 1 mm3 of tissue (estimated from 

Norazmi et al 1990 and Loud 1968). Instead, the scattering of light is 

described statistically using probability functions and empirically derived 

approximations.  

 The scatter of light in tissue is typically discussed in terms of the angle 

of scatter and the distance between scattering events. The scattering angle is 

most commonly described by the Heyney-Greenstein phase function, which 

was originally developed to describe the angular dependence of light 

scattering by small particles in interstellar dust clouds (Heyney and 

Greenstein 1941). The function describes the probability of a particular 

scattering elevation angle, θ, given the tissue’s anisotropy factor, g:    



24 

 .
)cos21(

1

4

1
)(

2/32

2




gg

g
p




   (1.12) 

The anisotropy factor, g, is the mean cosine of the scattering angle, and in 

biological tissue, typically varies from 0 to 1. Such probability functions can 

be used to sample the bulk behaviour of light, and form the basis of modeling 

approaches collectively called Monte Carlo methods, which will be further 

discussed in subsection 1.5.4.  

 The average distance between scattering events is described in terms 

of the mean scattering length, ls, of a medium, usually in units of mm. More 

commonly, the scattering property of tissue is defined by the scattering 

coefficient, μs, which is equal to 1 / ls. For a medium with high scatter, such 

as tissue, after a sufficient number of scattering events, a photon has lost any 

knowledge of its incidence angle and can be considered effectively isotropic. 

In this case, the scatter of light can be approximated by a single parameter, 

the reduced scattering coefficient, μs′, which is defined as: 

 ss g  )1(   (1.13) 

In addition, the wavelength dependence of μs′ is well approximated by the so-

called power law: 

 
b

s A   )(   (1.14) 

where A and b are constants either empirically determined or predicted by 

Mie theory, depending on the application (Wang 2000). A good understanding 

of the principles of light scatter is essential to any quantitative biomedical 

optical techniques. In particular, the probability function in Eq. 1.12 and the 

description of absorption in the next section form the basis for Monte Carlo 

methods. 
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1.5.2. Near-infrared absorption 

As light propagates through a medium, energy from the incident field is 

transferred to particles in the medium, which are in turn excited to a higher 

energy state. While this excited state is short-lived, the resulting collisions 

that occur between these particles and neighbouring ones results in a 

transfers of energy—for example, by increasing the vibrational mode of the 

particle and therefore the kinetic energy of the system, or by re-emitting the 

light in a different color. This process is known as absorption, and causes a 

reduction in the intensity of a light beam as it travels through the medium. 

The first mathematical description of this process was given by Pierre 

Bouguer in 1729, and later extended by August Beer to include the 

dependency of light absorption not only on the pathlength through the 

medium, but also on the concentration of light absorbing molecules, or 

chromophores, in the medium. The resulting Beer-Lambert-Bouguer Law is a 

given by: 

 ,ln 0 LC
I

I
A     (1.15) 

where I0 is the incident intensity, I is the transmitted intensity, (the log ratio 

of which is A, is the attenuation of light), C is the chromophore concentration, 

L is the pathlength of light through the medium, and ε is the specific 

extinction coefficient. 

Within the NIR range of 700-1000 nm, there are three main 

endogenous absorbers of light: water, hemoglobin, and deoxyhemoglobin. 

Water is arguably the most important, since it is prevalent in biological 

tissue. Although the absorption of NIR light by water is relatively weak 

(about 50 times less than hemoglobin), because of its abundance in human 

tissue it has a significant effect. In particular, the specific absorption of water 

rapidly increases with wavelength after about 920 nm, effectively forming the 
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upper-limit on what is termed the "optical window" of NIR. The concentration 

of water in the adult brain is tightly regulated to a value of 80% by mass 

(Woodard and White 1986).  

Since the pioneering work of Jobsis in the 1970s, hemoglobin and 

deoxyhemoglobin quantification has been a principle focus of many NIR 

techniques. This can be attributed to the unique spectral features of both of 

these chromophores in the NIR, and the clinical importance of hemoglobin in 

being the molecule responsible for the transport of oxygen from the lungs to 

the various tissues in the body. Structurally, hemoglobin is comprised of four 

subunits which are each able to bind a single O2 molecule. Binding of oxygen 

occurs at the heme group—an iron ion held in a porphyrin ring (Caughey et 

al 1975) and induces a conformational change in its tertiary structure, 

resulting in a dramatic change in absorption characteristics. The effect of this 

change can be observed in the difference in specific absorption of deoxy- and 

oxy-hemoglobin depicted in Figure 1.4. In addition to marked differences in 

features at 760 nm and 900 nm, oxy- and deoxy-hemoglobin share an 

isobsetic point at 800 nm (i.e., their specific extinction is equal at this 

wavelength). The difference in absorption spectra between the two 

hemoglobins forms the basis for the ability to determine oxygen saturation, 

for example, in pulse oximetry (Aoyagi 2003).  
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Figure 1.4: Specific absorption spectra of H20, Hb, HbO2 and ICG in the NIR range. 

Values for H2O and ICG are adjusted by a factor of 101 and 10-2, respectively, for illustrative 

purposes. Spectra were obtained from (Oregon Medical Laser Clinic 2013). 

1.5.3. Light propagation in tissue 

Light transport, like any propagation of electromagnetic radiation, is 

governed by Maxwell’s equations. In this paradigm, a beam of light interacts 

with an object resulting in elastic scattering (i.e., the spreading of energy in 

all directions at the frequency of the incident beam), as well as absorption 

(i.e., the conversion of incident energy to other forms such as heat). The 

resulting scattered field can undergo subsequent interactions with other 

objects. In a highly complex, multiple scattering regime, analytical solutions 

to Maxwell’s equations become intractable (Wilson and Jacques 1990). 

Furthermore, to determine the superposition of multiple scattered fields, it is 

necessary to know the exact location of each scatterer. In tissue, due to 

Brownian motion, the scatterers exist in randomized positions. Therefore, it 

is more appropriate to consider light as comprised of individual photons that 

are absorbed or scattered by discrete random particles. This description of 

light is governed by the radiative transfer equation (RTE), which is given by: 
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and describes the propagation of radiance  stL ˆ,,r  in the medium as a 

function of the position r, moving in direction , at time t. Other parameters 

include υ, the velocity of light in the medium, μa and μs, (the absorption and 

scattering coefficients, respectively),  ssP ˆ,ˆ , the scattering phase function,  

 stS ˆ,,r , the source term, and ,d  the solid angle around ŝ . 

 To obtain analytical solutions specific to a particular problem, 

boundary conditions are applied to the RTE. The most common solution in 

the field of tissue optics is the diffusion approximation (DA). In the DA, it is 

assumed that the source of light is an isotropic point source, and that 

scattering within the medium is isotropic. This greatly simplifies Eq. 1.16, by 

eliminating the dependency on , and by reducing the phase function to a 

constant (1/4π). However, for short source-detector distances, and for complex 

arbitrary media, the diffusion approximation can be inaccurate. A statistical 

approach, rather than an analytical solution, can provide a powerful means of 

sampling the RTE while incorporating effects of anisotropy. These solutions 

are known as Monte Carlo methods.  

1.5.4. Monte Carlo modeling 

Monte Carlo simulations are a ubiquitous statistical approach used in a 

variety of applications―e.g. nuclear physics (Anderson 1986), computational 

biology (Huelsenbeck and Ronquist 2001), pricing financial derivatives 

(Glasserman 2003)―when a closed-form expression is unavailable or 

prohibitively difficult to formulate. Monte Carlo methods to model light-

tissue interactions were introduced in 1983 by Wilson and Adam, and 

ŝ

ŝ
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modifications were made by various groups, before the publication of the 

Monte Carlo modeling of photon transport in multi-layered tissues (MCML) 

which forms the foundation of almost all modern Monte Carlo light 

propagation models (Wang et al 1995). Monte Carlo methods define 

probability functions that describe the expected values of parameters—i.e., 

length between scattering events, direction of scatter and absorption—that 

describe the interaction of light with tissue. For a simulated photon of light, 

these probability functions are repeatedly sampled until the photon is either 

detected by a hypothetical photodetector, or absorbed by the medium. Then, 

the process is repeated for a large number of photons, typically 108, to 

describe the fluence and flux of light in terms of spatially and/or temporally 

dependent functions. To increase computational efficiency, some 

simplifications are made that are not believed to affect the overall outcome of 

the simulation. For example, photons are considered as "packets" which loose 

a portion of their energy with each scatter event, and following each scatter 

event, a photon continues, or is "killed"—with an increased likelihood of 

being killed as its energy diminishes. Another implicit assumption is that 

photons are independent of each other, and therefore, do not interact.  

 The MCML algorithm is divided into a series of decisions representing 

physical interactions. For example, a photon packet is launched from a source 

at a position and direction specified by the user. The first calculation 

determines the photons step size (i.e., the distance from source to the first 

scattering event). To understand how this is done, recall the definition of the 

scattering coefficient from the previous section, which describes the expected 

number of scattering events per unit length. Since each unit length is 

expected to interact with a constant fraction of photons, a series of successive 

unit lengths will result in an exponentially decaying number of photons that 

have not been deviated from their trajectory. The probability of a photon 

having a step-size, s, is given by 
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This non-uniform probability function can be sampled with a computer-

generated pseudorandom number using the following relationship (Wang and 

Wu 2007): 
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where ξ is a pseudorandom number in the interval 0 to 1. Substituting the 

probability function from Eq. 1.17 into Eq. 1.18, integrating, and replacing (1- 

ξ) with ξ on the basis that ξ is symmetrical about 0.5, yields  
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This provides a sampling function for the step-size of a photon packet moving 

through a semi-infinite turbid medium (Wang et al 1995). In addition to the 

photon step size, the direction of scatter must be determined by sampling the 

azimuth angle, , and the elevation angle . The manner in 

which Monte Carlo treats the directionality of scatter differentiates it from 

the DA and produces more accurate solutions in cases where the DA 

assumptions are invalid. The azimuth angle is sampled uniformly over the 

defined interval, but the elevation angle is determined by sampling the 

Henyey-Greenstein function that was introduced in subsection 1.5.1. 

Applying Eq. 1.18 to the phase function in Eq. 1.12,  
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Each successive scattering event causes a reduction in the weight, W, or 

energy of the photon packet, represented by a fraction of its initial weight. 

The reduction in weight, ΔW, is calculated by  

 WW
sa

a






   (1.21) 

By sampling these three functions, Monte Carlo methods allow the user to 

provide the optical properties (μa, μs, and g) of the tissue, and calculate the 

fluence distribution (spatially or temporally) in the medium. In addition, the 

pathlength of light can be summed for each photon packet and the mean 

partial pathlength (MPP)—i.e., the average pathlength of light in each 

region, or tissue type—can be recorded.  

 Small differences exist in between Monte Carlo methods in terms of 

how they handle reflection at boundaries (Fresnel reflection), layers or 

arbitrary geometries, detection of photons by a virtual photodetector, and 

parallelization or scalability. In Chapter 2, the Monte Carlo method used in 

the reported study was based upon the MCML code, and was written in 

house using the C++ programming language, so that it could be run on a high 

performance computing architecture called SHARCNet. In subsequent 

chapters, the Monte Carlo eXtreme (MCX) method by Fang is used. This 

algorithm is based on the earlier tMCimg algorithm by Boas and colleagues, 

which advanced the MCML algorithm to allow modeling of photon 

propagation in 3D segmented image volumes. The MCX method is essentially 

tMCimg written in such a way that enables the use of graphics processing 

units (GPUs) to run multiple instances of Monte Carlo in parallel. Because 

each simulated photon packet is treated as an independent event, the Monte 

Carlo problem is highly parallelizable; the first report of MCX demonstrated 

an acceleration of about 300 times on a GPU capable of 500 GFLOPS. The 

performance of GPUs has increased at a rate much greater than that of 



32 

central processing units, and at the time of the writing of this thesis, 

commercially available GPUs for personal computing use are capable of 2000-

4000 GFLOPS. For a typical MCX simulation on an MRI human head atlas 

(Fang and Boas 2009), 108 photon packets could be simulated in 47.5 − 95 

seconds. 

1.6. Near-infrared measurements in adults 

1.6.1. Extracerebral contamination  

Near-infrared methods of measuring CBF have been successful, especially in 

neonatal applications (Arora et al 2013; Brown et al 2008; Edwards et al 

1988; Tichauer et al 2009), where the scalp and skull is negligible and the 

head can be thought of as a homogenous region comprised mostly of brain 

tissue. However, when applied to adult subjects, these same methods 

measure signal that is comprised of multiple tissue layers including brain 

and scalp (Fig. 1.5). In some cases, the signal arising from the extra-cerebral 

layers (ECL) can account for more than half the overall signal.  

 

Figure 1.5: Interrogation of adult head with NIR light 

Illustration of the underlying structure of the human head and the typical region of 

interrogation by a NIR optode pair spaced about 30 mm apart. Note the large contribution to 

light absorption by the extracerebral layer. 

Both the scalp and skull are metabolically inactive and therefore poorly 

perfused tissues. For example, the blood flow in the scalp is about 1/10th that 

of the brain (approximately 5 ml min-1 100g-1). As a result, single-probe NIR 

measurements acquired on the surface head, without accounting for 
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contamination from the ECL, produce CBF values that are significantly 

underestimated (Gora et al 2002). Figure 1.6 demonstrates the relationship 

between extracerebral thickness and brain signal percentage, determined 

using Monte Carlo simulations. To minimize the errors caused by ECL 

contamination, it is necessary to increase cerebral signal sensitivity and 

remove ECL signal contributions through some type of reconstruction 

method. 

 

Figure 1.6: Effect of extracerebral layer thickness on brain sensitivity. 

The effect of increasing ECL thickness on the percent contribution of brain tissue to the total 

differential pathlength for a 30 mm source-detector distance, as determined by two-layer 

Monte Carlo simulation. The ECL was assumed to comprise 60% scalp, 30% skull, and 10% 

CSF, and optical properties were taken from Strangman et al 2003. 

1.6.2. Increasing cerebral sensitivity 

Increasing the sensitivity to changes occurring in cerebral tissue reduces the 

amount of ECL contamination, thereby helping to differentiate signals from 

the ECL and the brain. This can be achieved through a combination of 

instrumentation improvements and more sophisticated analytical methods, 

which will both be discussed in this section. These advancements form the 

crux of this thesis, as detailed in the research objectives presented in Section 

1.7. 
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Instrument-based solutions 

The penetration depth of light increases as a function of source-detector 

distance; therefore, the easiest method of increasing sensitivity to the brain is 

by moving the detector optode further from the source. However, the flux of 

photons across the surface of the head rapidly decreases with source-detector 

distance representing an important trade-off that must be considered (Fig. 

1.7) 

 

Figure 1.7: Effect of source-detector distance on brain sensitivity and photon count. 

The effect of increasing source-detector distance on the percent contribution of brain tissue to 

the total differential pathlength assuming an ECL thickness of 10 mm. The flux of photons 

exiting the surface decreases almost 5 orders of magnitude over the range of source-detector 

distances. 

Practically, a source-detector upper-limit of 40 mm is imposed by 

signal-to-noise considerations for most current systems that use emission and 

detection optodes comprised of fiber bundles with an active area on the order 

of 400 um in diameter. However, a recent study avoided the substantial loss 

of signal that occurs during fiber transmission by placing a photodetector 

directly on the surface of the head (Liebert et al 2011). In addition to 

minimizing fiber loss, this had the effect of increasing the active area 

diameter of the optode from 400 um to 8 mm, the diameter of the 

photocathode.  
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 A logical extension to the single channel approaches that have been 

discussed is to deploy multiple optodes and collect data from these channels, 

simultaneously. This multi-distance, multichannel or depth-resolved 

approach allows the separation of information into superficial and deep 

components on the basis that light penetration increases with source-detector 

distance. It is important to note, however, that due to the diffuse nature of 

light, large source-detector distances only increase the proportion of signal 

from the brain and don't eliminate the ECL contribution all together. 

Nevertheless, by collecting information at multiple distances simultaneously, 

it is possible to separate out information in terms of tissue layers, using an 

optical reconstruction approach. 

 The development of time-resolved methods have greatly improved the 

amount of information that can be acquired with a small number of optodes 

and have opened up new avenues of exploration in terms of data analysis 

(Diop et al 2010; Diop and St. Lawrence 2012). Time-resolved NIR methods 

are photon counting techniques that use a laser light source to emit pulses of 

monochromatic light and fast detectors to measure the time-of-flight of each 

detected photon (i.e., the time required for a photon to travel from the laser to 

the photomultiplier tube). This process is repeated, typically at a frequency of 

around 80 MHz until about 107 photons are measured, and a histogram 

called the distribution of times-of-flight (DTOF) is generated. Figure 1.8 

shows a representative example of a DTOF collected on the surface of an 

adult pig head. A series of DTOFs, resolved to typically 1024 time-bins, can 

be collected continuously during the injection of a contrast agent at a rate of 

about 2.4 Hz across multiple detectors simultaneously, representing a 

staggering amount of information. Furthermore, because photons with longer 

times-of-flight are more likely to have visited deeper tissue than those with 

very short times-of-flight, selecting later time-bins has the effect of increasing 

brain sensitivity. Combining some or all of these technologies results in a rich 
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dataset full of information about the hemodynamics of the underlying brain 

tissue. However, only with well-developed analytical tools can this 

information be processed to yield accurate and quantitative measurements of 

CBF. The closely related concept of frequency-domain (FD) NIR provides 

analogous information to time-resolved NIR if measurements are collected 

across a range of modulation frequencies Mei et al, 2013). However, 

commercial FD systems typically use only a single modulation frequency. 

 

Figure 1.8: Distribution of time-of-flight and instrument response function. 

The DTOF and IRF for measurements acquired with a 20 mm source-detector distance on an 

adult pig with an ECL thickness of 10.5 mm. Note the presence of an after-pulse in the IRF, 

defined as an increased probability of a photon being detected after an initial detection event, 

and is observed in almost all conventional PMTs.  

Analytic-based solutions 

Perhaps the simplest approach to incorporating multi-distance NIR 

information was proposed by Schytz and colleagues, in a technique that 

exploits the different amounts of ECL and brain signal contribution present 

in short (10 mm) and long (30 mm) source-detector distances (Schytz et al 

2009). In this approach, the change in optical density in the brain was 

calculated by scaled subtraction of the short source-detector distance signal 

from the long source-detector distance signal. While the approach represents 

a good first step in trying to use multi-distance NIR measurements to isolate 
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the brain signal, the scaling factor was based on an assumed value and 

applied to the group as a whole. Therefore, the amount of intra-subject 

variability likely impacted the results of the study, which did not show 

sensitivity of NIR measurements to changes in CBF. A more robust approach 

is to properly model the light propagation in the head for each subject 

separately. This approach was used in the study highlighted in Chapter 2 of 

this thesis. While collection of CW NIR information at multiple distances can 

provide a limited ability to separate out the brain contribution to the signal, 

TR NIR offers an exquisite amount of information even in a single or few-

channel approach. However, the main problem with TR NIR data is that the 

experimental DTOFs represent the convolution between the instrument 

response function (IRF) and the tissue impulse function (TIF). Although the 

IRF can be measured independently, the recovery of a TIF from the DTOF 

requires deconvolution of the signal; a challenging mathematical problem 

that has only recently been addressed successfully (Diop and St. Lawrence 

2012). Therefore, the proper analysis of DTOFs to exploit the sensitivity of 

late-arriving time-bins has been challenging. An elegant approach was 

proposed by Liebert and colleagues, and involves determining the statistical 

moments of DTOFs―intensity, mean time-of-flight, and variance―effectively 

reducing the large dataset into three "principle components" (Liebert et al 

2004). The kth order moment of the DTOF, N(t), is defined as 
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where t1 and t2 are temporal integration limits. In addition to reducing the 

size of the problem set, the influence of the IRF can be removed by using the 

change in the normalized moments: 
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The change in attenuation, ΔA, change in mean time-of-flight, , and the 

change in variance, ΔV, are the principle moments used in moments-based 

TR NIR methods. Theoretically, there is no limit to the number of moments 

that can be used, however, noise increases significantly with order of 

moment. Conceptually, the relationship between moment order and brain 

sensitivity is not as straightforward as when considering the time bins of the 

DTOF. However, in general, the sensitivity of brain tissue is highest in 

higher order moments because changes in the tail of the TPSF have a more 

dramatic effect on the width and skewness of the distribution. Figure 1.9 

shows the sensitivity of attenuation and variance to layers located at depths 

of 1, 5 and 9 mm. Note, the sharp increase in the sensitivity of variance to the 

9 mm layer for source-detector distances greater than 30 mm.  

 

Figure 1.9: Moment sensitivity factors as a function of source-detector distance 

(A) The relationship between source-detector distance and mean partial pathlength, the 

sensitivity factor for attenuation, and (B) the relationship between source-detector distance 

and variance sensitivity factor, corresponding to depths of 1 mm (solid black line), 5 mm 

(solid grey line) and 9 mm (dashed black line). Reproduced from Liebert et al 2004.  

t
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The sensitivity of a particular moment to a particular tissue region below the 

surface of the head is represented by its sensitivity factor. Sensitivity factors 

can be readily calculated using Monte Carlo simulations (Liebert et al 2004).  

1.6.3. Multilayer reconstruction 

The previous section described a variety of instrument-based and analytical 

approaches to increasing the sensitivity of the detected signal to brain tissue. 

However, proper isolation of the brain tissue signal requires the use of optical 

reconstruction: a general term that describes the recovery of local changes in 

tissue optical properties at a predefined region from a measured signal 

containing contributions from multiple regions. Optical reconstruction forms 

the basis for imaging methods including diffuse optical tomography (DOT) 

and fluorescence molecular tomography (FMT), and is analogous in some 

ways to CT and PET reconstruction. The optical reconstruction forward 

problem is given generally by 

  
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 
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where μJ represents the collective optical properties defined for NJ spatial 

regions, and J  is the local variations in optical properties responsible for 

the variation S
 in the detected signal  associated with the background 

properties J . The transformation between these two variations is given by 

AJ, also called the Jacobian. Optical reconstruction is performed by 

minimizing the difference between the experimental measurements of , 

and the predictions of the model based on the update equation (Eq. 1.27). 

Essentially, all optical reconstruction methods can be broken down into four 

considerations: (i) selection of linear or nonlinear solver, (ii) definition of the 

signal domain, (iii) calculation of the Jacobian, and (iv) availability of a priori 

knowledge or "priors". 

S

S
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 Typically, DOT involving large variations in μa and μs must be solved 

with nonlinear iterative solvers. However, in the DCE-NIR methods 

described in this thesis, an assumption of linearity is made between the 

measured signal and the change in absorption caused by the introduction of 

tracer. This assumption is valid under the concentrations used in DCE 

methods, based on the fact that ICG has a negligible effect on scattering 

(Kuebler et al 1998) and its effect on the optical pathlength is negligible. The 

signal domain is defined primarily according to the spatial location of source 

and detector pairs used to construct the signal data. In DCE measurements 

acquired on the surface of the head, spatial information is typically simplified 

by using source-detector distance, ρ. The signal domain can be further 

divided into dimensions that are specific to the type of instrumentation used. 

For example, in broadband NIRS, signal can be defined according to 

wavelength, λ, as in DOT methods that employ spectral constraints (Corlu et 

al 2005). In the case of TR-NIR, the signal domain can be labeled according to 

time-of-flight, t, or when used in conjunction with a moments-based 

approach, moment order, k. Regardless of how the signal domain, Ω, is 

defined, the Jacobian must be defined accordingly, in addition to being 

defined for each region, J. In optical reconstruction, the Jacobian is 

essentially a matrix comprised of partial derivatives of fluence and flux taken 

with respect to μa and μs′. Therefore, to compute the Jacobian, light 

propagation models are needed. The two principle models―Monte Carlo and 

diffusion approximation, typically formulated as a finite element method 

(FEM) are used. The FEM approach has the benefit of being fast, flexible, 

and accurate under most conditions. As a result, it is the most widely used 

method for FMT reconstruction. Monte Carlo is computationally demanding, 

but more accurate, and calculation of TR DTOF functions is very 

straightforward. Furthermore, Monte Carlo methods for calculating the 

moments-based Jacobians are published (Liebert et al 2004). 
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 The incorporation of priors into optical reconstruction is perhaps the 

most fertile ground for advances in quantitative DOT and FMT methods 

(Pogue et al 2011). The importance of priors can be understood from an 

algebraic perspective, in that optical reconstruction is an ill-posed and often 

underdetermined problem. Therefore, regularization (which is itself, 

fundamentally a prior in that it forces a solution with predetermined 

qualities―i.e. smoothness) and prior-based constraints are essential for 

converging to a unique solution. In recent years, a number of priors have 

been described and each has been implemented in a variety of different ways. 

For example, anatomical priors—information provided by an alternate 

imaging modality such as CT or MRI—can be implemented into the 

reconstruction process as a soft prior using Laplace regularization (Davis et 

al 2007). Another common approach is to use spectral priors to constrain the 

reconstruction of broadband data (Corlu et al 2005). Chapter 5, which is 

based on a paper published in Optics Letters, describes a previously 

unexploited prior based on temporal changes in absorption caused by the 

injection of tracer. This "kinetic prior" was incorporated directly into the 

optical reconstruction problem, in an approach referred to as kinetic 

deconvolution optical reconstruction (KDOR). The standard approach to 

extracting physiological measurements from DCE data is a two-step method 

of first performing image reconstruction and then recovering kinetic 

parameters with subsequent modeling. The use of KDOR mitigated much of 

the loss-of-information that occurs due to the ill-posed nature of 

unconstrained optical reconstruction (Elliott et al 2012). The KDOR approach 

is highlighted in Chapters 5 and 6, and Appendix A. 

1.7. Research objectives 

The goal of this doctoral work is to develop a reliable bedside optical 

technique capable of quantifying CBF in adult patients. It was hypothesized 

that CBF can be measured accurately by correcting for inter-subject 
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variability in tissue anatomy and optical properties. With this in mind, the 

following four objectives were addressed: 

(i) Designing and optimizing a clinically-compatible instrument 

(ii) Developing an analytical framework 

(iii) Developing a clinically relevant ABI animal model 

(iv) Validating the technique against CT perfusion 

Each chapter in this thesis represents a progression toward the central goal, 

by advancing one or more of these objectives. A secondary goal of this thesis 

is to provide the reader with an appreciation for the way in which this 

research has unfolded, by which each study provided an important "piece to 

the puzzle". 

1.8. Thesis outline 

The reminder of the thesis is divided into five chapters outlining published or 

completed studies, and a final concluding chapter. 

1.8.1.  Measuring quantitative cerebral blood flow in a juvenile 

porcine model using multidistance continuous-wave near-

infrared spectroscopy (Chapter 2) 

Advancing CW-NIRS methods from neonatal applications to a juvenile pig 

model with a non-negligible ECL can be achieved by employing multi-

distance measurements. This chapter summarizes the work presented in the 

paper “Quantification of CBF in a juvenile porcine model by depth-resolved 

near-infrared spectroscopy,” published in the Journal of Biomedical Optics in 

2010 by Elliott JT, Diop M, Tichauer KM, Lee T-Y, and St. Lawrence K. The 

proposed depth-resolved approach, which uses an algebraic approach to 

separate signals by depth, is presented alongside with a comparison to a 
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simple-subtraction approach and the single-channel method used in neonatal 

studies. These optical methods are compared to CT perfusion measurements 

as a clinical gold standard.  

1.8.2. Measuring cerebral blood flow changes in adult pigs with 

statistical moments of time-resolved near-infrared 

measurements (Chapter 3) 

A single-channel time-resolved method to measure changes in blood flow 

using statistical moments of the time-of-flight distribution (DTOF) is 

presented. Previous DCE methods using moments have examined the time-

to-peak of the dye concentration curve; a more robust method is presented 

that takes into account variations in the AIF. This method has the benefit of 

being relatively insensitive to uncertainties in optical properties and ECL 

thickness, but provides only a measure of the change in CBF. The work in 

this chapter is based on the paper entitled “Variance of time-of-flight 

distribution is sensitive to cerebral flow dynamics of indocyanine green as 

confirmed by comparing scalp and brain measurements in adult pigs” 

published in Biomedical Optics Express in 2013, by Elliott JT, Milej D, 

Gerega A, Weigl W, Diop M, Morrison LB, Lee T-Y, and St. Lawrence K. The 

work presents a series of animal experiments investigating the influence of 

extracerebral and cerebral blood flow on the proposed blood flow index, and 

represents a straightforward means of tracking CBF changes in a clinical 

setting. 

1.8.3.  Measuring the arterial input function with a standard pulse 

oximeter to facilitate the clinical implementation of DCE 

optical methods (Chapter 4) 

All of the DCE methods described in this thesis require the measurement of 

the AIF—the time-dependent arterial concentration of dye. Currently, this 

can only be measured noninvasively by a pulse dye densitometer, which is a 

specialized device designed to measure arterial blood concentration of 
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indocyanine green. In this chapter, an alternative method is described which 

was first published in “Arterial input function of an optical tracer for dynamic 

contrast enhanced imaging can be determined from pulse oximetry oxygen 

saturation measurements” by Elliott JT, Wright EA, Tichauer KM, Diop M, 

Morrison LB, Pogue BW, Lee T-Y and St. Lawrence K, published in Physics 

in Medicine and Biology in 2012. The proposed method involves using a 

standard pulse oximeter device to measure the AIF, with the goal of 

overcoming practical obstacles to enable the use of DCE optical techniques in 

clinical settings.  

1.8.4. Kinetic deconvolution optical reconstruction: theoretical 

basis and numerical simulations (Chapter 5) 

To leverage the advances in instrumentation described in Chapter 3, a 

completely novel analytical approach was developed to combine the optical 

reconstruction of time-resolved multi-distance data with nonparametric 

kinetic analysis, or deconvolution, used in previous DCE NIR methods. The 

chapter is based largely on the published paper “Model-dependent constraint 

to improve the optical reconstruction of regional kinetic parameters” 

published in Optics Letters in 2012 by Elliott JT, Diop M, Lee T-Y, and St. 

Lawrence K. This paper presents the theoretical derivation of the KDOR 

concept, and demonstrates improved accuracy and precision in simulated 

blood flow measurements in the human head. The KDOR methodology is 

fully described in this chapter, and numerical simulations have been 

expanded for completeness.  
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1.8.5.  Measuring cerebral hemodynamics in an adult pig model of 

ischemia with time-resolved near infrared and kinetic 

deconvolution optical reconstruction (Chapter 6). 

The culmination of instrumentation and analytical advances is presented in 

this chapter, where the DCE TR-NIR method is used in combination with the 

KDOR approach to quantify CBF in adult pigs before and during cerebral 

ischemia. This work, which will be submitted to a peer-reviewed journal in 

the near future, establishes NIR as a potential tool to measure CBF in under 

ischemic conditions. In addition to multidistance time-resolved data collected 

before injection of ICG, segmented anatomical CT images are incorporated 

into an optimization framework to determine the subject-specific Jacobian 

used in KDOR. 

1.8.6. Conclusions and future work (Chapter 7) 

In the final chapter, the most significant findings from the previous five 

chapters are summarized within the context of the stated objectives in 

Section 1.7. In addition, areas of future work are discussed based on the 

findings and limitations determined in the studies. Finally, the principle 

conclusions of the thesis are presented. 
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Chapter 2 

MEASURING QUANTITATIVE CEREBRAL 

BLOOD FLOW IN A JUVENILE PORCINE 

MODEL USING MULTIDISTANCE 

CONTINUOUS-WAVE NEAR-INFRARED 

SPECTROSCOPY 

This chapter is adapted from the work entitled “Quantitative measurement of 

cerebral blood flow in a juvenile porcine model by depth-resolved near-

infrared spectroscopy” by Elliott JT, Diop M, Tichauer KM, Lee T-Y, and St. 

Lawrence K, published in the Journal of Biomedical Optics in 2010. The focus 

of this paper is to extend the quantitative continuous-wave (CW) near-

infrared spectroscopy (NIRS) methods of measuring blood flow to a scenario 

where the extracerebral layer (ECL) is non-negligible: the juvenile pig model. 

The original journal article from which this chapter was adapted can be 

found at http://biomedicaloptics.spiedigitallibrary.org/article.aspx?articleid= 

1103440. 

2.1. Introduction 

The rationale for measuring cerebral blood flow (CBF) at the intensive care 

bedside was explained in Chapter 1. In particular, the ideal monitoring tool 

should be noninvasive, portable, quantitative, and fully compatible with the 

clinical environment. Although dynamic contrast-enhanced (DCE) near-
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infrared (NIR) methods require the injection of indocyanine green (ICG), this 

procedure is considered minimally invasive since intravenous access is 

ubiquitous in the context of intensive care. Furthermore, the dye is extremely 

safe as reflected in the low incidence of adverse reaction (approximately 1 in 

250 000 (Garski et al 1978)). The portability of NIR is attractive, since 

current methods of quantifying blood flow (e.g., CT, MRI, PET) are of limited 

use in intensive care since patients are often unstable and not easily 

transported to imaging suites. In fact, it is estimated that adverse effects 

occur in up to 70% of transfers involving critically-ill patients (Waydhas 

1999). 

 Continuous-wave, broadband, NIRS is a particularly robust technique 

that is compatible with the intensive care environment as it is relatively 

insensitive to ambient light. Dynamic contrast-enhanced NIRS capable of 

measuring CBF employs either a change in arterial oxygenation or a bolus 

injection of the light absorbing ICG. Both methods have been shown to 

provide accurate CBF measurements in animal models and neonates 

(Themelis et al 2007; Tachtsidis et al 2009; Brown et al 2002; Tichauer et al 

2006; Springett et al 2001; Patel et al 1998). However, when applied to 

juvenile or adult subjects, measuring CBF accurately has proven difficult. 

The main reason for the reduced accuracy is the non-negligible effects on the 

near-infrared signal of the ECL, as discussed in the previous chapter. 

Because of the ECL, CBF is substantially underestimated (Owen-Reece et al 

1996; Gora et al 2002; Rothoerl et al 2003). As such, NIRS has yet to develop 

into a clinically feasible method for patients older than a few weeks of age, 

and intensivists continue to rely on invasive subdural CBF techniques or 

intracranial pressure (ICP) probes to infer changes in cerebral 

hemodynamics. Not only do these techniques carry a risk of infection and 

bleeding, evidence suggests that adhering to a set ICP threshold does not 



62 

always ensure adequate oxygen delivery owing to differences in intracranial 

compliance between patients (Wright 2007; Stiefel et al 2006).  

  This chapter describes a multidistance continuous-wave NIRS method 

enabling depth-resolved measurements to quantify CBF in the presence of 

significant ECL signal contamination. The approach is partly based on a 

previous method for measuring CBF in neonates (Brown et al 2002), but 

depth sensitivity is improved by collecting NIR signal from two detection 

probes placed at different distances from the source. The relationship 

between the depth of light penetration and source-detector distance forms the 

basis for the separation of intra- and extra-cerebral signals (Hongo et al 

1995). Monte Carlo simulations of a two-layer medium were performed using 

subject-specific optical properties and ECL thickness parameters optimized 

from CT anatomical priors and second-derivative spectroscopy measurements 

of water, which was assumed to have a concentration of 80% in the brain. 

Monte Carlo simulation results were then used to determine the mean partial 

pathlengths (MPPs) for each layer and source-detector pair, which were used 

to reconstruct the time-dependent concentration of ICG in brain. The brain 

tissue concentration curve, in addition to the arterial input function, was 

used to recover CBF using a nonparametric model (Cenic et al 1999).  

The set of experiments highlighted in this chapter validates the 

multidistance CW NIRS technique by collecting measurements of CBF with 

NIRS and CT perfusion (Cenic et al 1999) over a range of hemodynamic 

states in juvenile pigs. These results are compared with two other analytical 

approaches: the single-probe method identical to that used in the previous 

neonatal studies (Brown et al 2002), and a simple-subtraction method 

whereby MPP values are assumed for the entire group (Schytz et al 2009). 
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2.2. Materials and methods 

2.2.1. Animal experiment 

The study was approved by the Animal Use Subcommittee of the Canadian 

Council on Animal Care at the University of Western Ontario (AUP #2007-

050-06). Eight juvenile Duroc x Landrace crossbred pigs were delivered from 

a local supplier on the morning of the experiment. The pigs were 

tracheotomized and mechanically ventilated while anaesthetized by 3% 

isoflurane. Cannulae were inserted into each ear for injection of the NIRS 

and CT contrast agents. An additional cannula was inserted into a femoral 

artery for continuous monitoring of arterial blood pressure and to allow blood 

samples to be collected for gas and glucose analysis. Following the surgical 

procedure, isoflurane was reduced to 1.75% and the animals were allowed to 

stabilize for 1 hour before measurements were collected. 

Near-infrared spectroscopy and CT measurements of CBF were 

collected concomitantly over a range of blood flow values. The range was 

achieved by adjusting the respiratory rate in each animal to produce distinct 

levels of arterial blood CO2 tension (PaCO2): hypocapnia (PaCO2 < 28 mm 

Hg), normocapnia (PaCO2 ≈ 40 mm Hg) and hypercapnia (PaCO2 > 50 mm 

Hg). 

2.2.2. Instrumentation  

An in-house developed continuous-wave spectrometer was used to collect 

broadband, near-infrared intensity data (Diop et al 2009). The main 

components of the system included an illumination unit, a multiplexer, and a 

spectrometer consisting of a holographic grating and a cooled charge-coupled 

device. The illumination unit was a 50-W quartz halogen light bulb that was 

bandpass filtered to remove light outside the 600 to 1000 nm range. The 

filtered light was coupled to a 2-m fiber-optic bundle (emission optode) with a 
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numerical aperture of 0.55 and a 3.5-mm diameter active area. The opposite 

end of the emission optode was placed on the scalp of the animal and held in 

position by a specially designed probe holder. Two optical fiber bundles 

(detection optodes) with the same specifications as the emission optode were 

positioned at 10 and 30 mm distances from the emitter to collect light having 

traveled through the multi-layered tissue. Light collected by the detection 

probes was sequentially recorded at intervals of 200 ms using a multiplexer 

as described in detail elsewhere (Diop et al 2009).  

2.2.3  Near-infrared spectroscopic measurements of cerebral blood 

flow 

Cerebral blood flow was measured using a bolus-tracking method that 

requires an intravenous bolus injection of ICG (0.1 mg/kg in 1 ml of sterile 

water), followed by continuous measurements of the time-varying 

concentrations of ICG in arterial blood and brain tissue (Brown et al 2002). 

The arterial concentration, Ca(t),  was measured by a pulse dye densitometer 

(PDD) (DDG-2001 A/K, Nihon Kohden, Tokyo, Japan) and the tissue 

concentration, C(t), was measured by NIRS. Recall from Chapter 1 that the 

two concentration curves are related by the following equation: 

 )()()( tFRtCtC a    (2.1) 

where FR(t) is the flow-scaled impulse residue function and * represents the 

convolution operator. A necessary assumption is that blood flow remains 

constant during the bolus-tracking experiment, which typically lasts about 70 

seconds. An in-house developed deconvolution routine was used to calculate 

FR(t) from the measured arterial and tissue concentration curves (Cenic et al 

1999). 
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2.2.4. Single-probe near-infrared spectroscopy 

If it is assumed that the head is a homogeneous medium—i.e., the 

contribution from the ECL is negligible—then the modified Beer-Lambert 

Law can be used to determine time-dependent changes in the concentrations 

of chromophores in brain from the change in light attenuation, ΔA(λ,t), 

measured from a detector: 

        

n

nn DPLtCtA ,  (2.2)  

In this equation, λ represents wavelength, εn(λ) is the wavelength-dependent 

extinction coefficient of each chromophore (corrected for the wavelength 

dependence of the pathlength  (Cope et al 1991)), ΔCn(t) is the concentration 

change in the ith chromophore, and DPL is the total differential pathlength in 

the medium, averaged across the fitting range 800−880 nm.  Without 

attempting to remove ECL signal contamination, the absolute change in the 

tissue concentration of ICG, C(t), following an injection of the dye can be 

determined from ΔA(λ,t) data acquired at a source-detection distance of 30 

mm. By collecting broadband NIRS spectra, the DPL can be determined by 

second differential analysis using the spectral features of water absorption, 

which are distinct at 740 nm and 830 nm, and assuming a water 

concentration in the brain of 80% (Matcher et al 1994). This single-probe 

homogenous approach is referred to as single-probe (SP) NIRS. 

2.2.5.  Depth-resolved near-infrared spectroscopy  

If the ECL is non-negligible, brain signal can potentially be resolved with 

NIRS by modeling the head as a two-layered medium and simultaneously 

collecting ICG tissue concentration curves from two detection optodes placed 

at different source-detector distances. The modified Beer-Lambert Law can 

be generalized for this collection geometry as follows (Hiraoka et al 1993): 
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       

n j

njnn MPPtCtA ,,   (2.3) 

where ΔA(λ,t) is the wavelength-dependant change in attenuation measured 

by the detector at time t, ΔCn,j is the concentration of the nth chromophore in 

the jth layer, MPPn is the mean partial pathlength of light in the jth layer.  

Depth-resolved measurements can be obtained by collecting signal at 

multiple source-detector distances. Assuming that all other chromophore 

concentrations remain constant during the time that the bolus is measured, 

the concentration of ICG in the jth layer, Cj(t) is related to the change in 

attenuation measured at the ith source-detector distance by: 

       

j

jijicgi MPPtCtA ,,   (2.4) 

Note that this expression is a specialized version of the optical reconstruction 

forward problem (Eq. 1.27). Recovering the layer-specific ICG concentration, 

Cj(t), is achieved by optimizing the following expression:  

     .0subject to minarg
2

,  jjijicgi
C

CMPPCA
j

  (2.5) 

To solve Eq. 2.5, MPPs were estimated from a look-up table generated from 

Monte Carlo simulations for various ECL thicknesses and various ECL 

component (skull, scalp, and CSF) ratios (see subsection 2.2.7). First, the 

thickness of the ECL was measured from a CT anatomical image of the 

subject’s head. Second, a set of potential MPPs were selected from the library 

from simulations that employed ECL thicknesses within 20% of the 

measured value. Third, for each potential set of MPPs, second derivative 

spectroscopy was applied to baseline attenuation data (i.e., attenuation data 

acquired prior to ICG injection) to calculate the concentration of water in the 

brain, CH2O,brain. Finally, the set of MPP values that resulted in a water 
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concentration closest to the assumed value of 80% was selected.  Equation 2.5 

was solved using these MPP values to recover Cj(t). The brain concentration 

curve, C2(t), along with the arterial input function, Ca(t), were deconvolved to 

recover FR(t) from Eq. 2.1. The deconvolution procedure used in this study is 

explained in depth in subsection 1.4.3. This multistep procedure is referred to 

as depth-resolved (DR) NIRS. 

2.2.6.  Simple-subtraction technique  

If anatomical priors are unavailable, it has been proposed that ECL 

contamination can be reduced by calculating a weighted difference in 

attenuation measurements from the two optodes (Schytz et al 2009). In a 

two-distance approach, if the light collected by an optode placed at 10 mm is 

assumed to have interrogated only the ECL and the mean partial pathlength 

of light through the ECL is assumed to be the same for light collected at both 

distances, Eq. 2.4 can be simplified to 

 
   
  DPLr

tAtA
tC

icg

brain







 ,,
)( 12   (2.6) 

where ΔA1 and ΔA1 are change in attenuation measured at 10 mm and 30 mm 

source-detector distances. Values for DPL and r were estimated from the 

literature (Owen-Reece et al 1996); a pathlength factor of 5.9 was chosen (van 

der Zee et al 1992) (corresponding to a DPL of 177 mm for a source-detector 

distance of 30 mm) and the fraction of the DPL through the brain, r, was 

assumed to be 0.35. This value represents the group average determined 

from the Monte Carlo simulations presented in the following section. The 

same values of DPL and r were used to analyze all data sets, irrespective of 

the animal’s ECL thickness. This simple subtraction technique is referred to 

as simple subtraction (SS) NIRS. 
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Table 2.1: Optical properties used in the Monte Carlo simulations 

Medium µs' (mm−1)  µa (mm−1) 

760 nm 830 nm  760 nm 830 nm 

Scalp 0.73 0.66  0.0177 0.0191 

Skull 0.93 0.86  0.0125 0.0136 

CSF 0.01 0.01  0.0021 0.0026 

Brain 1.18 1.11  0.0195 0.0106 

Values are taken from literature (Strangman et al 2003). 

2.2.7.  Monte Carlo Library Generation 

Monte Carlo simulations have been extensively used to model light 

propagation in multi-layered media (Hiraoka et al 1993). To generate the 

MPPs required for equations 2.3-2.5, a Monte Carlo code in C++ was 

programed based on the code first published by Wang and colleagues (1995), 

using the optical properties listed in Table 2.1. A library of MPP values was 

generated for combinations of different ECL thickness (5 to 20 mm in steps of 

1 mm) and relative scalp-to-bone ratios (3:7, 4:6, 5:5, 6:4, and 7:3; effectively 

varying the bulk optical properties of the ECL) at two wavelengths (760 and 

830 nm).  

The use of only two wavelengths to characterize MPP over the fitting 

range was necessary because central processing unit (CPU)-based Monte 

Carlo simulations are time consuming—n.b., graphics processing unit (GPU)-

based solutions (Fang and Boas 2009) were not published at the time this 

study was conducted. These particular wavelengths were used because their 

optical properties for the various extra- and intra-cerebral tissues are well 

documented, and they are also close to a distinct water feature at 740 nm and 

enclose the peak absorption of ICG at 805 nm. Small discrepancies between 

wavelengths was accounted for by correcting ε(λ) for the wavelength 

dependency of pathlength (Cope 1991). 
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 Simulations were performed in parallel on the Shared Hierarchical 

Academic Research Computing Network (SHARCNet) system, a high 

performance computer cluster, and required 4-6 CPU hours per simulation on 

average for 108 photons on a 2.2 GHz CPU core. 

2.2.8.  Computed tomography perfusion imaging 

Computed tomography images of CBF were acquired using a LightSpeed QXi 

multislice CT scanner (GE Healthcare, Milwaukee, WI). Eight 5 mm-thick 

coronal slice scans (80 kVp, 190 mA) were collected at 1 s intervals for 40 s 

upon injection of 1.0 ml/kg of the iodinated contrast agent iohexol (300 mg/ml; 

Omnipaque™, GE Healthcare); the injection rate was 1 ml/s.  

 

Figure 2.1: CT anatomical and perfusion images 

(A) CT anatomical image showing the region of interest (yellow outline) directly below the 

optical probe holder (white arrow). Red dashed lines on probe holder indicate position of the 

optode. (B) Corresponding cerebral blood flow map determined by CT perfusion. 

Parametric maps of CBF were generated from the cine images using CT 

Perfusion 3 software (GE Healthcare). Regions of interest were defined on the 

CBF images that corresponded to the brain volume interrogated by the NIRS 

probes (Figure 2.1A). The thickness of the ECL was measured using 

anatomical CT images acquired at the start of the experiment. Since the 
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probe-holder was visible on the CT image, ECL thickness could be measured 

directly below the location of the optodes (Figure 2.1B). 

2.2.9.  Statistical Analysis 

All data are presented as mean ± SE unless otherwise stated. SPSS 16.0 

(SPSS, Chicago, IL) was used for all statistical analyses and statistical 

significance was defined as p < 0.05. Physiological parameters were analyzed 

using one-way ANOVAs and a Tukey’s test for post-hoc analyses. 

Correlations between CT and NIRS CBF were analyzed using parametric 

linear regression. Non-parametric analysis was used to analyze the 

relationship between the errors in the NIRS CBF measurements and ECL 

thickness. 

2.3. Results 

Cerebral blood flow measurements were acquired in eight juvenile pigs. All 

pigs were between one and two months of age with a mean weight of 16.2 ± 

0.5 kg. The thickness of the ECL, as determined from anatomical CT images, 

ranged from 7.5 to 14.5 mm, with a mean value of 10.4 ± 0.6 mm. In total, 25 

ICG runs were completed; however, four NIRS measurements could not be 

analyzed. In three cases the concentration of ICG injected was below the 

threshold required for accurate PDD analysis and in one case the CT contrast 

agent concentration was too low.  

The results of the physiological parameters for the eight pigs at the 

three different conditions are summarized in Table 2.2. As expected, average 

PaCO2 and pH values were significantly different between hypo-, normo- and 

hyper- capnia groups (p < 0.05). No statistically significant differences were 

observed for any of the other physiological parameters. 
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Table 2.2:  Physiological parameters during the three conditions. 

 Hypocapnia 

(nx=6)†† 

Normocapnia 

(nx=13) 

Hypercapnia 

(nx=6) 

Heart Rate, beats/min 122 ± 5 132 ± 5 159 ± 15* 

Mean arterial pressure, 

mmHg 
54.5 ± 2.0 57.8 ± 1.9 63.2 ± 1.9* 

Arterial PCO2, torr 22.6 ± 1.3 38.9 ± 1.2* 57.4 ± 4.4*† 

Arterial PO2, torr 238.7 ± 21.0 227.1 ± 15.8 212.9 ± 22.1 

Arterial pH 7.58 ± 0.02 7.43 ± 0.01* 7.30 ± 0.03*† 

Values are mean ± SE. *p < 0.05 compared with hypocapnia. †p < 0.05 compared with 

normocapnia. ††nx refers to the number of ICG runs acquired at each capnic level. 

 

To determine the error caused by ignoring the ECL, the SP-NIRS approach 

was applied to ICG tissue concentration curves acquired with a source-

detection distance of 30 mm and the resulting CBF estimates were compared 

with CBF measured by CT perfusion. Figure 2.2A depicts an example of the 

time-dependent change in optical density measured at both optode distances 

following ICG injection.  

 

Figure 2.2: Measured optical signals and recovered tissue dye concentration curves. 

(A) The change in optical density following ICG injection at 1 cm and 3 cm detector probes 

measured at 800 nm, and (B) the corresponding change in ICG concentration in the ECL and 

brain following data processing by the DR-NIRS method. Data are from the same ICG run in 

an animal with an ECL thickness of 14 mm. 
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Figure 2.3 shows the SP-NIRS CBF measurements plotted as a 

function of the corresponding CBF measurements acquired with CT 

perfusion. The SP-NIRS technique consistently underestimated CBF and no 

significant correlation was observed between CBF measurements from the 

two techniques. The mean CBF determined by SP-NIRS was 18.17 ± 3.26 ml 

min−1 100g−1, which was significantly different from the mean CBF value 

determined by CT perfusion (69.91 ± 3.25 ml min−1 100g−1, p < 0.001). 

 

Figure 2.3: Comparison of SP-NIRS CBF and CT perfusion CBF 

Correlation plot comparing CBF measurements acquired by CT perfusion and single-probe 

NIRS. Symbols represent the data grouped according to ECL thickness: less than or equal to 

8 mm (solid diamonds), between 8 and 12 mm (shaded triangles), and greater than or equal 

to 12 mm (open circles). No significant correlation between CBF measurements from the two 

techniques was detected. The line of unity (dashed line) is shown for comparison. 
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Figure 2.4 shows CBF values derived from the SS-NIRS technique 

plotted as a function of the corresponding CBF values determined from CT 

perfusion. Similar to the SP-NIRS results, no significant correlation was 

observed between CBF measurements from the two techniques. The mean 

CBF calculated by SS-NIRS (42.80 ± 7.58 ml min−1 100g−1) was greater than 

that determined using SP-NIRS, but still underestimated the mean CBF 

calculated from the CT perfusion data set. 

 

Figure 2.4: Comparison of SS-NIRS CBF and CT perfusion CBF 

Correlation plot comparing CT and SS-NIRS measurements of CBF. Symbols represent three 

ECL groups described in figure 2.3. No significant correlation between the two 

measurements was detected. The dashed line indicates the line of unity. 
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The correlation between CBF measurements from DR-NIRS and CT 

perfusion is shown in Figure 2.5. In this case, a strong, statistically 

significant correlation was revealed (r2 = 0.714, slope = 0.92, p < 0.001). The 

mean CBF measured using the DR-NIRS approach was 64.93 ± 3.47 ml min−1 

100g−1, which was not significantly different from that measured by CT 

perfusion.  

 

Figure 2.5: Comparison of DR-NIRS CBF and CT perfusion CBF 

Correlation plot comparing the CT and DR-NIRS measurements of CBF. Symbols represent 

three ECL groups described in figure 4. The solid line represents the line of regression (r2 = 

0.714, slope = 0.92, intercept = 2.7, p < 0.001), and the line of unity (dashed line) is shown for 

comparison. 

A Bland-Altman plot was used to investigate the existence of any bias 

in the CBF measurements and to determine the variability in the 

measurements (Figure 2.6). The mean difference between the two techniques 

was −2.83 ml min−1 100g−1. The limits of agreement, i.e., the region in which 

95% of the differences lay, were −19.63 ml min−1 100g−1 and 14.00 ml min−1 

100g−1. No discernible CBF-dependent errors were observed. 
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Figure 2.6: Bland-Altman plot of DR-NIRS and CT perfusion CBF 

Bland-Altman plot comparing CT and DR-NIRS measurements of CBF. Symbols represent 

three ECL groups, as described in figure 4. The mean difference between the two 

measurements (solid line) is −2.83 ml min−1 100g−1. The limits of agreement (dashed lines), 

within which 95% of the differences reside, are 13.97 and −19.63 ml min−1 100g−1. 

Non-parametric regression analysis was performed to further investigate the 

relationship between ECL thickness and the percent difference between CT 

perfusion and CBF values obtained with each of the NIRS techniques. 

Significant correlations were observed for both SP-NIRS (ρ = -0.884, p < 

0.001) and SS-NIRS (ρ = -0.861, p < 0.001). In contrast, there was no 

correlation between ECL thickness and percent difference in CBF values for 

DR-NIRS. 

2.4. Discussion 

An integral part of critical care management of ABI patients is the 

maintenance of adequate CBF to avoid secondary brain injury. Near-infrared 

spectroscopy has long been recognized for its potential as a non-invasive 

bedside cerebral monitor due to its portability and sensitivity to cerebral 

hemodynamics (McCormick et al 1991). However, its application to adult 

patients has been challenged by the significant signal contamination from the 
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scalp and skull. Previous studies have reported that CBF collected using 

traditional NIRS approaches can be underestimated by more than a factor of 

3, due primarily to the increase in optical pathlength through extra-cerebral 

tissue (Owen-Reece et al 1996). Moreover, not only does ECL contamination 

affect the accuracy of the CBF measurements, studies using ICG bolus 

tracking methods have found that NIRS is also insensitive to changes in 

CBF, which questions if NIRS can even be used to monitor relative CBF 

(Schytz et al 2009; McCormick et al 1991).  To overcome this major hurtle, a 

multidistance NIRS approach was developed to resolve depth-specific 

information. Monte Carlo simulations were used in conjunction with the two-

layer modified Beer-Lambert law to extract the cerebral ICG concentration 

curve from multi-distance NIRS data. The use of subject-individualized 

Monte Carlo simulations to model depth-resolved NIRS has been proposed 

previously in neural activation studies (Boas et al 2002; Custo et al 2010; 

Yamada et al 2009). Selection of the appropriate simulation parameters for 

each animal was based on its specific ECL geometry (i.e., thickness and 

relative scalp-to-skull ratio) determined from anatomical CT images. A fixed 

cerebral water concentration provided an additional constraint in the 

selection process. The main finding of this paper was that CBF 

measurements obtained with our Monte-Carlo driven, depth-resolved NIRS 

technique correlated well with CT perfusion data (a clinically validated and 

widely used technique for measuring CBF in humans (Konstas et al 2009a, 

2009b)). As a corollary, we found that the more simplistic SP-NIRS and SS-

NIRS techniques did not provide reliable measurements of CBF. 

It was expected from previous studies (Owen-Reece et al 1996; Gora et 

al 2002) that the SP-NIRS technique would be inadequate for measuring CBF 

in the intact adult head since the cerebral NIR signal comprises only about 

30% of the total signal at a source-detector distance of 30 mm (see subsection 

1.6.1). Qualitatively, this effect can be seen in the attenuation signal shown 
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in Figure 1.2A. Signal collected by the 30 mm detector probe demonstrates a 

relatively slow washout, typical of ECL tissue and attributable to its lower 

blood flow. The effect of the significant ECL MPP was evident by the large 

underestimations of CBF, calculated from the long-distance NIRS data 

compared to the measurements acquired with CT perfusion. Furthermore, no 

correlation between the two techniques was observed over a range of CBF 

from 35 to 90 ml min−1 100g−1. These results agree with previous studies 

conducted in humans (Gora et al 2002; Rothoerl et al 2003) and clearly 

demonstrate that SP-NIRS is unsuitable for measuring CBF in adults.  

Marginal improvements were observed for SS-NIRS, which relied upon 

an assumed value of the mean partial pathlength in brain, over the SP-NIRS 

approach; however, it also performed poorly relative to DR-NIRS. It might be 

anticipated that even if SS-NIRS cannot accurately measure absolute CBF, a 

correlation with CT perfusion could be expected, but this was not observed. 

The most likely explanation for this discrepancy is that the relative 

contributions of brain and ECL varied substantially from experiment to 

experiment, as suggested by the dependency of SS-NIRS error on the ECL 

thickness revealed by non-parametric analysis. Further analysis of the data 

revealed that assuming the ECL MPPs are the same for both distances 

introduced an error. The difference in the actual ratio compared to the 

assumed ratio of unity was correlated with the error in SS-NIRS measured 

CBF (r = −0.76, p < 0.01), suggesting that the large variability in the SS-

NIRS data has its source in the error of MPP values used in this approach. 

Since the calculation of CBF is heavily dependent on the height of the ICG 

curve, which in turn is dependent on the chosen value of brain MPP, any 

discrepancy between the assumed MPP and the true value will lead to 

considerable variance in the CBF estimate. These findings suggest that in 

order to measure CBF precisely, a case-by-case method of calculating the 

MPP values is prerequisite. These results also provide a plausible reason for 
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the failure of SS-NIRS to detect changes in CBF in healthy human subjects, 

as reported in a recent study (Schytz et al 2009), and may help to explain 

some of the contamination issues observed in studies measuring cerebral 

blood saturation by spatially resolved NIRS (Muehlschlegel and Lobato 

2006). 

The approach presented in the current study is based on a previously 

validated technique using broadband continuous-wave NIRS to measure CBF 

in neonates (Brown et al 2002). In contrast to the simpler techniques 

presented above, the DR-NIRS technique attempted to correct for the 

primary sources of inter-subject variability. By using independent Monte 

Carlo simulations, with a priori information of the ECL thickness, MPP 

values can be defined on a subject-by-subject basis. Furthermore, by using a 

continuous-wave broadband NIRS system, second derivative spectroscopy can 

assist with selecting the appropriate MPP values. By virtue of the fact that 

the water concentration in brain is known (80%) and relatively stable 

(Matcher et al 1994), the MPP selection process was constrained to only those 

choices that met this criterion. Finally, our system uses a shutter 

multiplexing system that allows for rapid collection of NIR signals from 

multiple probes with high fidelity (Diop et al 2009). It is likely that these 

characteristics contributed to the strong correlation that was observed 

between CBF measurements from CT perfusion and DR-NIRS (Figure 2.5) 

and also resulted in the small bias revealed by the Bland-Altman method 

(Figure 2.6). When compared with the previous validation study published by 

our group for the neonatal pig model which also used CT perfusion (Brown et 

al 2002), the 95% confidence intervals shown in the Bland-Altman plot were 

only slightly larger (±16.8 ml min−1 100g−1 compared to ±12.7 ml min−1 100g−1  

in the previous study). Given the sources of uncertainty introduced by the 

depth-resolved approach, as well as the decreased signal-to-contrast ratio, it 

is encouraging to note that the difference in precision was only marginal. 
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There are a few significant limitations in this study which should be 

addressed. The first concern pertains to the reliance on a priori knowledge of 

the ECL geometry from anatomical imaging. Certainly, a completely 

independent technique would be more attractive and may potentially emerge 

in the future. However, given that standard procedure for head trauma 

neurological assessment upon admittance includes CT or MRI scanning, the 

requirement of this additional information for subsequent NIRS 

measurements does not represent a significant burden. A second concern is 

the possibility that the two-layer Beer-Lambert model used to characterize 

light propagation through the pig head may not adequately represent the 

human head. Similarly, this approach relied on assumed optical properties 

for the ECL. While the selected brain MPP value was constrained by the 

known water concentration—a benefit of using broadband NIRS—

uncertainties in the assumed scattering and absorption coefficients for the 

different extra-cerebral layers (scalp, skull and CSF) are likely to affect the 

accuracy of the CBF measurements. More complex instrumentation, such as 

frequency-domain and time-resolved NIRS have the ability to calculate the 

optical properties directly from reflection measurements either by employing 

an analytical model (Kienle and Patterson 1997) or fitting to Monte Carlo 

simulations (Elliott et al 2011). In particular, multi-distance time-resolved 

NIR methods have the benefit of also being more sensitive to deeper tissue 

structures, and for this reason, the work presented in subsequent chapters 

will explore this instrumentation.  

A final limitation with this study pertains to the animal model that 

was used. First, the mean thickness of the ECL in these animals was 10 mm 

and, consequently, was more representative of a juvenile patient group than 

an adult one. Second, the thick temporalis muscles originating in the 

temperoparietal region have evolved in the pig to allow powerful mastication 

are more metabolically demanding than the human scalp (Ström et al 1986). 
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As a result, the blood flow values are significantly higher than what is 

expected in the human (on the order of 3-4 times higher). Furthermore, hypo- 

and hyper-capnia conditions are likely to elicit a global vascular response. 

These factors combined result in an animal model that is likely more 

favourable than the clinical scenario in terms of measuring CBF accurately. 

All of these issues will be addressed in subsequent chapters, and ultimately 

culminate with the validation of the kinetic deconvolution optical 

reconstruction (KDOR) method of analyzing multidistance time-resolved DCE 

NIR measurements (Chapter 6). 

2.5. Conclusion 

The salient finding of the present study is that, in contrast to the SP- and SS-

NIRS methods, the DR-NIRS technique demonstrated for the first time that 

accurate measurements of CBF can be acquired with NIRS despite the 

presence of a significant ECL. These results highlight the promise of using 

NIRS for acquiring bedside measurements of CBF in neurological intensive 

care patients, demonstrating the potential of NIRS to greatly improve clinical 

management of these individuals. 
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Chapter 3 

MEASURING CEREBRAL BLOOD FLOW 

CHANGES IN ADULT PIGS WITH STATISTICAL 

MOMENTS OF TIME-RESOLVED NEAR-

INFRARED MEASUREMENTS 

This chapter is adapted from the work entitled “Variance of time-of-flight 

distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus-

tracking measurements in adult pigs” by Elliott JT, Milej D, Gerega A, Weigl 

W, Diop M, Morrison LB, Lee T-Y, Liebert A and St. Lawrence K, published 

in Biomedical Optics Express in 2013. The focus of this paper is two-fold: to 

investigate the specificity of time-resolved measurements to cerebral blood 

flow (CBF) effects by sequential acquisition on the intact and ischemic scalp, 

the skull, and directly on the dura matter; and, to determine the sensitivity of 

time-resolved measurements acquired on the surface of the head to 

hypocapnic decrease in CBF. Furthermore, this chapter describes a method 

using more advanced instrumentation than in the previous continuous-wave 

(CW) near-infrared spectroscopy (NIRS) study, as well as a more accurate 

animal model of the adult neurotrauma patient, but highlights an analytical 

approach that is only able to determine relative changes in CBF. The original 

journal article from which this chapter was adapted can be found at 

http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-4-2-206 
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3.1. Introduction 

In the previous chapter, a broadband CW-NIRS method of quantifying CBF 

was presented. The salient finding of this study was that reconstruction of 

brain-specific optical changes is possible using a multi-distance 

reconstruction technique stabilized with anatomical (i.e., CT or MRI imaging 

data) and physiological/spectral (i.e., assumed water concentration of 80%) 

priors. However, this approach was applied to smaller animals whose 

anatomy more closely approximates the juvenile patient. Furthermore, it is 

likely that the higher blood flow observed in the scalp of pigs compared with 

humans limits the conclusions that can be drawn regarding the performance 

of the method in adult subjects. To this end, the work presented in Chapter 3 

describes the application of the more sensitive time-resolved (TR) NIR 

instrumentation to investigate the influence of extracerebral hemodynamics 

and optical properties (by systematically removing the scalp and skull) on the 

measured signal. In addition, measurements acquired directly on the brain 

were compared with contralateral measurements acquired on the head 

surface during normo- and hypo-capnia. In this way, both the sensitivity—

i.e., the ability to reliably detect changes in CBF or hemoglobin 

concentrations—as well as the specificity—i.e., the confidence that a change 

in signal reflects only the brain and not the extracerebral tissue—were 

investigated. 

 Dynamic contrast-enhanced (DCE) methods based on analysis of the 

statistical moments of measured distributions of times-of-flight of photons 

(DTOF) have been proposed as a way to increase the sensitivity to signal 

changes occurring in the brain over conventional CW NIRS methods (Liebert 

et al 2004). Following an injection of the vascular tracer indocyanine (ICG), it 

is possible to record the concentration-dependent changes in three statistical 

moments of DTOFs: total number of photons, N, mean time-of-flight, <t>, and 

variance, V. To date, the moments-based technique has been applied to 
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healthy volunteers (Liebert et al 2004, Jelzow et al 2012), stroke patients 

(Steinkellner et al 2010; Liebert et al 2005), and other neurotrauma patients 

(Liebert et al 2012), and qualitative analysis strongly suggests that the time-

dependent change in variance of the DTOF shows good sensitivity to 

absorption changes occurring in the brain. However, these previous studies 

employed qualitative methods, or attempted to quantify changes in CBF 

using the time-to-peak (TTP) method, a relatively straightfoward but indirect 

method of measuring change in CBF (Steinkellner et al 2010; Kuebler et al 

1998; Terborg et al 2003), that is also dependent on cerebral blood volume 

(CBV) and variations in the arterial input function (AIF). 

 To further investigate the potential pitfalls associated with the TTP 

method limitation, an error analysis was conducted. In particular, the 

dependency of TTP accuracy on the CBV and the TTP of the arterial input 

function is highlighted. As an alternative to this method, a nonparametric 

deconvolution-based method is introduced (Cenic et al 1999; Brown et al 

2002; Elliott et al 2012) that enables the recovery of a relative blood flow 

index, dBF. While this method differs from the quantitative deconvolution 

method used in the previous chapter (since only a relative blood flow index is 

recovered), the advantage of this approach compared to TTP measurements is 

that confounding effects due to the AIF and CBV are removed. 

 In this study, an adult pig model is used to conduct a within-subject 

comparison of moments collected on the surface of the scalp and moments 

collected directly on the brain. In Part A (subsection 3.4.1), the experiments 

involved manipulating the extracerebral layer to cause perturbations in both 

scalp blood flow and the extracerebral optical properties (by surgically 

altering the ECL composition). In Part B (subsection 3.4.2), DCE-NIR 

measurements are acquired directly on the brain and contralaterally on the 

scalp during normocapnia and hypocapnia—the latter causes CBF to 
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decrease. Concomitant measurements were acquired by CT perfusion (CTP) 

for comparison. 

3.2. Theory 

3.2.1.  Statistical moments of distributions of times-of-flight 

Time-resolved NIR techniques measure the times-of-flight of individual 

photons at each detector over a few hundred milliseconds, building a 

histogram that approximates a distribution function. It has been 

demonstrated theoretically (Zaccanti et al 1995) and experimentally 

(Steinbrink et al 2001) that later time-bins correspond to a group of photons 

are statistically more likely to have interrogated deeper tissue structures. 

Therefore, changes in absorption of light in brain tissue, for example 

following the injection of dye, will differentially affect certain time bins in the 

DTOF. A transformation can be written as follows: 

  
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where ΔNi is the change in the number of photons occurring in the ith time-

bin of the DTOF, Δμa,j is the change in absorption coefficient in the jth layer, 

and Ai,j is the sensitivity matrix describing the transformation between these 

two functions. Since the experimentally measured DTOF is in reality a 

convolution between ΔNi and the instrument response function (IRF), direct 

analysis of the DTOF is challenging (Diop et al 2012). A simpler approach is 

to use statistical moments, mk, of the DTOF: 
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where k is the order of the moment, and t1 and t2 are temporal integration 

limits. This approach reduces the dimension of the problem in Eq. 3.1, and 
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the change in normalized moments is independent of the IRF (Liebert et al 

2004). Furthermore, it has been demonstrated previously that higher-order 

moments are more sensitive to changes occurring in deeper tissues (Liebert et 

al 2004). A similar transformation to Eq. 3.1 can be written: 

 ,,
, 
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jk

Am    (3.3) 

where Ak,j is the sensitivity matrix describing transformation between a 

change in the kth moment and the change in absorption coefficient occurring 

in the jth layer. The changes in three moments are used to describe the time-

dependent changes that occur in the head following a bolus injection of dye: 

attenuation, A, which is related to the zeroth moment, mean time of flight, 

<t>, and variance of the DTOF, V. The mathematical definitions of these 

moments and the sensitivity factors corresponding to the change in these 

moments are given in Table 3.1. Sensitivity factors can be determined with 

analytical (Kacprzak et al 2007) or Monte Carlo based methods (Steinbrink et 

al 2001; Liebert et al 2003); the latter was used for this study. 

Table 3.1: Definitions of statistical moments 

Name Related moment Formula Sensitivity 

factor 

Attenuation 
zeroth moment (area 

under the curve) 
)ln( 0mA   MPP 

Mean time of 

flight 

first normalized 

moment 
01 mmt   MTSF 

Variance 
second centralized 

moment 
 20102 mmmmV   VSF 

The three moments used in DTOF analysis, along with their formulae and the abbreviations 

for their sensitivity factors. MPP, mean partial pathlength; MTSF, mean time-of-flight 
sensitivity factor; VSF, variance sensitivity factor. 
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3.2.2.  Indicator dilution theory 

The previous section provides the mathematical basis for understanding how 

a change in the absorption coefficient of underlying tissues will produce a 

change in the measured moments. With dynamic contrast-enhanced 

techniques, this change in absorption is caused by the injection of an 

exogenous dye. If all other chromophores are assumed constant for the period 

of time required to collect a measurement, then the change in absorption 

coefficient in a tissue of interest as a function of time, T, is related to the 

tissue dye concentration, C, by 

 ),10ln()()(   TCTa   (3.4) 

where ε is the wavelength-dependent extinction coefficient of the dye. 

Following a bolus injection into a peripheral vein, the dye is delivered first to 

the heart, where it is subsequently pumped though the arterial circulatory 

system to all tissues of the body. According to the convolution theorem (Meier 

and Zierler 1954), the time-dependent tissue dye concentration is given by: 

 ,)()()(

0

duuTRuCFTC

T

a     (3.5) 

where F is blood flow, Ca(T) is the time-dependent arterial concentration of 

dye (i.e., the AIF), and R(T) is referred to as the impulse residue function. 

R(t) represents the fraction of dye remaining in the tissue at time, T, 

following an idealized bolus injection. The convolution theorem can be 

derived from the Fick Principle and a previous publication provides 

additional details of this derivation (Elliott et al 2011). The function Ca(T) is 

common to all tissue regions in the body, while in contrast, R(T) and F are 

specific to each tissue region. Therefore, if C(T) is characterized from signal 

containing information from multiple regions of tissue, F and R(T) are in 

reality a weighted average of the tissue-specific functions represented in the 
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probed region. In the case that the region-of-interrogation contains multiple 

layers of tissue, a more rigorous expression is found by combining Eqs. 3.3 

and 3.4 with the convolution in Eq. 3.5, yielding the moment-specific solution: 

 .)()()10ln()(

0

,  

j

j

T

ajkjk duuTRuCAFTm    (3.6) 

This convolution describes the fundamental relationship between the 

behavior of contrast agent in the tissue and the measured change in DTOF 

moments.  

3.2.3. Quantification of blood flow changes 

In this paper, we investigated two different approaches of measuring change 

in CBF: the time-to-peak method and the relative deconvolution method. The 

time-to-peak of the tissue function, TTPC, is defined as the time elapsed 

between the first appearance of dye, T0, and the peak concentration of dye, 

Tmax (Fig. 3.1). 

 

Figure 3.1: Time-to-peak analysis  

A depiction of the time-to-peak (TTP) method. Hypothetical tissue and arterial concentration 

curves including the effects of dye recirculation are shown by the solid black lines, along with 

their corresponding TTP values (TTPC and TTPCa, respectively). The solid grey lines 

represent the first moments of the concentration curves without the effects of recirculation. 
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The time-to-peak can be related to CBF using the first moments of the 

tissue and arterial concentration curves. A property of a convolution is that 

the first moments are additive (Jaynes 2003) and, therefore, Eq. 3.5 can be 

written as: 

 .MTTtt
CaC

   (3.7) 

The mean transit time (MTT), which is the first moment of the flow-scaled 

R(t), is equal to CBF/CBV  by the central volume principle (Meier and Zierler 

1954). Typically, tissue and arterial functions can be approximated by 

gamma variate functions (Thompson et al 1964). However, over the interval 

T0 < t ≤ Tmax, these functions can be approximated by a symmetrical function, 

such as a Gaussian. In this case, the first moment equals the time-to-peak: 

C
t  = TTPC and  

Ca
t  = TTPCa. Eq. 3.7 can be rewritten as: 

 .
CBF

CBV
TTPTTP CaC    (3.8) 

Note that TTPC not only depends on CBF, but also on CBV and TTPCa. 

Therefore, the influence of initial values of these two parameters must be 

considered when interpreting the relative change in TTPC.  

An alternative approach to characterizing the DCE curves is to 

perform a deconvolution to recover a relative blood flow index, dBF, 

representing the scalar quantity defined by the summation in Eq. 3.6. 

Generally, dBF for the kth moment is 

 .)10ln( , 

j

jkjk AFdBF    (3.9) 

It has been suggested that the variance of measurements acquired on the 

scalp has greater sensitivity to brain tissue and the influence of the extra-
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cerebral layers is relatively small (Liebert et al 2004). If this is the case, the 

variance sensitivity factors for the extracerebral layers are approximately 

zero and the summation in Eq. 3.9 collapses to: 

 ,)10ln( VSFCBFdBF V     (3.10) 

where VSF is the sensitivity factor for the brain layer. If VSF remains 

constant between measurements, the change in dBF equals the true change 

in CBF (ΔCBF). To recover dBF, an algorithm incorporating physiologically 

derived constraints was used to stabilize the deconvolution, which is an 

inherently unstable process. This algorithm has been described and validated 

previously, both for CT perfusion (Cenic et al 1999), and near-infrared 

techniques in neonatal models (Brown et al 2002; Diop et al 2010b) as well as 

in more complex multi-regional scenarios (Elliott et al 2010; Elliott et al 

2012). 

3.2.4. Influence of CBV and AIF on time-to-peak measurements  

A series of numerical simulations were performed to determine the effect of 

CBV and AIF on the relationship between ΔTTPC and ΔCBF. To investigate 

the effect of CBV, cerebral blood volume was related to cerebral blood flow 

according to the Grubb relationship (Grubb et al 1974): 

 .CBFgCBV    (3.11) 

where g and γ are empirically derived parameters. Values for g and γ are 

described in the rhesus monkey as 0.8 and 0.38 (Grubb et al 1974), and 

similar CBV values have been measured in humans (Grubb et al 1977). For 

the simulations, g was set to 0.8 and γ varied between 0.2 and 0.6 to 

investigate how the relationship between ΔTTPC and ΔCBF (Eq. 3.8) was 

affected by changes in CBV. In these simulations, TTPCa was set to zero, 

which represents the ideal case where the arterial input function is a Dirac 
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delta function. The results are summarized in Fig. 3.2A. Similarly, the effect 

of TTPCa on Eq. 3.8 was performed by setting γ = 0.38 and varying TTPCa 

from 0 to 6 seconds. These results are summarized in Fig. 3.2B. 

 

Figure 3.2: Effect of CBV and AIF on TTP analysis. 

The relationship between changes in tissue-curve TTP (ΔTTPC) and changes in CBF (ΔCBF) 

(grey lines). (A) The effect of varying the relationship between CBV and CBF, which was 

performed using the Grubb relationship for γ = 0.2, 0.4 and 0.6, and setting TTPCa = 0. (B) 

The effect of varying the arterial TTP (TTPCa) from 0 to 6 s with γ set to 0.38. The solid lines 

show the negative unity slope for comparison.  

The results of the simulations illustrated in Fig. 3.2 predict that the 

relationship between ΔTTPC and ΔCBF can be strongly influenced by how 

CBV and CBF are related, and by the finite width of the AIF (i.e., TTPCa). 

3.3.  Materials and methods 

3.3.1. Instrumentation 

A time-resolved near-infrared system, assembled in-house, was used for all 

optical measurements. A detailed description of this system and its 

characterization can be found in (Diop et al 2010b). Briefly, a picosecond 

diode laser light source (LDH-P-C-810, PicoQuant, Germany) emitting at 802 

nm, close to the peak absorption wavelength of ICG, was used. The laser 

output was attenuated by a neutral density filter to below ANSI safety limits 
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for skin exposure (52.2 mW/cm2 measured at fiber output compared to limit of 

317 mW/cm2 for 800 nm), and a pulse repetition rate of 80 MHz was used. 

The beam was coupled into a 1.5-m long multimode fiber (core = 400 μm and 

N.A. = 0.22; Fiberoptics Technology, Pomfret, CT) and directed onto the scalp. 

Photons exiting the tissue were collected by a fibre bundle 1.5 m long. The 

proximal end of the bundle was placed on scalp to provide measurements at a 

source-detector distance of 30 mm. The source and detector light-guides were 

held in place using a probe holder, constructed from black polychloroprene 

rubber. The distal end of the collection optode was secured in front of an 

electromechanical shutter (SM05, Thorlabs, Newton, NJ). Light transmitted 

through the shutter was passed through a bandpass filter (FEB800-10, 

Thorlabs) to remove fluorescence emission, before being collected by a Peltier-

cooled photomultiplier tube (PMT). A photon count rate corresponding to 

roughly 1% of the laser repetition rate was used. 

3.3.2.  Animal experiments 

All animal experiments were conducted following the guidelines of the 

Canadian Council on Animal Care and approved by the Animal Use 

Subcommittee at the University of Western Ontario (AUP #2007-050-06). 

Duroc x Landrace crossbred pigs (n = 4) were acquired from a local supplier 

on the morning of the experiment. Animals were anesthetized with 1.75-3% 

isofluorane, tracheotomized and mechanically ventilated on an 

oxygen/medical air mixture. A femoral artery was catheterized to monitor 

heart rate and blood pressure and to collect blood gas samples. Body 

temperature was maintained between 37.5 and 38.5°C throughout the 

experiment. 

Following a 1-h stabilization period, the rubber probe holder was 

placed on the head and fixed in place with tissue glue (Vetbond™ 1469SB, 

3M Health Care, St. Paul, MN). The respiration rate, anesthetic levels and 
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glucose levels were closely monitored and adjusted to ensure that 

physiological parameters remained stable throughout the experiment.  

All four animals were included in Part A (i.e., the manipulation of the 

extracerebral layers) and two animals were included in Part B (i.e., the 

manipulation of CBF). In Part A, two sets of time-resolved measurements 

during inflow and washout of ICG (0.1 mg/kg, Cardiogreen, Sigma-Aldrich, 

St. Louis, MO) were acquired on the surface of the head. All measurements 

were separated by a delay of 20 min to allow sufficient time for clearance of 

the dye. After these scalp measurements, three incisions were made around 

the probe holder to reduce scalp blood flow. The tissue medial to the probe 

holder was left intact and the three incisions were cauterized to stop 

bleeding. Two sets of measurements were acquired under this ischemic scalp 

condition. After the exact position of the probe holder was marked, the 

underlying scalp was removed using the probe holder as a guide. Two 

measurements were acquired directly on the skull of the animals at 

approximately the same location as the previous measurements. Following 

the skull measurements, holes were carefully drilled through the skull in the 

same locations. Probes were inserted into the holes until they rested directly 

on the dura matter. In this way, two sets of time-resolved measurements 

were acquired on the brain. 

In Part B, time-resolved measurements were acquired directly on the 

brain and then concomitantly on the contralateral scalp during normocapnia 

and hypocapnia. Hypocapnia was achieved by adjusting the respiration rate 

on the mechanical ventilator until blood CO2 concentration reached 25 

mmHg.  Computed tomography perfusion measurements were acquired using 

a CT scanner (LightSpeed QXi, GE Healthcare, Milwakee, WI) during 

normocapnia and hypocapnia. Each cine scan (80 kVp, 190 mA) was acquired 

for 40 s following injection of the contrast agent (1.0 ml/kg of 300 mg/ml 300-

Isovue, Bracco Diagnostics Inc., Princeton, NJ) at an injection rate of 1 ml/s. 
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Eight coronal slices (5 mm thick, temporal resolution of 1 s) were used to 

generate CBF maps using CT Perfusion 4 software (GE Healthcare). Region-

of-interests were drawn encompassing the cortical tissue of each hemisphere 

which approximate the region interrogated by the NIR light.  

3.3.3.  Data processing 

Data processing was performed in the MATLAB programming environment 

(MathWorks, Natick, MA). Prior to the analysis, the DTOFs of diffusely 

reflected photons were denoised using a three-step method which uses an 

Anscombe transformation, followed by wavelet denoising and then 

subsequent inverse Anscombe transformation, as described previously (Diop 

et al 2012). Denoising was done to reduce the susceptibility of higher 

moments to noise-related artifacts. Statistical moments were calculated from 

the denoised datasets using a previously described approach (Liebert et al 

2003). For calculating the moments, the upper integration limit was defined 

on the level of 5% of the maximum of the DTOF in order to reduce the 

influence of any remaining noise. Following subtraction of IRF contribution, 

moments were smoothed using the Savitzky-Golay algorithm (11.6 second 

window span, 6th order polynomial) to remove high-frequency components not 

related to dye kinetics. 

Attenuation and variance of the DTOFs were analyzed using the time-

to-peak method and the kinetic deconvolution method. When presenting the 

percent change in TTP, values were multiplied by −1 to facilitate comparison 

with the other indices. These four values were obtained for all time-resolved 

measurements. For Part A, analysis of differences between groups was 

performed using SPSS 17.0 (IBM, Armonk, NY). Statistical significance was 

considered to be p < 0.05. 
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3.4.  Results 

3.4.1.  Part A: Extracerebral manipulations 

During these experiments, the extracerebral environment was manipulated 

in several ways to demonstrate the sensitivity of the measured parameters to 

perfusion changes in the different layers. Blood flow indices were determined 

under four conditions: (i) baseline, (ii) following partial scalp ischemia, (iii) 

probes placed on the skull, and (iv) probes placed directly on the brain (17 

datasets were collected from 4 animals). The shape of the tissue 

concentration curves acquired on the scalp showed large differences between 

the different moments of DTOFs (A, <t> and V). Furthermore, the higher 

order moments showed less variability when the extracerebral layer was 

manipulated compared to attenuation. Figure 3.3 shows the attenuation ICG 

curves and the variance ICG curves for one animal under the four conditions. 

This representative example was typical of all animals. Figure 3.3C shows 

the similarity between the ICG curves derived from the scalp variance 

measurements and the brain attenuation measurements.  

 

Figure 3.3: Dynamic contrast-enhanced curves during ECL manipulation  

Representative curves from one animal (pig #2) under the four conditions. In this case, the 

thickness of the extracerebral layer was 10.2 mm. (A) Change in attenuation (ΔA) for 

measurements made on intact scalp (solid grey), ischemic scalp (dashed grey), skull (dashed 

black) and brain (solid black). (B) Change in variance (ΔV) for the same conditions. (C) ΔA 

measured on the brain (solid black) compared with ΔV measured on the scalp (dashed black). 

Curves are normalized to brain curve. 
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In terms of the qualitative blood flow indices (TTP and dBF) calculated 

from changes in attenuation (ΔA) and variance (ΔV) of the DTOF, Figure 3.4 

summarizes the percent difference between the measurements under the 

three extracerebral manipulations and the measurement directly on the 

brain. From the ΔA measurements, the average difference was −47.9 ± 7.8% 

for dBF and −8.0 ± 6.31% for TTP. From the ΔV measurements, the average 

difference was −0.2 ± 2.43% for dBF and by −3.5 ± 2.22% for TTP. The values 

for ΔV TTP, ΔV dBF, and ΔA TTP were not significantly different, but ΔA 

dBF was significantly lower than the other three parameters (p < 0.001). 

 

Figure 3.4: Variations in blood flow indices during ECL manipulation.  

Box-and-whisker plot of the difference in measured blood flow indices during the 

extracerebral manipulations compared to measurements acquired on the brain. Each 

parameter was evaluated from seventeen measurements acquired in four pigs. Boxes are 

bound by 1st and 3rd quartiles, with the center line indicating the median. Error bars 

represent the range of the data, and crosses signify outliers. Only ΔA dBF was significantly 

different from the expected change of zero (p < 0.001). Additionally, none of ΔA TTP, ΔV TTP, 

or ΔV dBF differed significantly from each another, as measured by a paired t-test. 

3.4.2.  Part B: Hypocapnic challenge 

To augment the results of Part A, we further analyzed the sensitivity of the 

attenuation and variance TTP and dBF measurements to reductions in CBF 

caused by hypocapnia. Sequential bilateral measurements were made in two 

animals during normocapnia and hypocapnia. On the ipsilateral side, 
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measurements were made directly on the brain and on the contralaterial 

side, measurements were made on the scalp. A reduction in CBF was 

observed during hypocapnia as depicted by the CBF maps generated by CT 

perfusion (Fig. 3.5). 

 

Figure 3.5: CT perfusion maps during normocapnia and hypocapnia 

CT perfusion images of the brain from one animal during normocapnia and hypocapnia. The 

mean reduction in global CBF during hypocapnia was 43% in this case. 

Qualitatively, a large reduction of amplitude was also observed in ΔV 

from the DTOFs measured on the contralateral site that reflected ΔA 

measured directly on the brain. There was also a decrease in ΔA measured on 

the scalp; however, it was less marked. Figure 3.6 provides a representative 

example of the ΔA and ΔV ICG curves during normo- and hypo- capnia. 

 

Fig. 3.6: Dynamic contrast-enhanced curves during hypocapnia 

Representative curves from one animal under normocapnia (solid lines) and hypocapnia 

(dashed lines). (A) The change in attenuation (ΔA) made on intact scalp for the two 
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conditions. (B) The change in variance (ΔV) made on intact scalp for the two conditions. (C) 

ΔA measured directly on the brain for the two conditions. Note: curves have been normalized 

to the maximum of the normocapnia curve. 

Table 3.2 summarizes the hypocapnic changes CBF and scalp blood 

flow measured by CT perfusion and the corresponding quantitative NIRS 

blood flow indices from the two animals. As a reference, the values obtained 

with the NIRS indices were compared to CBF values obtained by CT 

perfusion—the current clinical standard-of-care. 

Table 3.2: Comparison of  TTP and dBF changes during hypocapnia  

 Animal #1  Animal #2 

Percent 

Change 

Error  Percent 

Change 

Error 

Ipsilateral (brain) 

CTP brain −32.0% -  −44.4% - 

CTP scalp - -  - - 

ΔA TTP −16.7% 15.3%  10.5% 54.9% 

ΔV TTP −21.1% 10.9%  4.5% 48.9% 

ΔA dBF −28.0% 3.9%  −45.5% −1.1% 

ΔV dBF −31.6% 0.4%  −42.3% 2.1% 

Contralateral (scalp) 

CTP brain −31.7% -  −42.2% - 

CTP scalp −19.1% -  −29.3% - 

ΔA TTP −16.7% 15.1%  −22.2% 20.0% 

ΔV TTP −20.0% 11.7%  −26.3% 15.9% 

ΔA dBF −20.9% 10.9%  −27.4% 14.8% 

ΔV dBF −31.6% 0.1%  −42.7% −0.5% 

Percent change in the blood flow indices (TTP and dBF) obtained by analysis of attenuation 

(A) and variance (ΔV) of DTOF during hypocapnia. Measurements were obtained directly on 

the brain and on the contralateral scalp. The error values are relative to the CBF change 

measured by CT perfusion (CTP). The thickness of the extracerebral layer was 10.2 mm and 

11.2 mm for animal 1 and 2, respectively. 
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3.5.  Discussion 

A number of recent studies have suggested that the DTOF variance signal 

collected on the scalp is sensitive to decreased CBF in neurological disorders 

such as stroke (Steinkellner et al 2010; Liebert et al 2005). The principle 

objective of this study was to verify these findings in an adult pig model in 

which scalp and cerebral blood flow could be manipulated. The results of Part 

A indicated that the ΔV signal was less sensitive to the extracerebral layer 

than the corresponding ΔA signal, as demonstrated by the greater variability 

in the shape of the ΔA ICG concentration curves over the different 

manipulations of the extracerebral layers. In general, the dynamics of the ΔA 

ICG curves reflected flow contributions from both scalp and brain. The curves 

shown in Fig. 3.3 illustrate that the ΔA signal acquired under the ischemic 

scalp condition resulted in the slowest kinetics, whereas the ΔA signal 

acquired directly on the brain have the fastest. The ΔA signals collected on 

the skull and the intact scalp demonstrated intermediate kinetics. The 

former was the most similar to the brain ICG curve since the thickness of the 

skull in this animal was only about 5 mm. Interestingly, the shape of the ΔA 

ICG curve acquired on the intact scalp was more similar to the ΔA signal 

collected on the skull rather than the signal acquired from ischemic scalp, 

despite the fact that the thickness of the extracerebral layer approximately 

doubled.  

The influence of the extracerebral layer on the shape of the ΔA ICG 

curve is also reflected in the TTP and dBF measurements shown in Figure 

3.4. In both cases, the increased variability was not due to increased 

measurement error, but rather, it was attributed to the different flow 

contributions under the four conditions. The dBF measurements determined 

from the ΔA ICG curves that included an extracerebral layer were also 

consistently lower than the value determined from the brain ICG curve. This 

is because ΔA dBF represents a weighted average of the blood flow in each 
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layer scaled by its mean partial pathlength. Therefore, the addition of each 

extracerebral layer resulted in a reduction in average blood flow within the 

region of interrogation 

The faster ICG dynamics for the ΔA signal collected on the intact scalp 

would appear to be at odds with previous studies involving human subjects, 

in which a large difference in the shape of the ΔA and ΔV ICG curves was 

reported (Liebert et al 2004; Steinkellner et al 2010; Liebert et al 2006). This 

apparent discrepancy can be attributed to differences in head anatomy 

between pigs and humans. We found that the pig’s scalp was highly 

vascularized and well perfused, likely to supply the thick temporalis muscles 

that originate at the temporoparietal region of the head. This observation 

was confirmed by CT perfusion, which revealed an average scalp blood flow of 

approximately 25 ml min-1 100g-1. In contrast, scalp blood flow in the human 

head, as determined by a radioactive xenon clearance technique, was only 

about 5 ml min-1 100g-1 (Friberg et al 1986). Given this difference, the 

ischemic scalp condition in Part A more closely reflects the intact human 

scalp. 

In contrast to the ΔA signals, the ΔV ICG curves shown in Fig. 3.3B 

exhibited less sensitivity to the extracerebral tissue. In this case, there was a 

noticeable improvement in the similarity of the ICG curves acquired under 

the two extremes—i.e., on the brain and on the ischemic scalp—compared to 

the ICG curves obtained from the ΔA signal.  This insensitivity to the top 

layers was also reflected in the lower variability observed in the ΔV TTP and 

dBF values across the four conditions, as shown in Fig. 3.4. As well, the 

underestimation of CBF by ΔA dBF was not observed when dBF was 

determined from the ΔV signals. 

A secondary objective of this study was to compare two analytical 

methods of tracking change in CBF from the measured DTOF moments. The 
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metric of choice in these studies has been time-to-peak, since it is relatively 

easy to calculate, and can be applied to normalized signals of variance of the 

DTOF. The ability to use the normalized signal makes TTP a robust 

longitudinal tool because it will be relatively insensitive to small changes in 

the signal amplitude, for example, from light coupling issues. This is a major 

benefit when using time-resolved equipment that is sensitive to light 

coupling and noise; however, time-to-peak also has some drawbacks that may 

not always be appreciated. In particular, a limitation of the TTP method is 

the implicit assumption that the AIF is consistent from measurement to 

measurement. In a clinical environment, it may be difficult to achieve an AIF 

of reproducible shape, since bolus injections are operator dependent, and the 

AIF depends on the cardiac output of the patient. For example, in the 

ipsilateral measurements acquired from animal #2 (Table 3.2), TTP 

measurements did not correctly identify the large decrease in CBF. Further 

investigation revealed that the arterial TTP changed in the opposite direction 

by 30%, obscuring the expected change in tissue TTP caused by hypocapnia. 

After adjusting the tissue TTP value to account for the unexpected change in 

arterial TTP, the change in ΔV TTP was −13.6% instead of 4.5%. In certain 

applications, such as inter-hemisphere comparisons in stroke patients, the 

absolute change in TTP (as opposed to the percent change in TTP) is 

independent of the arterial input function (Steinkellner et al 2010). However, 

when percent change in TTP is used as a surrogate of percent change in CBF 

across serial injections of ICG, any variability in the arterial input function, 

including systemic physiological changes, will have a dramatic effect on the 

accuracy of the measurement. 

Another important consideration with using the time-to-peak method 

as a surrogate CBF is that it also depends on CBV and the time-to-peak of 

the AIF (Eq. 3.8). Therefore, it exhibits a non-linear relationship with CBF. 

The numerical simulations depicted in Fig. 3.2 demonstrate how the 
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relationship between ΔCBF and ΔTTP can be altered by both the relationship 

between CBV and CBF (the Grubb relationship) and the finite width of the 

AIF. In these simulations, both effects cause the measured ΔTTP to be 

underestimated relative to the true change in CBF. Interestingly, when CBF 

decreases by about 80%, which would be similar to the expected perfusion 

reduction during clinical ischemia, this error is not as severe. 

An alternative method to analyzing DCE data is derived from the 

convolution theory of tracer kinetics. If the AIF is measured, a deconvolution 

method can be used to recover the blood flow index, dBF, which is equal to 

the average blood flow in the region of interrogation weighted by the layer-

specific sensitivity factor (Eq. 3.9). In addition to accounting for variability in 

the AIF, the deconvolution method also decouples the effects of blood flow, 

blood volume and mean transit time. When ΔA is measured in the intact 

head, the acquired signal is highly sensitive to extracerebral tissue, and the 

average blood flow recovered by deconvolution will represent a weighted 

average of scalp and cerebral blood flow as shown in Fig. 3.4. In contrast, the 

region of interrogation represented in the ΔV signal has greater sensitivity to 

brain tissue and, therefore, the change in dBF better reflects the true change 

in CBF. Note that this relative approach is in contrast to previous methods 

that recover absolute CBF from time-resolved measurements acquired 

directly from the brain, or in a scenario where the scalp contribution is 

negligible. In these special cases, deconvolution of the ΔA signal permits 

recovery of absolute CBF in units of ml min-1100g-1, since the differential 

pathlength can be measured directly from the time-resolved data (Diop et al 

2010a). 

In Part B, concomitant measurements were acquired on the ipsilateral 

brain and the contralateral scalp during normocapnia and hypocapnia in two 

animals. In addition, CT perfusion measurements were acquired under the 

two conditions to measure scalp and cerebral blood flow. Table 3.2 
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summarizes the percent change in TTP and dBF caused by hypocapnia for 

both animals. Despite a small sample size, three observations can be made 

about these results. First, all four ΔV dBF values and the two ΔA dBF values 

derived from ispilateral measurements exhibited good agreement with the 

CBF values from CT perfusion. Second, contralateral ΔA dBF measurements 

were almost identical to the scalp blood flow values from CT perfusion. When 

considered along with the results of Part A, this suggests that ΔA is mainly 

interrogating the extracerebral layer, while ΔV is sensitive to the brain. 

Finally, all eight TTP measurements (when the corrected TTP measurement 

for animal #2 as described above is substituted), showed a consistent 

underestimation of the CBF change measured by CT perfusion. This 

underestimation occurred whether the measurements were acquired on the 

scalp or directly on the brain. The numerical simulations presented in 

subsection 3.2.4 provide insight into this underestimation: the average 

arterial TTP in the animal experiments was about 4 seconds and the Grubb 

exponent, γ, was about 0.4 (determined from the CT perfusion data). For this 

combination, a 40% decrease in CBF is predicted to result in a roughly 20% 

change in TTP. 

3.6. Conclusions 

The salient finding of this study was that the variance of the DTOF 

was relatively insensitive to changes in extracerebral blood flow and optical 

properties caused by physically manipulating the extracerebral layers in the 

pig. A corollary finding was that the variance signal measured on the scalp 

was sensitive to changes in CBF. Finally, while both TTP and dBF obtained 

from the variance signal showed similar robustness in the presence of 

extracerebral variability, dBF had better sensitivity to hypocapnic CBF 

changes when compared to CT perfusion. This improvement suggests a 

benefit to measuring the AIF during acquisition of DCE time-resolved data. 

Despite differences in scalp blood flow in this animal model compared to 
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humans, the methods presented in this study for measuring CBF changes are 

translatable to the human adult. 
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Chapter 4 

MEASURING THE ARTERIAL INPUT 

FUNCTION WITH A STANDARD PULSE 

OXIMETER TO FACILITATE THE CLINICAL 

IMPLEMENTATION OF DCE OPTICAL 

METHODS  

The contents of this chapter have been adapted from the journal article 

published in 2012, entitled “Arterial input function of an optical tracer for 

dynamic contrast enhanced imaging can be determined from pulse oximetry 

oxygen saturation measurements” by Elliott JT, Wright EA, Tichauer KM, 

Diop M, Morrison LB, Pogue BW, Lee T-Y, and St. Lawrence K in Physics in 

Medicine and Biology. All of the dynamic contrast enhanced (DCE) near 

infrared (NIR) methods presented in this thesis (including the DCE 

fluorescence molecular tomography (FMT) and diffuse optical tomography 

(DOT) methods in Appendix A) require the proper characterization of the 

arterial input function (AIF). This chapter presents a practical solution to 

characterizing the AIF using a standard pulse oximeter (PO), offering an 

alternative to the current pulse dye densitometer (PDD) devices that are 

specialized and not typically compatible with small animal imaging. The 

original journal article from which this chapter is adapted can be found at 

http://iopscience.iop.org/0031-9155/57/24/8285   
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4.1. Introduction 

In Chapters 2 and 3, nonparametric kinetic analysis was used to quantify 

CBF and to provide a meaningful relative blood flow index, respectively. Both 

these methods, (and additionally, the method highlighted in the next two 

chapters) require that the AIF—the time-dependent change in arterial dye 

concentration—be characterized. This is a common requirement not just in 

DCE optical methods, but in medical imaging in general where tracer kinetic 

modeling is commonly used to characterize physiological processes (Sourbron 

and Buckley 2012). Extracting quantitative measurements from kinetic data 

requires that the AIF be measured, because it describes the delivery of tracer 

to the tissue. Therefore, proper characterization of the AIF is an important 

goal in many modalities, including optical imaging. In this thesis, as well as 

in many other optical applications, the tracer indocyanine green (ICG) is 

used. Indocyanine green acts as an intravascular tracer in most tissues due 

to its binding with plasma proteins (e.g., albumin). Since ICG is FDA 

approved (United States Food and Drug Administration 2012), it has been 

used in clinical settings to assess neurological function (Steinkellner et al 

2010; Liebert et al 2005) and to characterize breast tumours (Schneider et al  

2011), in addition to measuring cerebral blood flow (CBF) in Chapter 2 and 

elsewhere (Brown et al 2002; Diop et al 2010; Springett et al 2001). The 

principles of tracer kinetic modeling can also be applied to targeted optical 

contrast agents that are conjugated with ligands to study receptor binding 

potential and drug delivery mechanisms (Becker et al 2001). 

To properly measure the AIF of an optical dye, a device known as a 

PDD is usually needed (Iijima et al 1997). However, these units are 

specialized pieces of equipment that are not commonly found and are only 

optimized for determining the AIF of ICG. Furthermore, in preclinical small 

animal studies, no PDD is available that functions at the high heart rates of 

these animals. Because of these obstacles, more simplistic kinetic models are 
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used that do not correct for AIF-dependent effects. For example, dynamic 

contrast-enhanced MRI techniques will perform kinetic analysis on tissue 

measurements with the assumption that the AIF is constant across 

measurements or patients, but these assumptions can be problematic and 

lead to errors in the recovered parameters (Parker et al 2006). The wider 

application of kinetic modeling to quantify important parameters such as 

blood flow, vascular leakage and receptor binding potential requires a more 

accessible method of measuring the AIF.  

 The methodology presented in this chapter enables the conversion of 

an off-the-shelf pulse oximeter (PO) into a PDD. This is accomplished by 

deriving a mathematical relationship between the arterial concentration of 

dye and the negative change in apparent SaO2 measured by the pulse 

oximeter, which occurs because the increase in absorption due to the dye is 

interpreted as an increase in deoxyhemoglobin. While this interference has 

been previously observed (Sidi et al 1987), this study is the first time it has 

been used to actually quantify the AIF. Validation experiments were 

conducted in rabbits using a small animal oximetry device (MouseOx, STARR 

Life Sciences, Oakmont, PA), but the approach is translatable to the clinic, 

capitalizing on the ubiquity of pulse oximeters. 

4.2. Theory 

4.2.1.  Pulse oximetry 

Pulse oximeters record oscillations in light attenuation (ΔA1 and ΔA2) at two 

wavelengths (λ1 and λ2) that results from oscillations in arterial blood vessel 

diameter, ΔD, in response to the beating heart (Aoyagi 2003). Oxyhemoglobin 

and deoxyhemoglobin are the dominant light-absorbing molecules in the 

blood for the wavelengths selected by pulse oximeters. In this case, the 

changes in attenuation can be approximated using the Beer-Lambert Law: 
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  DCCA bbaa  1,1,1 

 (4.1a) 

  
  ,2,2,2 DCCA bbaa  

 (4.1b) 

where Ca and Cb are the concentrations of oxyhemoglobin and 

deoxyhemoglobin, respectively, and εa,i and εb,i are their corresponding 

extinction coefficients defined for i = (λ1, λ2). In pulse oximetry, equations 

4.1a and 4.1b are rearranged to determine SaO2 as follows: 

    DtHbSaOtHbSaOA ba  )1( 21,21,1 
 (4.2a)

 

    ,)1( 22,22,2 DtHbSaOtHbSaOA ba  
 (4.2b) 

where SaO2 is the oxygen saturation ratio, defined as CHbO2 / tHb, and tHb, 

the total hemoglobin concentration, equals Ca + Cb. In practice, scattering 

and partial volume errors arising from the expansion of non-blood media 

create systematic errors in the measured signal. To overcome many of the 

subject-dependent errors, the channel-dependent information is converted to 

a ratio: 
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Small errors that still remain in this expression are generally calibrated by 

adjusting the intensity and gains of the electronics until the actual SaO2 

measured by hemoximetery matches the SaO2 recovered by solving Eq. 4.3. 

Alternatively, a calibration curve can be used to generate a linear 

approximation: 

  
,2 ss bSaOM 
  (4.4) 
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where Ms and bs are the calibration factors determined by the manufacture, 

typically obtained from healthy subjects (Mendelson 1992), to convert the 

measured change in light absorption SaO2. 

The addition of another chromophore (such as an intravenously 

injected optical dye) will not appreciably alter the calibration process 

described above if it does not cause an appreciable change in the scattering 

properties of the tissue and does not substantially accumulate in the non-

blood media within the region of interrogation. The relationship between the 

apparent SaO2 (aSaO2) reported by the pulse oximeter and the concentration 

of injected dye can be given by 
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  (4.5) 

where Ci represents the concentration of the additional chromophore and εi,j 

represents the extinction coefficient of the ith chromophore at the jth 

wavelength that is normally used by the system. Extinction coefficents, εi,j*, 

represent the extinction coefficient of the ith chromophore at the jth 

wavelength that is actually used to acquire the measurement. If the native 

probes are used to acquire the signal, then εi,j* is equal to εi,j. However, if a 

customized probe is used to modify the emission wavelength of the probe, εi,j* 

must be adjusted for the difference in absorption at the new wavelength. This 

additional parameter allows the use of a different wavelength of light in 

order to increase the sensitivity of the system to the desired optical dye, as 

was done in the validation experiments. The variable aSaO2 represents the 

apparent SaO2 that is reported by the instrument, whereas the variable SaO2 

represents the actual SaO2. The latter can be measured before the injection 

and assumed to be constant during the period that the AIF is measured. 
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Finally, the total haemoglobin concentration, tHb, is determined from a 

venous blood sample. To obtain Ci, Eq. 4.5 is solved using the fminsearch 

function in MATLAB (The MathWorks, Natick, MA). 

4.2.2.  Tracer kinetic modeling 

In tracer kinetic modeling, the time-dependent concentration of contrast 

agent in tissue, Ct(t), is related to the AIF by the convolution in Eq. 1.5 

(Meier and Zierler 1954). The specific definition of the impulse residue 

function, R(t), will change depending on the behaviour of the contrast agent 

in the tissue region of interest. For the purpose of this validation paper, the 

adiabatic approximation to the tissue homogeneity model (AATH), which 

characterizes blood flow and tracer leakage into the surrounding tissue, was 

used to simulate tissue concentration curves (St Lawrence and Lee 1998). 

The impulse residue function, R(t), derived from the AATH model is given by: 

   )()(1)(
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  (4.6) 

where Θ(t) is the Heaviside step function, Tc is the transit time through the 

capillary, E is the extraction fraction of the dye from the IVS to the EVS, Ve 

is the distribution of tracer in the EVS and F is blood flow.  The tracer kinetic 

portion of the error analysis in the next section was conducted for an 

untargeted tracer using the input summarized in Table 4.1. 

Table 4.1: Input parameters 

Parameter Units Input value 

Blood flow, F ml min-1 100g-1 15.0 

Capillary transit time, Tc s 6.5 

EVS distribution volume, Ve ml 100g-1 75.0 

Permeability-surface area 

product, PS 
ml min-1 100g-1 10.4 

Input parameters for the AATH forward model (Eq. 4.6) used in the validation experiment. 
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4.3. Methods 

4.3.1.  Validation of arterial input functions measured by pulse 

oximetry 

An error analysis based on simulated data was conducted to better 

understand the effect of certain variables on the ability to recover the AIF 

accurately. First, the measurement resolution of the recovered dye 

concentration was characterized since it depends on the resolution of the 

pulse oximeter SaO2 channel, the absorption properties of the dye, and tHb. 

For this analysis, tHb was fixed at 12 g/dl, the true SaO2 was set to 95%, and 

the apparent SaO2 was decreased from 95% to 75% in steps of 0.1%, which is 

the resolution of the SaO2 data stored by the MouseOx system. The 

concentration of dye at each SaO2 level was recovered from Eq. 4.5 using the 

extinction coefficients of indocyanine green. This was repeated for different 

“red channel” wavelengths from 600 to 900 nm to determine the relationship 

between the selected wavelength and the resolution of the measured dye 

concentration. Next, the effect of total haemoglobin concentration on the 

measurement resolution of the recovered dye concentration was investigated. 

The “red channel” wavelength was fixed at 760 nm, the true SaO2 was set to 

95%, and the apparent SaO2 was decreased from 95% to 75% in steps of 0.1%. 

The concentration of dye at each SaO2 level was recovered, and this process 

was repeated for tHb values from 5 to 25 g/dl. 

 In the second part of the experiment, the relationship between the 

PDD measured dye concentration and the dye curves extracted with the PO 

method were investigated in a rabbit model (see subsection 4.3.3). Regression 

plots were generated for each set of ICG curves, and a meta-analysis was 

performed to determine the mean and 95% confidence interval of the 

regression slopes. Theoretical tissue curves were generated by the AATH 

model using the measured AIF from the pulse oximeter and from the PDD to 

further understand how differences between the two AIFs would affect the 
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accuracy of the derived model parameters. The ‘true’ Ct(t) was generated 

using the PDD-measured AIF and the values of the model parameters given 

in Table 4.1. The AIF derived from pulse oximetry was then used to recover 

best-fit estimates of the model parameters from the theoretical Ct(t) curve by 

the fminsearch minimization function. The percent difference between the 

recovered and input F and PS values were determined.  

4.3.2. Instrumentation 

For the validation experiments, a small animal pulse oximeter (MouseOx, 

STARR Life Sciences, Oakmont, PA) was used. This unit is sensitive to fast 

heart rates, making it suitable for mouse and rat experiments, in addition to 

animals with slower heart rates such as rabbits. Custom-made probes with a 

“red channel” wavelength of 753 nm were used to improve the sensitivity of 

the pulse oximeter to ICG (see Fig. 4.1). The extinction coefficients for the left 

side of Eq. 4.5 were provided by the engineering team at STARR Life 

Sciences, whereas the modified extinction coefficients for the right side of Eq. 

4.5 were determined in two steps: first, the light source spectrum was 

characterized with an off-the-shelf broadband spectrometer (QEE65000, 

Ocean Optics, Dunedin, FL). Second, this reference spectrum was used as a 

probability density function to sample from the extinction spectra of the three 

chromophores, which have been previously measured (Landsman et al 1976). 

Finally, a pulse-dye densitometer (DDM2000, Nihon Koden, Japan) capable 

of measuring the AIF in rabbits, which have a normal heart rate range of 

190-310 bpm (Murphy et al 2011), was used to validate the AIF obtained from 

pulse oximetry. This instrument has been previously validated by comparison 

to serial blood sampling (Iijima et al 1998). 
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4.3.3.  Animal experiments 

All animal experiments were approved by the animal use committee at 

Western University (AUP #2009-087). Measurements using the PO and PDD 

were acquired in four New Zealand white rabbits (Oryctolagus cuniculus), 

approximately 6 months old (weight = 2.8 ± 0.3 kg). Animals were induced 

and maintained with isofluorane gas anaesthesia at 4% and 2.5% 

concentration, respectively. A mixture of 2:1 oxygen and medical air was 

maintained for the duration of the experiment, and blood gases, glucose, and 

rectal temperature were monitored frequently. The pulse oximeter and PDD 

probes were placed on separate hind limbs, and adequate signal strength was 

verified in both instruments before proceeding with tracer injection. Animals 

were allowed to rest for 30 minutes to stabilize before the experiment was 

started. 

 For each animal experiment, a solution of ICG (Cardiogreen, Sigma-

Aldrich, St. Louis, MO; 0.3 mg kg-1 ml-1 dissolved in 0.5 ml of sterile water) 

was prepared. A total of two bolus injections were administered by 

intravenously with approximately 40 min between injections to allow the ICG 

to clear the system. Boli were rapidly injected, resulting in a first-pass full 

width half maximum of approximately 5 seconds. During each injection, data 

were acquired by the PO and PDD simultaneously, and downloaded to a 

laptop for subsequent analysis. The sampling rate of the pulse oximeter was 

15 Hz; the PPD records each measurement at systole (equivalent to 

approximately 5 Hz in these animals) to a maximum of approximately 6 Hz. 

Heart rate, arterial oxygen saturation, and total haemoglobin were also 

measured and recorded, with the latter being measured by hemoximetry 

(ABL 80 FLEX CO-OX, Radiometer, Copenhagen, Denmark). 
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4.4. Results and discussion 

4.4.1.  Error analysis 

Measurement resolution is defined as the minimum change in dye 

concentration that produces a detectable instrument response. The recorded 

SaO2 channel used to calculate the dye concentration has a measurement 

resolution of 0.1%. Additionally, the degree to which a change in dye 

concentration causes a response in the SaO2 channel depends on the 

absorption properties of that dye. These two factors ultimately determine the 

AIF measurement resolution. For error analysis, simulations were performed 

by varying the “red channel” of the dye from 600 to 900 nm (step size: 5 nm), 

while fixing SaO2 at 95% and tHb at 12 g/dL. Fig 4.1 depicts the 

measurement resolution as a function of the wavelength of the “red” channel, 

which is the numerator in Eq. 4.5, when ICG is used as the optical dye. The 

absorption spectrum of ICG is shown for comparison. Note that the resolution 

function is not a perfect mirror of the ICG spectrum due to the additional 

influence of the other chromophores. 

 

Figure 4.1: Influence of “red” channel wavelength on measurement resolution  

The measurement resolution of the dye concentration extracted from the pulse oximeter 

SaO2 channel plotted on a log scale (black line), and the corresponding ICG absorption 

spectrum in plasma (gray line) plotted on an arbitrary linear scale. 
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As expected, the highest measurement resolution is achieved when a “red 

channel” wavelength is used that corresponds to the absorption peak of the 

dye (802 nm for ICG in plasma). If a light source is used that corresponds to 

the absorption peak of ICG, then a pulse oximeter that has a measurement 

resolution of 0.1% is capable of resolving 0.01 mM changes in dye 

concentration. A standard pulse oximeter, which employs a light source of 

around 650 nm would be able to resolve submilimolar (~0.5 mM) 

concentrations. 

 The amount of endogenous light absorption depends on the total 

haemoglobin concentration, tHb. Therefore, the relative effect of the dye on 

the overall signal change will depend on this parameter, which ultimately 

will affect the measurement resolution. An error analysis was performed by 

varying tHb from 5 to 25 g/dL (step size: 0.25 g/dL). A “red channel” 

wavelength of 760 nm was used, and SaO2 was set to 95%.  

             

Figure 4.2: Influence of hemoglobin concentration variations on measurement  

resolution 

The measurement resolution of the dye concentration extracted from the pulse oximeter 

SaO2 channel plotted on a log scale (black line) versus the total haemoglobin (tHb). A forest 

plot of tHb reference ranges are shown to provide context (London Laboratory Services 

Group 2012; Abbassi-Ghanavati et al 2009). *Values obtained from animals used in this 

experiment. 
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Figure 4.2 summarizes the relationship between tHb and dye measurement 

resolution, and normal haemoglobin ranges are highlighted for several 

patient groups by a forest plot. The error analysis suggests two distinct 

resolution levels within the range of normal human haemoglobin 

concentration, which may reduce the performance of the technique in a 

certain subjects such as healthy adult men, by a factor of approximately 5. It 

is important to note that the abrupt changes in measurement resolution are 

not artificial, but represent an amplification of the rounding error resulting 

from the SaO2 channel measurement resolution of 0.1%. 

4.4.2.  Validation experiment 

A representative example of the AIF acquired with the PDD plotted alongside 

the AIF calculated from pulse oximetry is depicted in Fig. 4.3. In this case, 

the slope and y-intercept of the regression between the two curves was 0.915 

and 0.1 mM, respectively. There was a −3.3% difference in the peak 

concentration, and a −10.2% and 5.5% percent difference in F and PS when 

the pulse oximeter AIF was used to extract the kinetic parameters from Ct(t) 

generated from the PDD-measured AIF.  

 

Figure 4.3: Arterial input functions measured by the two instruments 

The AIF recovered with the PO method (gray line) using the method presented in this 

Chapter, and the AIF directly recovered using the PDD (black line). 
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This analysis was performed for all measurements across the four 

rabbits used in the study, and group means were determined as well as the 

95% confidence intervals for each parameter. Figure 4.4 summarizes the 

regression results for the group analysis. The mean slope was 0.92, bound by 

a 95% confidence interval of 0.787 - 1.063. The mean y-intercept was 0.2 mM 

with a 95% confidence interval of –0.3 - 0.6 mM. 

 

 

Figure 4.4: Relationship between PO and PDD measured ICG concentration  

The regression plot comparing ICG concentration values obtained with the PO and the PDD 

simultaneously. The individual regression lines-of-best fit (n=8) were determine separately 

for the two ICG boli given to each of the four animals. The average line of best fit is indicated 

by the dashed line (slope =  0.92 ± 0.03, y-intercept = 0.18 ± 0.09 mM)  

Figure 4.5 shows the Bland-Altman plot comparing the ICG 

concentration values obtained with the PDD and PO techniques. Linear 

regression analysis revealed a significant relationship between difference and 

mean concentration (p < 0.05) suggesting a proportional bias. The bias was 

defined by the line with a slope = −0.052 and a y-intercept = 0.19 mM. The 
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95% confidence intervals for the slope and y-intercept were −0.13 - 0.2 and 

−0.28 - 0.66, respectively. 

 

Figure 4.5: ICG concentration Bland-Altman plot   

The Bland –Altman plot comparing the ICG concentration measurements obtained with the 

PDD and calculated from PO measurements of SaO2. As in Fig. 4.3, data are represented by 

lines-of-best fit of each ICG bolus (n=8). The mean difference between the two techniques is 

indicated by the solid line, and the 95% confidence interval is indicated by the dashed line. 

As suggested by the proportional bias in the Bland-Altman analysis, 

the pulse oximeter tended to underestimate the concentration of ICG at high 

concentrations. This could be in part due to the dynamic range of the 

detectors used by this specific oximeter, which may not be as sensitive to 

SaO2 below 60%. 

Table 4.2 summarizes the group mean and confidence intervals for the 

percent differences in peak concentration, F, PS, and Tc extracted from the 

theoretical ICG tissue concentration data using the AIF from the pulse 

oximeter AIF rather than the true AIF from PDD. In addition, the p values 

from a paired t-test comparisons of values obtained using the two AIFs are 

shown. While there was no significant difference in the parameters obtained 

with the two AIFs, blood flow measurements were most affected by the 

underestimation in high ICG concentrations previously mentioned. 
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Table 4.2: Percent difference in recovered parameters 

Parameter Mean 95% Confidence 

Interval 

p value 

Peak concentration −7.4%   −27.6 - 12.8% 0.23 

Blood flow, F −8.5% −23.3 - 6.3% 0.06 

Permeability-surface 

area product, PS 
1.7% −7.4 - 10.9% 0.45 

Capillary transit 

time, Tc  
1.5% −6.5 – 9.5% 0.40 

Percent difference in parameters recovered using the pulse oximeter AIF from the forward 

data generated using the DDG AIF. Results of the paired t-test between input and recovered 

values are shown in the fourth column. 

The results of this study suggest that the commonly used pulse 

oximeter can be readily converted to a PDD fairly easily, which provides an 

accessible means of acquiring an AIF for use in tracer kinetic studies. 

Advancements in dynamic contrast-enhanced optical techniques have 

resulted in the ability to assess cerebral hemodynamics in neonates (Arora et 

al 2012), stroke patients (Steinkellner et al 2010) and traumatic brain injury 

patients (Keller et al 2001), and to localize and assess tumors in breast 

cancer patients (Schneider et al 2011). In addition, dynamic contrast-

enhanced techniques have been described for a wide of range of applications 

including diagnosis of peripheral artery disease (Kang et al 2010) and 

monitoring muscle oxygenation (Boushel and Piantadosi 2000), and have 

been theoretically described for pre-clinical imaging methods such as 

fluorescence molecular tomography (Elliott et al 2012). In all cases, the 

ability to measure the AIF would enable the use of more sophisticated and 

more accurate kinetic models that would account for the between-subject 

variability in AIFs (Schneider et al 2011). For example, recent work by 

Schneider and colleagues demonstrated the ability of NIRx to detect breast 

cancer in a group of patients undergoing biopsy (Schneider et al 2011). In 

that study, relative metrics such as time-to-peak and relative peak 

concentration were used to discriminate between benign and malignant 
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tissues. The acquisition of the AIF would allow blood flow and vascular 

leakage of the regions of interest to be characterized, possibly providing 

additional sensitivity and specificity, and would also reduce intra-subject 

variability since measuring the AIF implicitly accounts for differences in 

blood circulation. Despite the benefit of characterizing the AIF, only a limited 

number of groups regularly employ a PDD because they are expensive and 

few units have been approved for patient use. The methodology described in 

this note enables clinicians and researchers to instead capitalize on pulse 

oximeters, which exist in virtually every advanced trauma center or intensive 

care unit around the world, and can be combined with current dynamic 

contrast-enhanced optical techniques at little additional cost. 

In small animal imaging, an additional challenge to measuring the AIF 

is that no PDD device has been developed that is compatible with the high 

heart rates of rodents. There are, however, several pulse oximeter devices, 

including the MouseOx device used in this study, which are suitable for heart 

rates up to 900 bpm and can therefore be used to measure the AIF. Doing so 

would enable more sophisticated tracer kinetic models that could determine 

key parameters in the study of cancer development and treatment. For 

example, plasma input two-tissue compartment models (Mintun et al 1984) 

could be used to quantify molecularly targeted optical probe binding.  

While the method described in this paper will be useful for a variety of 

applications, there are several limitations that will ultimately determine 

whether the use of a pulse dye densitometer is more appropriate. First, the 

accuracy of the recovered dye concentration will be affected by any errors in 

the extinction coefficients in Eq. 4.5, as well as the accuracy of the measured 

tHb concentration. The former can be minimized if the peak wavelength of 

the two channels can be obtained either from the manufacturer of the device, 

or by spectrometric measurement by the user. Careful consideration of Eq. 

4.5 reveals that an error in tHb concentration will result in an equal error in 
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recovered dye concentration. This could be important, for example, in the 

critical care setting, where trauma patients presenting lower initial 

haemoglobin concentration may receive a packed red blood cell (PRBC) 

transfusion to improve the oxygen carrying capacity of the blood. In this case, 

a PRBC-corrected value of tHb may be helpful, where tHb is incremented by 

1 g for every one unit of infused PRBC (Christy et al 2011). More 

significantly, the limited measurement resolution of this approach in certain 

circumstances may hinder its applications. As demonstrated in the error 

analysis, measurement resolution issues are addressed by using higher dye 

concentrations, constructing custom probes that use a “red channel” 

wavelength at the peak absorption of the dye-of-interest, and being aware of 

the potential tHb-related pitfall. In some cases, however, the measurement 

resolution may still be limited. For example, when performing a tracer 

kinetic binding study, only a limited concentration of dye can be injected to 

avoid receptor saturation. However, given that demand often drives 

technological advances, the adoption of this technique as a means of 

measuring the AIF may result in the development of pulse oximeters capable 

of 0.01% or better SaO2 measurement resolution.  

4.5. Conclusions 

The results of this study demonstrate that with a basic understanding of 

pulse oximetry, it is possible to convert an off-the-shelf pulse oximeter into a 

dye densitometer that can be used to approximate the arterial input function 

in dynamic contrast-enhanced studies. This finding has immediate 

applications in both clinical and preclinical contexts.  
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Chapter 5 

KINETIC DECONVOLUTION OPTICAL 

RECONSTRUCTION: THEORETICAL BASIS 

AND NUMERICAL SIMULATIONS 

This chapter highlights the kinetic deconvolution optical reconstruction 

(KDOR) methodology, which can be applied to a variety of dynamic contrast 

enhanced (DCE) biomedical optics problems. The theoretical basis for KDOR 

was published in “Model-independent dynamic constraint to improve the 

optical reconstruction of regional kinetic parameters” by Elliott JT, Diop M, 

Lee T-Y, and St. Lawrence K, in Optics Letters in 2012. This chapter is an 

expanded version of the Letter, providing additional details on the theory and 

numerical results. The original Letter from which this chapter is adapted can 

be found at http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-13-2571 

5.1. Introduction 

Chapters 2 and 3 highlighted the use of DCE near-infrared (NIR) methods to 

measure tissue hemodynamic parameters: blood flow (BF), blood volume (BV) 

and mean transit time (MTT). Analogous to DCE methods in computed 

tomography (CT) and magnetic resonance imaging (MRI), the methodology 

requires the injection of a bolus of contrast agent, the recording of the time-

dependent signal change, and then the reconstruction of time-dependent 

contrast concentration for each pixel or region-of-interest. As in CT and MRI, 
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the conventional approach is a two-step (TS) process that first involves 

reconstructing a time-series of DCE images or datapoints, followed by 

performing kinetic analysis on the data from individual regions or image 

pixels to recover the parameters of interest (Cenic et al 2000). For example, 

in Chapter 2, continuous-wave (CW) NIR measurements were collected at 

two source-detector distances, and separation of brain and extracerebral 

layer (ECL) information was achieved using subject-specific anatomical and 

spectral priors to estimate mean partial pathlength (MPP) values. In Chapter 

3, the variance of the time-resolved signal was used to increase sensitivity to 

cerebral blood flow (CBF), and was deconvolved with the arterial input 

function (AIF) to estimate change in CBF. These steps represent first steps 

towards the goal of a robust bedside tool to measure CBF in the neurocritical 

care unit. However, the first study used an animal model that was an 

imperfect representation of the clinical reality, and was likely a “best-case 

scenario.” The second study achieved partial separation of brain and ECL 

signal enabling the quantification of changes in CBF, but would require 

calibration with another imaging modality in order to provide absolute CBF. 

The principle challenge to addressing the limitations in the previous 

studies is that complete separation of DCE signal arising from different 

tissue regions is non-trivial. First, the volume of interrogation is optically 

heterogeneous, with each region exhibiting different scattering and 

absorption properties. The adult head is comprised of scalp, skull, 

cerebrospinal fluid (CSF) and brain (which can be further divided into grey 

and white matter), each of which interacts with light differently. Therefore, 

the sensitivity function (or Jacobian) in the reconstruction forward problem is 

likely to contain model errors since the exact optical properties of each region 

are not known. Furthermore, even if the exact optical environment is 

sufficiently characterized, the scattering nature of light means that 

information measured across multiple source-detector pairs is highly similar. 
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This degree of interrelatedness reflected in the Jacobian results in an ill-

posed system (Bonfert-Taylor et al 2012), which is a common theme in almost 

all biomedical optical reconstruction problems. 

 Subsequent kinetic analysis further complicates matters since 

nonparametric kinetic analysis (i.e., deconvolution) is an unstable 

mathematical problem, often requiring modeling constraints to achieve 

acceptable precision (Lee 2005; Wirestam et al 2000). An implicit assumption 

is that the image region-of-interest or region-specific tissue concentration 

curve contains information from only one homogeneous tissue region. 

Because of the problems with spatial reconstruction, this assumption is 

invalid in many optical applications where the medium is heterogeneous and, 

as a result, quantitative kinetic analysis has been elusive. 

 Combining spatial reconstruction and kinetic deconvolution into a 

single mathematical system improves both problems and enables the 

reconstruction of kinetic parameters from multiple regions. In this chapter, 

the theoretical basis for this “kinetic deconvolution optical reconstruction” 

(KDOR) approach will be provided and, as a proof-of-principle, numerical 

simulations of time-resolved NIR measurements on the adult head are 

described. The accuracy and precision of KDOR recovered parameters will 

also be compared with values calculated using the traditional TS approach. 

5.2. Theory 

The KDOR approach combines the traditionally distinct steps of image 

reconstruction and tracer kinetic modeling in order to improve accuracy and 

precision of the recovered kinetic parameters (BF, BV, and MTT). Recall that 

optical reconstruction is governed by the forward problem, which in matrix 

form is given by 

 .ACS   (5.1) 
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In this case, S is the optical signal data vector (usually defined for a finite set 

of spatial coordinates or source-detector distances), C is the concentration of 

tracer in tissue (defined on the spatial set of nodes, voxels, or regions 

representing the imaging domain, Ω), and A is the transformation between 

these two vectors (conventionally referred to as the “Jacobian”). The Jacobian 

is defined for the domains of S and C, and includes scaling factors such as ε, 

the extinction coefficient of the tracer. The exact domains of S and C will vary 

for different applications.  For example, in reflectance measurements on the 

head, C is typically defined for two regions (ECL and brain) and S is collected 

at various source-detector distances. Other ways of encoding S include: 

source-detector pair, i; moment order, k; and time-of-flight, t. 

Notwithstanding differences in the encoding of S, optical reconstruction 

involves solving 

   ,minarg
2

SAC
C

  (5.2) 

either in the least-squares sense, or using an iterative solver such as the 

Levenberg-Marquardt algorithm (Dehghani et al 2008). The recovered C 

vector is equivalent to a concentration map when spatially oriented according 

to the coordinates of Ω.  

When S is characterized temporally with a resolution on the order of 

seconds to minutes, tracer kinetic theory can be used to describe the behavior 

of C as a function of time. The time-dependent change in dye concentration at 

any location in the medium is given by the convolution between a global AIF, 

Ca(t) (since the same circulatory system feeds all tissue regions) and a flow-

scaled impulse residue function FR(t) (Eq. 1.5). The KDOR algorithm is 

formulated by substituting this definition for C into Eq. 5.1, yielding: 

 ,FBRS   (5.3) 
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where B is the Kronecker product, , RF is the vector constructed by 

stacking all node-specific FR(t) functions, and S is the vector constructed by 

stacking all time-specific data vectors. Quantification of blood flow, F, along 

with other kinetic parameters is achieved by the recovery of RF through 

   0HR0GR FF   and subject tominarg
2

SBRF
 (5.4) 

Equality and inequality constraints G and H are block matrices with 

identical-sized partitions equal to the number of regions, constructed based 

on the physiological assumptions outlined in subsection 1.4.3 for a single 

kinetic region. For example, in the case where RF represents the 

hemodynamic functions of three regions, the constraints in Eq. 5.4 would be 

represented by: 
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where gj and hj are the inequality and equality constraint vectors for the jth 

region. Recall from Eqs. 1.10 and 1.11 in the first chapter, that constraints 

are defined for time-intervals given by the lag time, Lj, which is equal to the 

time between the injection and first appearance of dye, and the minimum 

transit time, Mj, which is the shortest time that an idealized bolus (i.e., a 

Dirac-delta function) can travel across the capillary bed within the region of 

interrogation, specific to the jth region. In this case, the compartment hj in the 

equality constraint presented in Eq. 5.5 is represented as: 

ACA
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where NT  is the number of columns in CA. Similarly, the compartment gj in 

the inequality constraint in Eq. 5.5 is represented as: 
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It is therefore necessary to determine L and M for all tissue regions before 

the minimization of Eq. 5.4. This is done iteratively by solving Eq. 5.4 for 

different Lj and Mj values, and then comparing the reconstructed signal, S, to 

the experimentally measured signal. To speed up the process, only the first 
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30 seconds of the signal was used in the optimization. Figure 5.1 shows a 

representative example of this fitting procedure, which is analogous to the 

procedure used in the single-region deconvolution except that an iterative 

search was used instead of an exhaustive search (Lee 2005).  

 

Figure 5.1: Iterative search of lag and minimum transit time. 

The implementation of equality and inequality constraints in the deconvolution method 

require that the lag time, L and minimum transit time, M, be defined. This was done 

iteratively: the initial guesses for L and M shown in (A) were adjusted so that (B) shows the 

optimized value for L and (C) shows the convergence of both L and M. 

Once the values of L and M are optimized, Eq. 5.4 is minimized for all 

time points to recover RF. Finally, hemodynamic parameters are recovered 

from the region-specific FR(t) functions: BF is recovered by determining the 

maximum of FR(t), since R(t) is a normalized function with a maximum of 

unity (Meier and Zierler 1954); BV is given by the area under FR(t), and MTT 

can be calculated by the central volume principle (Zierler 1965) where MTT = 

BV / BF. 

5.3. Methods 

5.3.1. Forward model of the adult head 

A segmented finite element mesh of an adult human head was obtained 

online from the mesh-based Monte Carlo (MMC) repository 

(http://mcx.sf.net/mmc/). The MMC program and related files were developed 

by Qianqian Fang and are available free to use (Fang 2010). The adult head 

model was segmented from an MRI into four tissue regions: scalp, skull, CSF, 
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and brain. For the purpose of the forward model, these were assigned the 

optical properties summarized in Table 5.1. 

Table 5.1: Optical properties used in the Monte Carlo simulations 

Medium µs' (mm−1) µa (mm−1) g 

Scalp 0.70 0.018 0.9 

Skull 0.80 0.013 0.9 

CSF 0.01 0.002 0.9 

Brain 1.10 0.015 0.9 

 Continuous-wave signals were simulated for source-detector distances 

of 10, 20, 30 and 40 mm. First, MMC was used to simulate photon 

propagation in the adult head mesh, and photons “detected” at the four 

source-detector distances were recorded. Then, the mean partial pathlengths 

were determined from the photon history files using a previously described 

method (Boas et al 2002). In this way, the Jacobian, A, was constructed to 

relate the change in absorption occurring in the brain and in the ECL 

(representing the scalp, skull, and CSF) to the change in signal for the four 

distances. Time-dependent absorption changes in the two regions were 

generated by first convolving a simulated Ca(t) with layer-specific FR(t) 

functions defined by a gamma variate model (Thompson et al 1964) to obtain 

region-specific C(t) curves.  These curves were then converted to change in 

absorption coefficient using the ICG specific absorption at 800 nm.  An 

example is shown in Fig. 5.2.  
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Figure 5.2: Change in tissue absorption coefficient 

The dye-induced change in tissue absorption coefficient in the scalp (gray line) and brain 

(black line) used in the forward model. Absorption curves are plotted along with the Ca(t) 
function (dashed line, secondary y-axis) used in the simulations. 

Gaussian noise of 10% was added to both the arterial input function and the 

signal data vector. Noise was generated independently for each simulation 

using a unique pseudorandom number seed.  

5.3.2. Data reconstruction 

The KDOR reconstruction method was performed by numerical optimization 

of Eq. 5.4 using the MATLAB function lsqlin. The TS method, on the other 

hand, involves first performing spatial reconstruction to recover the brain 

and ECL specific C(t) curves, and then deconvolving these curves with the 

Ca(t) function using the single-region method described in subsection 1.4.3. 

Spatial reconstruction was regularized with the truncated singular-value 

decomposition (TSVD) method which has been proposed elsewhere for this 

application (Liebert et al 2004) and is an example of a common regularization 

method to stabilize optical reconstruction. 

A reconstruction Jacobian, Arec, was used in both KDOR and TS 

reconstructions, which differed from the Jacobian used to generate the 

forward data to avoid committing an “inverse crime”. The reconstruction 

Jacobian was essentially a noisy version of the forward Jacobian to simulate 



148 

uncertainty in the sensitivity factors that occurs during experimental 

conditions. Two aspects of uncertainty were added to the reconstruction 

Jacobian: the total sensitivity factor for each channel was randomly varied 

between ± 10% of the original value, and the ratios between region-specific 

sensitivity factors and the total sensitivity factor for that channel were varied 

between ± 10%. These randomizations represent uncertainties that would be 

introduced if the bulk scattering coefficient was inaccurate, or if there were 

inaccuracies in the ECL thickness, respectively. For each iteration, Arec was 

uniquely randomized with a new pseudorandom number seed.  

5.3.3. Numerical experiments 

Numerical experiments were conducted to compare the accuracy and 

precision of the KDOR and TS methods. Hemodynamic input parameters 

used to generate the forward data were held constant for all iterations. For 

the ECL, BF = 5 ml min-1 100g-1, BV = 1 ml 100g-1, and MTT = 12 s and for 

the brain, BF = 50 ml min-1 100g-1, BV = 4 ml 100g-1 and MTT = 5 s. 

Reconstruction was repeated 100 times on the forward data to compare the 

precision of the KDOR and TS methods. 

5.4. Results and discussion 

Brain-specific absorption curves obtained from the TS and KDOR approaches 

are shown in Fig. 5.3. Note that the TS absorption curve is recovered in the 

first step of the procedure, and then subsequently analyzed to recover the 

hemodynamic function. The KDOR absorption curve is generated by 

convolving the recovered FR(t) function with the original arterial input 

function. Two important differences are observed when comparing these 

curves. First, the TS curve shows a bias in the peak absorption compared to 

the input curve, of about -10%, whereas, the KDOR curve shows no 

discernible bias. In addition, the variability in the TS curve was two times 
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greater than the KDOR curve around the absorption peak, and this 

variability increased to five times at all other time points. 

 

Figure 5.3: Brain tissue change in absorption coefficient recovered with KDOR  

and TS 

(A) The brain change in absorption coefficient recovered with the KDOR method (open 

circles), and (B) the change in absorption coefficient recovered with the TS method (open 

circles). Both are compared with the true input curves (black solid line). Data points are the 

mean of 100 iterations, and error bars are the standard deviation.  

Next, the average FR(t) curves recovered with the two approaches, which are 

shown in Fig. 5.4, were compared. Interestingly, the ECL curves are 

recovered well by both methods, suggesting that there is sufficient 

information present in the measured signal pertaining to this region to allow 

direct reconstruction with minimal regularization.  
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Figure 5.4: Impulse residue functions recovered with KDOR and TS 

(A) and (B) show the true (solid black line) and recovered (open circles) FR(t) curves for the 

ECL and brain tissue, respectively, calculated with the KDOR algorithm. (C) and (D) show 

the true and recovered curves for the ECL and brain tissue, respectively, obtained using the 

TS method. Data points are the mean of 100 iterations, and error bars are standard 

deviation. 

However, the reconstructed brain FR(t) curves show marked differences 

between the two methods, similar to the differences seen in the absorption 

curves. In particular, the TS approach seemed to do a poor job of capturing 

the shape of the top of the curve. Since the plateau is used to calculate BF, 

this resulted in an underestimation of BF by 11%. The precision of the 

recovered curves was higher for the scalp region, and higher when using 

KDOR compared to TS. Taken together, these results suggest that errors in 

the TS during spatial reconstruction propagate into the kinetic analysis, 

resulting in increased variability and an underestimation bias. 

The three hemodynamic parameters of interest (BF, BV and MTT) 

were calculated for the two tissue regions from the recovered FR(t) curves. 

Box-and-whisker plots shown in Fig. 5.5 summarize the results of the kinetic 

analysis.  
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Figure 5.5: Hemodynamic parameters recovered with the two methods 

Box-and-whisker plots of the blood flow (BF), blood volume (BV) and mean transit time 

(MTT) recovered with the KDOR and TS methods for scalp (top row) and brain (bottom row) 

regions. Boxes are bound by the 1st and 3rd quartiles, and the median is given by the centre 

line. Error bars are min and max, with outliers shown as crosses. Dashed lines show the true 

value of the parameter. 

In general, the KDOR method does a better job of recovering the 

hemodynamic parameters than the TS method. In particular, the mean error 

in recovered CBF was −1.4% using the KDOR approach, compared with 

−11.0% using the TS approach. Additionally, the precision of the CBF 

estimate derived from the KDOR method was about two times greater. 

The improvements that were observed by using the KDOR are most 

likely a result of the reduced loss-of-information when solving the inverse 

problem in Eq. 5.3. In particular, when compared to the spatial 

reconstruction problem in Eq. 5.1, the linear operator in Eq. 5.3 (i.e., the 

Kronecker product of A and CA) is of higher rank since its rank is equal to the 
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sum of the ranks of A and CA (Laub 2005). In signal processing, the 

numerical rank (also called the effective rank or pseudorank) is often more 

instructive than the algebraic rank, and is defined as the number of columns 

in the matrix that, with respect to some error tolerance, are practically 

linearly independent (Hansen 1998). Since measurement and modeling errors 

do not depend on the analytical method, the resulting effective rank is also 

higher in the KDOR inversion than in the TS inversions. Furthermore, the 

ability to constrain the KDOR inversion temporally, using rigid 

physiologically derived equality and inequality constrains is likely to add 

further stability to the inverse problem.  The exact degree to which these 

constraints improve reconstruction will depend on how different the FR(t) 

functions are for the different regions. For example, if two regions of very 

similar FR(t) functions are interrogated, there is likely to be crosstalk 

between the two regions as the amount of interrelated information in B is 

increased. However, in this case, since the regions are so similar to begin 

with, any crosstalk will have a negligible effect on overall accuracy. An 

additional benefit to using the KDOR approach is that it can be applied to 

data that is encoded across any number of different dimensions (e.g., spectral, 

spatial, as well as temporal in the case of time-resolved data). Because it is 

compatible with the use of other constraints (e.g., spectral and anatomical 

priors) it has the potential to improve optical—and potentially photoacoustic 

or optoacoustic—reconstruction across a wide range of applications. 

5.5. Conclusions 

Taken together, these numerical simulations suggest that KDOR enables the 

accurate and precise characterization of hemodynamics for a wide range of 

conditions. Based on these encouraging results, the next chapter will validate 

multi-distance, time-resolved NIR measurements of cerebral hemodynamics 

recovered using the KDOR method in an animal model of cerebral ischemia. 

This represents a final step in the development of instrumentation and 
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analytical methods presented in this thesis to monitor adult patients in the 

neurocritical care unit.  

5.6. References 

Boas D, Culver J, Stott J, Dunn A 2002 Three dimensional Monte Carlo code 

for photon migration through complex heterogeneous media 

including the adult human head Optics express 10(3) 159-170. 

Bonfert-Taylor P, Leblond F, Holt RW, Tichauer K, Pogue BW, Taylor EC 

2012 Information loss and reconstruction in diffuse fluorescence 

tomography JOSA A 29(3) 321-330. 

Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY 2000 A CT method to 

measure hemodynamics in brain tumors: validation and application 

of cerebral blood flow maps Am J Neuroradiol 21:462–70. 

Dehghani H, Eames ME, Yalavarthy PK, Davis SC, Srinivasan S, Carpenter 

CM, Pogue BW, Paulsen KD 2008 Near infrared optical tomography 

using NIRFAST: Algorithm for numerical model and image 

reconstruction Commun Numer Methods 25(6) 711-32. 

Elliott JT, Diop M, Lee T-Y, St. Lawerence K 2012a Model-independent 

dynamic constraint to improve the optical reconstruction of regional 

kinetic parameters Opt Lett 37 2571-73. 

Elliott JT, Wright EA, Tichauer KM, Diop M, Morrison LB, Pogue BW, Lee T-

Y, St. Lawrence K 2012b Arterial input function of an optical tracer 

for dynamic contrast enhanced imaging can be determined from 

pulse oximetry oxygen saturation measurements Phys Med Biol 

57(24) 8285. 



154 

Fang Q 2010 Mesh-based Monte Carlo method using fast ray-tracing in 

Plücker coordinates Biomed Opt Exp 1(1) 165-175. 

Hansen PC 1998 Rank-deficient and discrete ill-posed problems: Numerical 

aspects of linear inversion (SIAM: Philadelphia, PA) p 46. 

Laub AJ 2005 Matrix Analysis for Scientists and Engineers (SIAM: 

Philadelphia, PA) p 141. 

Lee TY 2005 Method and apparatus for calculating blood flow parameters. 

US Patent No. 6,898,453. 

Liebert A, Wabnitz H, Steinbrink J, Obrig H, Moller M, Macdonald R, 

Villringer A, Rinneberg H 2004 Time-resolved multidistance near-

infrared spectroscopy of the adult head: intracerebral and 

extracerebral absorption changes from moments of distribution of 

times of flight of photons Appl Opt 43(15) 3037-3047. 

Meier P, Zierler KL 1954 On the theory of the indicator-dilution method for 

measurement of blood flow and volume J Appl Physiol 6(12) 731-44. 

Thompson HK, Starmer CF, Whalen RE, McIntosh HD 1964 Indicator transit 

time considered as a gamma variate Circ Res 14 502-515. 

Wirestam R, Andersson L, Ostergaard L, Bolling M, Aunola JP, Lindgren A, 

Geijer B, Holtås S, Ståhlberg F 2000 Assessment of regional cerebral 

blood flow by dynamic susceptibility contrast MRI using different 

deconvolution techniques Magn Res Med 43(5) 691-700. 

Zierler KL 1965 Equations for measuring blood flow by external modeling of 

radioisotopes Circ Res 16 309-21. 



155 

 

 

 

Chapter 6 

MEASURING CEREBRAL HEMODYNAMICS IN 

AN ADULT PIG MODEL OF ISCHEMIA WITH 

TIME-RESOLVED NEAR INFRARED AND 

KINETIC DECONVOLUTION OPTICAL 

RECONSTRUCTION 

This chapter presents the validation of cerebral hemodynamic parameters 

measured by time-resolved (TR) near-infrared (NIR) in combination with the 

kinetic deconvolution optical reconstruction (KDOR) analytical method in an 

adult pig model of ischemia. As such, this work extends the theoretical 

derivations presented in the previous chapter, establishing the outlined 

methodology as a robust technique capable of accurately quantifying cerebral 

blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT). 

This chapter is based on a manuscript entitled "Measurement of cerebral 

hemodynamics in an adult pig model of ischemia using a quantitative 

dynamic contrast-enhanced optical method" by Elliott JT, Diop M, Morrison 

LB, d'Esterre CD, Lee T-Y, and St. Lawrence K, which will be submitted to a 

peer-reviewed journal in the near future. 

6.1. Introduction 

In the previous chapter, the kinetic deconvolution optical reconstruction 

(KDOR) analytical method was introduced and, based on numerical 



156 

simulations, it was suggested that KDOR could be used to recover cerebral 

hemodynamics from multi-distance dynamic contrast-enhanced (DCE) NIR 

measurements, even in the presence of large extracerebral layer (ECL) signal 

contamination. By employing the KDOR approach, while at the same time 

leveraging improvements in optical instrumentation presented in Chapter 3 

(i.e., time-resolved NIR), it is hypothesized that resulting CBF measurements 

acquired in an adult pig during baseline, hypocapnia and ischemia will show 

strong agreement with CT perfusion measurements, similar to the 

continuous-wave, two-step approach in Chapter 2 demonstrated on a juvenile 

pig model with less ECL contamination. Furthermore, by validating this 

approach in a clinically relevant model, using anatomical and dynamic priors 

that are also available clinically, this study represents a final staging ground 

before deploying DCE-NIR in clinical trials. 

 With this goal in mind, this chapter will address three main objectives. 

First, the KDOR method will be used in combination with time-resolved NIR 

measurements acquired at four source-detector distances to evaluate the CBF 

and CBV in an adult pig under three physiological states: baseline, 

hypocapnia, and ischemia. Concomitant measurements will be acquired using 

CT perfusion, in similar fashion to the juvenile pig study presented in 

Chapter 2, and regression and Bland-Altman analysis will be used to 

determine the difference between the two techniques. Second, to induce 

ischemia in the adult pig, intracortical injections of endothelin-1 will be 

administered. The reproducibility of this method will be determined, and the 

resulting lesion will be described in terms of three abnormal tissue states: 

infarct core (defined as CBF < 10 ml min-1 100g-1), penumbra (defined as CBF 

between 10 ml min-1 100g-1 and 20 ml min-1 100g-1), benign oligemia (defined 

as CBF between 20 and 40 ml min-1 100g-1) and normal tissue state (defined 

as CBF > 40 ml min-1 100g-1). In particular, for the purpose of this 

experiment, it is important to understand how each tissue state is 
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contributing to the region interrogated by the NIR light. Finally, an error 

analysis will be conducted to investigate the effect of probe positioning errors 

(i.e., corregistration with CT or MRI anatomical information) and model 

dependent errors caused by inaccuracy in the ECL reduced scattering 

coefficient input value, which has a stronger influence on the sensitivity 

factors (e.g., mean partial pathlength) than absorption coefficient. In 

particular, the dependency of the method on correctly estimating the optical 

properties of the ECL provides insight into whether or not TR NIR 

instrumentation (which is more complex and expensive than CW 

instrumentation, but provides greater sensitivity) is needed in clinical 

applications. 

6.2. Materials and methods 

6.2.1.  Animal protocol 

Animal experiments were conducted according to the guidelines of the 

Canadian Council on Animal Care and approved by the Animal Use 

Committee at Western University (AUP #2007-050-06). Eight Duroc x 

Landrace crossbred pigs (Sus scrofa domesticus, weight = 15.4 ± 0.74 kg, 6 

females) were obtained from a local supplier on the day of the experiment. 

Following anesthetic induction with 1.75-3% isoflurane, the animals were 

tracheotomized and mechanically ventilated on a mixture of oxygen and 

medical air. A polychloroprene probe holder was constructed in-house and 

fixed on the head of the animal with tissue glue (Vetbond® (n-butyl 

cyanoacrylate), 3M, St. Paul, MN). The adult pig has thick temporalis 

muscles that originate at the temperoparietal region of the head are highly 

vascularized, resulting in a scalp blood flow of about 25 ml min-1 100g-1 

(Elliott et al 2013b)—much higher than is typical in the adult scalp, 

estimated to be 5-8 ml min-1 100g-1 (Friberg et al 1986). To improve the 

relevance of the animal model, three surgical incisions were made (caudial, 
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rostral, and lateral to the probe holder) to reduce the blood flow to about 10 

ml min-1 100g-1, measured with CT perfusion. Following the preparation and 

surgical procedures, the animals were moved to the CT imaging suite and 

allowed to stabilize for 1-hr before the experiment was continued.   

6.2.2. Study design 

The study consisted of collecting CT and DCE-NIR measurements at three 

different levels of CBF. Following stabilization, physiological parameters 

were recorded and a DCE-NIR measurement was acquired over a period of 

about 5 minutes. The optical probes were removed from the probe holder and 

a CT perfusion scan was performed. Following the CT scan, the probes were 

replaced in the probe holder, and a second DCE-NIR measurement was 

acquired. A period of at least 15 minutes was given between DCE-NIR 

measurements to allow for clearance of the dye. This process was repeated for 

the hypocapnia and ischemia conditions, resulting in a total of six optical 

datasets and three CT perfusion datasets for each animal. A total of five 

animals were subjected to all three conditions and a total of three animals 

were subjected to only baseline and hypocapnia conditions; for two animals, 

the experiments were conducted before a protocol modification was submitted 

to allow the ischemia procedure, and for one animal, endothelin-1 was 

unavailable. 

6.2.3. Modification of cerebral blood flow 

Hypocapnia was achieved by adjusting the ventilation rate on the mechanical 

ventilator to achieve a PCO2 of 25 mmHg. Blood gas levels were confirmed 

using a hemoximeter (ABL 80 FLEX CO-OX, Radiometer, Copenhagen, 

Denmark). Once the appropriate PCO2 level was achieved, the physiological 

parameters were allowed to stabilize before proceeding with the experiment. 

Ischemia was achieved by intracortical injection of endothelin-1 (Sigma-

Aldrich, St. Louis, MO), a potent vasoconstrictor. A burr hole was drilled 
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through the scalp and skull just lateral to the probe holder, half way between 

the source optode and the 40 mm detector optode. A 30-Ga needle was 

carefully inserted into the cortical tissue, angled towards midline, and a low-

dose CT scan was performed to confirm the location of the needle tip. The 

needle was connected to a catheter, which in turn was connected to a syringe 

containing approximately 1 μg/kg of endothelin-1 in 0.1 ml of sterile water. 

Using a syringe pump, the contents of the syringe were delivered to the 

cortical tissue over 10 minutes. Data collection proceeded 10 minutes after 

the endothelin-1 injection was finished. 

 The reproducibility of endothelin-induced blood flow change was 

reported as the standard deviation of mean CBF across the DCE NIR region 

of interrogation (determined from light propagation modeling). The 

reproducibility of infarct-size was determined tracing the infarct perimeter 

free-hand, and computing the corresponding area using image analysis 

software (ImageJ 1.46, National Institutes of Health, Bathsheba, MD). The 

area was determined on the eight blood flow maps, and the volume was 

calculated by multiplying the sum of the areas from each stack by the slice 

thickness (5 mm). 

6.2.4. Physiological measurements 

In addition to CT and DCE-NIR measurements, physiological parameters 

were monitored throughout the experiment, including: arterial oxygen 

saturation, heart rate, respiration rate, end-tidal CO2, mean arterial 

pressure, and rectal temperature. In addition, a hemoximeter was used to 

measure arterial blood pH, PCO2, PO2, and glucose. The main purpose of 

collecting these measurements was to ensure physiological stability at each of 

the three conditions, which was achieved by adjusting the respiration rate on 

the mechanical ventilator, and by maintaining temperature and glucose 

homeostasis via a heated blanket and dextrose administration, respectively. 
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6.2.5. Instrumentation 

Optical measurements were collected using a time-resolved NIR system that 

has been described previously (Diop et al 2010), and is depicted in Fig. 6.1. 

The system comprised of a picosecond diode laser light source that was used 

to emit 802 nm light pulses with a repetition rate of 80 MHz. A 1.5-m long 

multimode fiber was used to guide the light from the source to the surface of 

the animal head at a single position. Photons exciting the scalp were collected 

by four optodes configured linearly at distances of 6, 20, 30, and 40 mm from 

the source, which was guided through bandpass filters (FEB800-10, Thorlabs, 

NJ; to exclude fluorescence) to four photomultiplier tubes (PMC-100, Becker 

& Hickl Gmbh, Berlin, Germany). To perform DCE-NIR measurements, time-

of-flight histograms were collected every 0.4 seconds for a total of 320 seconds 

during the passage of indocyanine green (ICG), the optical dye used as a 

contrast agent. Baseline data of 12.8 s were collected before the bolus 

injection. Distributions of time-of-flight (DTOF) were measured at all four 

channels simultaneously. In addition, the arterial input function (AIF) was 

acquired using a pulse dye densitometer (DDM2000, Nihon-Koden, Japan).  
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Figure 6.1: Layout of the time-resolved NIR system 

The source fiber guides the pulsed light towards the sample, where it is collected by four 

fibers, and detected using four photomultiplier tubes (PMTs). The PMTs send constant 

fraction descriminator (CFD) signal to the four single-photon counting (SPC) boards located 

in the PC where the data is stored and displayed. The PMT data is synchronized to the laser 

driver via a sync cable. 

 Computed tomography anatomical images and CT perfusion maps 

were acquired using the LightSpeed QXi scanner (GE Healthcare, Waukesha, 

WI). Dynamic CT data was acquired during the bolus injection of an iodine-

based contrast agent (1.0 mL/kg of iopamidol [300-Isovue®], Bracco S.p.A., 

Milan, Italy) at a rate of 1 ml/s. CT data was used as anatomical information 

in the light propagation modeling, as previously described (Elliott et al 

2013a) Region-of-interest analysis was performed on CT perfusion 

parameteric maps to determine the mean value of CBF, CBV, and MTT 

within the volume of tissue interrogated by the DCE-NIR light. The region-of-

interrogation was estimated from Monte Carlo generated sensitivity maps 

(Fang and Boas 2009). In addition to DCE-NIR validation, CT perfusion maps 
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were also used to confirm the magnitude and volume of the ischemic lesion 

following endothelin-1 injection.    

6.2.6. Data analysis 

The DTOFs measured at the four source-detector distances were converted to 

the three statistical moments of attenuation, mean time-of-flight and 

variance (Liebert et al 2004), which were smoothed using a Savitzky-Golay 

filter (using a window size of 12 seconds and a 7th order polynomial) prior to 

being analyzed (Savitzky and Golay 1964). The KDOR method, which was 

developed in-house and has been described in detail previously (Elliott et al 

2013a; Elliott et al 2012b) was used to analyze the DCE-NIR moments. 

Briefly, CT anatomical images were segmented manually into scalp, skull, 

and brain, and Monte Carlo eXtreme (Fang and Boas 2009) was used to 

model light propagation at the source-detector positions used in the 

experiment. The transformation between the detected signal and the change 

in dye concentration in the tissue regions, known as the Jacobian, A, was 

calculated from the Monte Carlo results (Liebert et al 2004) using optical 

properties determined by fitting the baseline (pre-ICG) time-resolved data 

(Diop et al 2010) and anatomical information from the CT image. The 

Jacobian function, the DCE-NIR data and the AIF are input into the KDOR 

algorithm, which was used to recover BF, BV, and MTT for the ECL and 

brain regions. Specifically, these three parameters were calculated from 

region-specific impulse residue functions, based on the previously described 

method (Meier and Zierler 1954). A schematic of this process is provided in 

Fig. 6.2. 
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Figure 6.2: KDOR workflow 

Flow chart outlining the steps involved in recovering the hemodynamic parameters. The 

parallelograms indicate the measured data from the three devices. Rectangles represent the 

analytical processes used: fit, diffusion approximation (DA) fitting routine; seg, manual or 

automatic segmentation; and MC, Monte Carlo modeling of the Jacobian. Intermediary 

parameters are represented by ovals: μ, region-specific bulk optical properties, B, binary 

segmented CT volume; and A, Jacobian. Finally, the recovered hemodynamic parameters 

(BF, blood flow; BV, blood volume; and MTT, mean transit time) are indicated by triangles. 

 The ECL fitting step (fit) involved optimizing the difference norm of 

time-resolved data collected at the 6 mm source-detector distance and the 

time-resolved function generated with the reflectance model of the diffusion 

approximation (Kienle and Patterson 1997). This procedure is described in 

detail elsewhere (Diop et al 2010). Segmentation (seg) was performed 

manually, slice-by-slice, on CT anatomical data that was acquired with a slice 

thickness of 5 mm.  

6.2.7. Error analysis 

An error analysis was conducted to investigate the influence of errors in the 

anatomical information used in the KDOR procedure that might occur during 

the clinical implementation of this technique. If it is assumed that the CT 



164 

images can be accurately segmented from clinical-resolution scans, then a 

potential source of error when inputting the anatomical information into the 

KDOR algorithm is co-registration of the optical probe positions using either 

feducial markers or a landmarking system (such as SLM10-20; Custo et al 

2010). Errors in probe positioning could result in differences between the 

modeled and actual ECL geometry. This error was investigated by generating 

DCE-NIR forward data on a two-layer slab (ECL and brain) according to a 

previously described method (Elliott et al 2012). Following the addition of 5% 

Gaussian noise to the NIR and AIF signals, CBF was recovered with KDOR 

using a Jacobain modeled with four-layer slabs of varying thicknesses. The 

thickness of the ECL was varied between 14 and 17 mm, representing the 

variation in thickness measured from T2-weighted MRI images of 5 healthy 

subjects for positional changes of approximately 15 mm (data not published). 

6.2.8. Statistical analysis 

All data are presented as mean ± SEM unless otherwise indicated. An 

analysis of variance (ANOVA) was used to uncover any physiological 

condition effects on the physiological parameters, which were further 

investigated with Tukey's post hoc test when appropriate. 

 Linear regression analysis was performed on each hemodynamic 

parameter (CBF, CBV, and MTT) to examine correlations between the values 

obtained using the two techniques (DCE-NIR and CT perfusion). Since 

datasets included multiple measurements from the same animal, 

independence could not be assumed and therefore a variation of the 

generalized estimating equation was utilized (Zeger et al 1988). First, a 

linear fit was applied to the data from each animal separately. A t-test was 

used to compare the slope and intercept values obtained from each animal to 

a null hypothesis (i.e., a slope of zero). Upon rejection of the null hypothesis, 
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the distribution of slopes was compared with a slope of unity to determine if 

the mean regression line was significantly different from the line of identity.  

 For the CBF regression plot (Fig. 6.6), the 95% confidence bounds on 

the regression line-of-best fit (i.e., the region containing the 95% of the 

distribution of lines-of-best fit assuming a Gaussian random effect) were 

calculated.  Finally, the degree of similarity between CBF measurements 

acquired with the two techniques was evaluated using a Bland-Altman plot 

(Bland and Altman, 1986). Differences with p < 0.05 were considered 

significant. 

6.3. Results 

6.3.1. Physiological parameters 

Table 1 summarizes the physiological parameters of the eight pigs averaged 

for each condition. Respiration rate, which was artificially increased by 

adjusting the mechanical ventilator setting, was significantly higher during 

hypocapnia and ischemia conditions. This resulted in the intended decrease 

in pCO2 measured from arterial samples, which was significantly different 

during hypocapnia and ischemia compared with baseline. A significant 

decrease was also observed in end-tidal CO2 measurements. No significant 

differences were observed in SaO2, HR, MAP, pO2, glucose and temperature. 

The mean ECL thickness in these animals was 12.0 ± 0.6 mm (ranging from 

10.5 to 14 mm), measured from CT images. 
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Table 6.1: Physiological parameters at each condition 

 
SaO2 

(%) 

HR 

(min-1) 

RR 

(min-1) 

MAP 

(mmHg) 

pCO2 

(torr) 

pO2 

(torr) 

glucose 

(mM) 

temp 

(°C) 

Baseline 
100 ± 

0 
108 ± 2 

29 ± 

1* 
49± 2 37.3 ± 0.7 

168.6 ± 

29.4 

5.3 ± 

1.0 
37.3 

Hypocapnia 
99 ± 

1 
109 ± 4 

46 ± 

1* 
46 ± 2 

24.2 ± 

1.2* 
149.4 ± 10 

5.4 ± 

1.2 
37.4 

Ischemia 
99 ± 

0 

124 ± 

17 

41 ± 

2b 
47 ± 4 

26.0 ± 

2.4* 

138.4 ± 

15.2 

5.2 ± 

0.8 
37.3 

SaO2, arterial oxygen saturation; HR, heart rate; RR, respiration rate; MAP, mean arterial 

pressure; pCO2, partial pressure of carbon dioxide; pO2, partial pressure of oxygen. * p < 0.01 

compared to baseline 

6.3.2. Reproducibility of hypocapnia and ischemia 

Analysis of variance with physiological condition (i.e., baseline, hypocapnia, 

or ischemia) as a within-subject factor and modality (i.e., CT perfusion or 

DCE-NIR) as between-subject factors revealed a significant condition effect 

on CBF measurements acquired with the two modalities (F2,18 = 10.27, p < 

0.01) but no significant condition by modality interaction. Post-hoc analysis 

was performed with Tukey’s method to further elucidate this condition effect. 

Compared with baseline, hypocapnia induced by artificially increasing the 

ventilator respiration rate from an average of 29 min-1 to an average of 46 

min-1 resulted in a significant reduction in CBF measured with CT perfusion  

(43.0 ± 4.2 ml min-1 100g-1 during hypocapnia vs. 61.7 ± 3.1 ml min-1 100g-1 at 

baseline; p < 0.05) and with DCE-NIR (42.6 ± 3.7 ml min-1 100g-1 during 

hypocapnia vs. 62.2 ± 4.7 ml min-1 100g-1 at baseline; p < 0.05). A further 

reduction in blood flow was observed following intracortical injection of 

endothelin-1, which resulted in an average CBF value of 39.9 ± 3.1 and 32.7 ± 

3.6 ml min-1 100g-1, measured by CT perfusion and DCE-NIR, respectively.  
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Figure 6.3: Sensitivity of optical measurements to endothelin-1 lesion. 

(A) CT perfusion blood flow map with visible large lesion caused by endothelin-1 injection. 

(B) Map showing spatial sensitivity of optical signal measured at 40 mm source-detector 

distance (arrow represents source; arbitrary units). (C) Segmentation map showing regions 

identified as infarct (red), penumbra (orange), benign oligemia (green) based on thresholding 

of panel A. 

 A closer examination of the CT perfusion data acquired during 

ischemia identified the presence of four tissue states with clinical importance: 

infarct (< 10 ml min-1 100g-1), penumbra (10-20 ml min-1 100g-1), benign 

oligemia (20-40 ml min-1 100g-1) in addition to normal tissue (> 40 ml min-1 

100g-1). The reproducibility of endothelin-1 induced ischemia was 

investigated in terms of the change in CBF compared to baseline within the 

optical region of interrogation as well as the total volume of the ischemic 

lesion (i.e., infarct and penumbra regions). A mean percent decrease in CT 

perfusion-measured CBF of 36.5 ± 7.3% (S.D.) was observed during ischemia 

in the region interrogated by the NIR light, and the mean volume of the 

ischemic lesion was estimated to be 27.6 ± 10.4 ml (S.D.).  
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Figure 6.4: Average contribution of tissue states to the optical ROI 

The average contribution of these tissue states to the optical region-of-interrogation across 

five animals.  I, infarct (< 10 ml min-1 100g-1); P, penumbra (10-20 ml min-1 100g-1; BO, 

benign oligemia (20-35 ml min-1 100g-1); N, normal. 

 Figure 6.3 shows a representative example of a CT perfusion map 

acquired during ischemia, a corresponding Monte Carlo sensitivity map, and 

a threshold map of the abnormal tissue states. To further investigate the 

robustness of the ischemic model to produce clinically relevant lesions, the 

percentage of the region-of-interest (ROI) representing the four tissue states 

was measured across all animals subjected to ischemia. On average, the three 

abnormal tissue states represented 48.7% of the total optical ROI. In Figure 

6.4, a bar graph shows the mean percent contribution of the four tissue states 

within the region of interrogation. 

6.3.3. DCE-NIR signal and recovered ICG concentration curves 

Time-resolved data were collected before and during bolus injection 

enhancement at four source-detector distances. Changes in the statistical 

moments of time-of-flight distribution―attenuation, mean time-of-flight, and 

variance―were calculated for subsequent analysis by the KDOR method. 

Figure 6.5 shows a representative example of the change in attenuation and 

change in variance signals measured at two of the source-detector distances 

(40 and 6 mm) during DCE measurements acquired under the three 
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physiological conditions. The tissue concentration curves recovered from the 

same data for the scalp and brain regions, along with the arterial input 

functions measured with the dye densitometer, are also shown. In these three 

datasets, the CBF (determined using the KDOR method) was equal to 45 ml 

min-1 100g-1 at baseline, 32.5 ml min-1 100g-1 during hypocapnia, and 22.6 ml 

min-1 100g-1 during ischemia.  

 

Figure 6.5: Dynamic contrast-enhanced signals during the three conditions 

The attenuation (top row) and variance (middle row) signal measured at 40 mm (black line) 

and 6 mm (gray line) source-detector distances during baseline, hypocapnia and ischemia 

(left-to-right). The recovered tissue concentration curves for the brain (solid black line) and 

ECL (solid gray line), and the corresponding arterial input function (dashed line) for the 

same data are presented in the bottom row. 

6.3.4. Comparison of hemodynamic parameters calculated using 

DCE-NIR and CT perfusion 

As stated in the methods section, a simple linear regression approach could 

not be performed because both independent and within-subject data are 

represented. Therefore, regression analysis was performed on data from each 

animal, individually, and the average of the eight analyses was determined. 

This approach was used to determine the relationship between CT perfusion 
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and DCE-NIR measured CBF, and between CT perfusion and DCE-NIR 

values of BV. Figure 6.6 shows the regression plot of the CBF data; the line-

of-best fit averaged across the individual regression analyses had a slope of 

1.06 ± 0.08, and a y-intercept of −4.37 ± 4.33 ml min-1 100g-1. The average 

slope was significantly different from the null (p < 0.001) but not significantly 

different from the line of identity (p = 0.81). The average y-intercept was not 

significantly different from zero (p = 0.76). The average r value, calculated 

from the individual regression analyses was 0.86 ± 0.06. 

 

Figure 6.6: Cerebral blood flow regression plot   

Regression plot comparing CBF values calculated from DCE-NIR data and concomitant CT 

perfusion values of CBF. Data are grouped by animal (n=8) and represented with a unique 

symbol. Regression analysis was performed on each group individually, and the average line-

of-best fit is indicated by the dashed line (slope = 1.06 ± 0.08, y-intercept = -4.37 ± 4.33 ml 

min-1 100g-1). 

The regression analysis of BV measured with the two techniques yielded an 

average line-of-best fit with a slope of 2.49 ± 0.34 and a y-intercept of 0.14 ± 

1.60 ml 100g-1. The average slope was significantly different from the null (p 

< 0.01) and significantly different from the line of identity (p < 0.05). The y-

intercept was not significantly different from zero (p = 0.90). The average r 

value for the CBV regression analyses was 0.56 ± 0.13. The mean difference 
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between BV calculated with the two techniques was 6.53 ml 100g-1, and the 

data was bound by a 95% confidence interval of 3.12 – 9.95 ml 100g-1. Finally, 

the average difference between the two techniques was significantly different 

from the null (p < 0.001), suggesting the presence of a systemic bias that 

would allow one technique to be calibrated to the other. 

 Figure 6.7 shows the Bland-Altman plot comparing the CBF 

measurements from the two techniques. The mean difference between the 

two techniques was −1.7 ml min-1 100g-1, which was bound by a 95% 

confidence interval of −16.3 to 12.9 ml min-1 100g-1. In this case, the average 

difference between the two techniques was not significantly different from 

the null (p = 0.31). 

 

Figure 6.7: Cerebral blood flow Bland-Altman plot 

Bland-Altman plot comparing the CBF measurements obtained with the DCE-NIR method 

and the CT perfusion method. Data are grouped by animal using the same symbols as in 

Figure 6.6. The mean difference between the two methods is indicated by the solid line, and 

the 95% confidence interval is demarcated by the dashed line. No statistically significant 

CBF magnitude effect was detected. 
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6.3.5. Error analysis 

Two error analyses were conducted to investigate potential sources of model 

uncertainty that could occur within the context of the KDOR framework 

presented in Figure 6.2. Uncertainties in probe holder position, which was 

determined from segmented CT images corregistered to the optical imaging 

domain, were investigated by generating forward optical data (replicating the 

experimental data) for an ECL thickness of 15 mm, and then reconstructing 

the same optical data with light propagation models assuming ECL thickness 

values from 13 to 17 mm. No significant differences were observed across 

ECL thickness values (p = 0.83). The results of this error analysis are shown 

in Figure 6.8A. 

 

Figure 6.8: Probe position and scattering coefficient error analysis 

(A) The relationship between error in assumed ECL thickness and error in the recovered 

CBF, simulated for a range of ECL thicknesses between 13 and 17 mm. (B) The relationship 

between error in the ECL reduced scattering coefficient, μs', and the error in recovered CBF. 

The regression line-of-best fit (slope = -0.39, y-intercept = 4%) is also shown (dashed line). 

 The value of directly measuring the ECL reduced scattering coefficient 

was evaluated by generating forward optical data with an ECL reduced 

scattering coefficient of 0.8 mm-1, and then reconstructing the same data with 

light propagation models using ECL scattering coefficient values from 0.4 to 

1.2 mm-1. A significant correlation between the error in reduced scattering 
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coefficient and error in recovered CBF was observed (slope = -0.39, y-

intercept = 4%, r = 0.96, p < 0.001). These numerical results are shown in 

Figure 6.8B. 

6.4. Discussion 

Dynamic contrast-enhanced optical measurements of CBF have been 

proposed for over 25 years as an attractive modality for bedside clinical 

monitoring, especially within the context of critical care. In particular, 

because DII is a leading contributor to poor outcome in patients that have 

sustained severe traumatic brain injury (Bouma et al 1991), stroke (Dirnagl 

et al 1999), and subarachnoid hemorrhage (Hijdra et al 1988), the ability to 

measure CBF at the patient's bedside would be of great value. Currently, 

only surrogate markers of CBF (i.e., intracranial pressure and cerebral 

perfusion pressure) are available to assess neurological recovery, and 

considerable controversy surrounds the use of these indirect markers of CBF 

to guide patient management. Despite the significant clinical potential of 

bedside CBF measurements, it is only recently that optical techniques have 

shown promise in achieving the stated goal.  

 An early study by Owen-Reece and colleagues identified the problem of 

extracerebral signal contamination as a confounding factor in optical 

measurements of CBF, resulting in a large underestimation of CBF. To 

overcome this problem, they suggested the use of a correction factor to 

calibrate NIRS CBF measurements to measurements obtained with an 

alternate technique. This was, in part, based in the assumption that the 

extracerebral layer effect was primarily due to a partial volume error, and 

that this effect would show low intrasubject variability (Owen-Reece et al 

1996). The notion of a direct correlation between NIRS-CBF measurements 

and CBF measured by an alternate method was challenged by a later study. 

Schytz and colleagues showed an absence of any correlation between CBF 
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measured concomitantly with NIRS and SPECT in healthy subjects before 

and after administration of acetazolamide (Schytz et al 2009). In particular, 

this study highlighted the lack of a universal correction factor for NIRS 

measurements of CBF, underlining the importance of subject-specific 

modeling using anatomical priors (Elliott et al 2010). 

 The advent of more sophisticated optical methods—including time-

resolved and frequency-domain NIR techniques—resulted in an increase in 

sensitivity to deeper tissue structures, such as the brain. In particular, time-

resolved methods allowed the discrimination of photons based on the time-of-

flight (i.e., the time required for a photon to travel from the source fibre to the 

detector), providing additional improvements in brain tissue sensitivity on 

the basis that late-arriving photons are statistically more likely to 

interrogate deeper tissue (Steinbrink et al 2001; Liebert et al 2004). Several 

papers have been published demonstrating qualitative curve analysis 

(Liebert et al 2006, Liebert et al 2012) and within subject quantification 

(Steinkellner et al 2010) of ICG bolus measurements acquired in neurocritical 

care patients with time-resolved methods. While this work has established 

the sensitivity of DCE-NIR methods to CBF changes, measurements are 

typically relative blood flow indices calculated using methods such as time-to-

peak (TTP). In Chapter 3, it was demonstrated that TTP analysis is 

unreliable when perturbations in cerebral blood volume and the arterial 

input function occur (Elliott et al 2013b). An alternative method of analyzing 

DCE-NIR data was presented, in which nonparametric kinetic analysis 

(Elliott et al 2013b) was used to calculate a relative blood flow index that 

showed good agreement with CBF changes determined from CT perfusion. 

 It is likely that absolute CBF measurements will be more clinically 

useful than relative blood flow indices, since well-defined CBF thresholds for 

cell dysfunction and irreversible cell damage are known (Jones et al 1981; 

Astrup et al 1981; Schaefer et al 2006). Therefore, to provide absolute 
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measurements of CBF, time-resolved instrumentation was combined with 

subject-specific light propagation modeling, and subsequently incorporated 

into an analytical framework called kinetic deconvolution optical 

reconstruction (KDOR). The theoretical basis for the KDOR method was 

described in a recent Letter, and provides a more robust means of separating 

the ECL and brain contributions to the optical signal through the use of 

anatomical priors and physiological constraints (Elliott et al 2012b). The 

main objective of this study was to confirm these theoretical predictions by 

validating DCE-NIR CBF measurements against CT perfusion 

measurements acquired concomitantly in adult pigs.  

 The representative example of optical signals measured in a single 

animal at three different physiological conditions provided in Figure 6.5 

illustrates the features of DCE-NIR data. As expected from previous studies 

(Liebert et al 2004; Steinkellner et al 2010; Liebert et al 2006), including the 

study presented in Chapter 3, differences between attenuation and variance 

signals were observed. The subtle differences at baseline suggest increased 

sensitivity of variance to faster cerebral tracer kinetics. As CBF decreased 

due to hypocapnia and ischemia, greater differences between these three 

conditions were observed in the variance signal than in the attenuation 

signal—a trend observed in the Chapter 3 study. Improvements in sensitivity 

provided by the variance signal facilitated the recovery of tissue 

concentration curves, which appear to reflect the corresponding change in 

CBF, both in the peak concentration and the temporal dynamics. An 

interesting feature of the tissue concentration curves recovered for the 

ischemia condition is the apparent transient increase in concentration 

following the recirculation of dye. This is likely an artifact of the 

reconstruction process, as opposed to any real kinetic effect such as 

extravasation, and is an atypical feature. It is important to note that 

constraints implemented by the KDOR inversion have the greatest effect on 
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the first rise, and peak concentration, of the corresponding tissue 

concentration curves. Therefore, any small discrepancies in the shape of the 

reconstructed tissue curve is not indicative of a significant error in recovered 

CBF. 

 For all eight animals, values of CBF and CBV recovered with the DCE-

NIR method were compared to CT perfusion values—the most common 

method used to assess these parameters clinically (Koenig et al 1998; Mayer 

et al 2000). In general, an excellent agreement was observed between CBF 

measurements acquired with the two modalities with a precision comparable 

to previous studies published by our group for the neonatal pig model (Brown 

et al 2002), as well as the juvenile pig study presented in Chapter 2. It is 

likely that the improvements in instrumentation (time-resolved vs. 

continuous-wave) and the use of the KDOR method to mitigate optical 

reconstruction problems (Bonfert-Taylor et al 2012) contributed to the strong 

correlation with CT perfusion measurements, despite the use of animals with 

thicker ECLs and reduced scalp flow. While CBV values measured with the 

DCE-NIR method showed a strong correlation with CT perfusion 

measurements, the optical technique reported values that were on average 

2.5 times larger (baseline mean values of 4.7 ml 100g-1 and 11.39 ml 100g-1 

determined with CT perfusion and DCE-NIR, respectively). One explanation 

for this discrepancy is that the two methods utilize different kinetic modeling 

approaches to calculate hemodynamic parameters from DCE. The CT 

Perfusion 4 program utilizes a variation of the adiabatic approximation to the 

tissue homogeneity (AATH) model (Bisdas et al 2008) which is essentially a 

plug flow model. Plug flow models have been demonstrated to underestimate 

mean transit time (MTT) in many situations (Schabel 2012; St. Lawrence et 

al 2013), and since CBV is directly related to MTT by the central volume 

principle, it is also underestimated. On the other hand, the DCE-NIR method 

employs a nonparametric deconvolution method to recover an arbitrary 
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hemodynamic function. Since the NIR region-of-interrogation is larger, it is 

likely to contain a distribution of MTTs that contribute to an overall larger 

CBV than would be observed for a single CT voxel. In addition to the transit 

time distribution effect, because the DCE-NIR method does not truncate the 

recovered hemodynamic function, it is likely that any residual scalp 

contribution that remains in the brain signal would contribute 

disproportionately to CBV, without significantly affecting CBF values. 

Nevertheless, it is important to recognize that the discrepancy between CBV 

values attributed to these differences resulted in a consistent bias across all 

eight animals, suggesting that a simple calibration curve could be used to 

relate the two modalities if desirable. 

 Given the strong correlation between the DCE-NIR method and the 

clinical standard, a closer investigation of the analytical framework is 

pertinent. In particular, it is worthwhile investigating the relative 

importance of the priors incorporated into the workflow before the KDOR 

routine is executed. First, while the acquisition of anatomical imaging (i.e., 

CT or MRI) is ubiquitous in almost all neurotrauma centers, the 

segmentation and incorporation of this data into a subject-specific model may 

not be trivial within the context of acute care. In particular, it may be 

difficult to provide an accurate method of coregistering the anatomical data 

with the location of the optical probes, which was rather straightforward in 

these experiments given the visibility of the polychloroprene probe holder on 

the CT images. While the use of feducal markers has been explored 

elsewhere, it is likely that a landmark system such as the 10-20 international 

system (Custo et al 2010) used for electroencephalogram placement would be 

more clinically compatible. To this end, the effect of small errors in optical 

probe corregistration was investigated by varying the ECL thickness within a 

range typical of small but non-negligible positional changes on an average 

human head. No significant difference was found in the recovered blood flow 
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values across the range of ECL thicknesses, suggesting that the DCE-NIR 

method is insensitive to small perturbations in ECL thickness. As a result, it 

is reasonable to assume that a less accurate positioning system, such as the 

SLM 10-20, would provide acceptable accuracy. The importance of measuring 

the optical properties of the ECL using time-resolved data collected at the 6 

mm source-detector distance was also investigated. Across a range of values 

for the reduced scattering coefficient, a significant correlation between error 

in CBF and error in μs′ was determined. More specifically, an error of about 

40% in μs' resulted in a 20% error in CBF. Given that reported values of μs' 

for the scalp of the human head include 1.0 mm-1 (Boas et al 2002), 1.2 mm-1 

(Choi et al 2004), and 1.7 mm-1 (Okada and Delpy 2003), using an assumed 

value for μs' would introduce a large amount of uncertainty. In part, the 

results of this second error analysis provide a strong justification for the use 

of time-resolved instrumentation to directly measure the optical properties in 

the ECL, despite its relative sensitivity to stray light compared to 

continuous-wave systems. 

 In this study of cerebral ischemia, intracortical injection of endothelin-

1 was used to produce a large lesion containing infarct and penumbra tissue 

states, which persisted long enough to acquire the three measurements 

needed for this study. A limitation with this model is that only a portion of 

the lesion (14%) was reduced to ischemic levels, as defined by CBF less than 

10 ml min-1 100g-1, with penumbra (10 - 20 ml min-1 100g-1) and benign 

oligemia (20 - 35 ml min-1 100g-1) regions also contributing to 18 and 19%, 

respectively. Since the NIR region-of-interrogation encapsulated all of these 

components, the recovered CBF values by DCE-NIR and corresponding CT 

perfusion values averaged over a representative region-of-interest did not 

reach ischemic levels. However, given that the difference between the two 

techniques, as determined with the Bland-Altman method (Fig. 6.7) did not 
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depend on the blood flow level, it is reasonable to assume that DCE-NIR 

would quantify even lower levels of CBF with comparable precision.  

6.5. Conclusions 

The present study validated the DCE-NIR method of measuring CBF, which 

combines multi-distance time-resolved measurements, arterial input function 

characterization, and subject-specific light propagation modeling using the 

KDOR analytical framework. This work provides a convincing argument for 

using this robust optical method to measure CBF in the neurocritical care 

unit, where quantitative CBF measurements may provide a means of guiding 

patient management and intervention.   
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

The final chapter of this thesis provides a summary of the dynamic contrast 

enhanced (DCE) near-infrared (NIR) method developed to measure 

hemodynamic parameters in neurocritical care unit (NCU) patients. As the 

objectives of this thesis were advanced, improvements were made to the 

instrumentation and the analytical approach, beginning with the depth-

resolved continuous-wave (CW) near-infrared spectroscopy (NIRS) method in 

Chapter 2. Next, a blood flow index calculated from the variance of time-

resolved (TR) NIR distribution of time-of-flight (DTOF) measurements was 

described as a reliable technique to measure changes in cerebral blood flow 

(CBF) (Chapter 3). Finally, a multi-distance TR moments-based method 

using the kinetic deconvolution optical reconstruction (KDOR) approach was 

validated in an adult pig model of ischemia (Chapter 6). Each of these 

developments will be summarized within the context of the objectives 

presented in Chapter 1. Following this, the future work for this technology 

will be discussed and the principle conclusions of the thesis will be stated. 

7.1. Summary of stated objectives 

The four objectives of this thesis focused mainly on: (i) the design and 

optimization of clinically compatible instruments, (ii) the development of an 

analytical framework, (iii) the development of clinically relevant animal 
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model for NCU applications, and finally, (iv) the validation of the technique 

against CT perfusion. These will now be addressed in turn. 

7.1.1. Design and optimization of NIR instrumentation 

The design and optimization of the DCE-NIR system was accomplished in 

three main steps. First, a two-channel continuous-wave broadband system 

was developed, based on the previous work of our group in using CW NIRS to 

measure CBF in neonatal pigs (Brown et al 2002; Tichauer et al 2006) and 

more recently, in the neonatal intensive care unit (Arora et al 2013). In the 

subsequent study, a time-resolved system was introduced to improve brain 

sensitivity through the use of statistical moments of DTOF data. Chapter 3 

highlighted the results obtained using the variance signal measured at 30 

mm to calculate a relative blood flow index, dBF, which is capable of tracking 

changes in CBF. It was evident from the error analysis and the strong 

agreement with CBF changes measured by CT perfusion that a necessary 

precursor in proper kinetic analysis of DCE-NIR is the acquisition of the AIF. 

Therefore, in Chapter 4, an alternate method of capturing the AIF was 

described to eliminate the need of a specialized dye densitometer. The goal in 

developing this pulse oximeter (PO)-based method was to facilitate clinical 

implementation of DCE-NIR by leveraging the ubiquity of POs in the critical 

care setting. Finally, in Chapter 6, a multichannel TR-NIR system was 

presented that enabled the three statistical moments (A, <t>, and V) acquired 

at four source-detector distances (6, 20, 30, and 40 mm) to be measured 

simultaneously. This sophisticated instrumentation enabled accurate and 

precise characterization of CBF, even in the presence of substantial ECL 

contamination. In particular, an error analysis demonstrated the importance 

of direct determination of extracerebral layer (ECL) optical properties, which 

can be done effectively using TR-NIR. 
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7.1.2. Development of the analytical framework 

In parallel to the developments in instrumentation, improvements in 

analytical methodology were made. In the first pig study, the inter-subject 

variability in sensitivity factors (i.e., mean partial pathlengths (MPPs)) was 

identified as the likely cause of reported failure of DCE NIRS to measure or 

even track changes in CBF in adult subjects (Schytz et al 2009). Therefore, 

subject-specific Monte Carlo simulations were implemented and a lookup 

table of MPPs was generated using two-layer models with varying ECL 

thicknesses. For each animal, MPPs were selected from the library using an 

objective cost function that optimized two error norms: ECL thickness of the 

two-layer model compared to the value measured from the animal’s CT 

image, and the resulting brain water concentration compared with the 

assumed value of 80%. Compared to the simple subtraction method, in which 

a group averaged MPP set was used, the subject-specific approach 

significantly reduced the inter-subject variability and, as a result, NIRS CBF 

measurements showed good agreement with CT perfusion values. Time-

resolved NIR was implemented as a way to further improve depth sensitivity 

by measuring the DTOFs. The use of the change in statistical variance of the 

DTOF during ICG uptake and washout to calculate a deconvolution-based 

blood flow index (dBF) was investigated, avoiding the need for the subject-

specific modeling used in the previous study. A secondary goal of this study 

was to highlight the pitfalls of using the TTP as a surrogate of CBF changes: 

a commonly used approach in DCE optics. A more robust analytical approach 

based on the deconvolution method was developed, and it is arguably the 

most significant advancement of this doctoral work. The ill-posed nature of 

optical reconstruction impacts almost every field of biomedical optics and any 

additional unique information that can be included in the reconstruction 

problem will likely improve the results. The KDOR method, described in 

Chapter 5, is a novel reconstruction approach that uses dynamic priors. The 
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ability of this method to recover CBF accurately was demonstrated in 

Chapter 6. 

7.1.3. Development of the animal model 

Adult pigs were used in all three DCE NIR studies since they have similar 

ECL thickness to humans. Furthermore, the average CBF of an adult pig is 

similar to the human adult. The main limitations of the pig model are small 

size of the brain relative to the head and the higher scalp blood flow than in 

the humans due to the thicker temporalis muscles that have evolved to 

enable strong mastication. The former issue is not a problem because the 

farthest source-detector distance (40 mm) was well within the length of the 

brain. To overcome the second limitation, three incisions were made rostral, 

caudal and lateral to the optodes in the second and third pig studies to reduce 

scalp blood flow to less than 10 ml min-1 100g-1, as observed in humans. In all 

three animal studies, CBF was varied over a range of values by adjusting the 

PaCO2 (i.e., hypercapnia and hypocapnia). However, two limitations of this 

approach were identified within the context of DCE NIR validation. First, 

hypocapnia does not decrease CBF below the clinically important thresholds 

of either infarct or penumbra. Second, a vascular response to PaCO2 may 

occur in the ECL, as well as in the brain. The latter could confound the 

ability to assess whether depth-resolved NIRS is truly sensitive to only flow 

changes occurring in the brain. For these two reasons, we introduced the 

ischemic model in Chapter 6, which involves inducing a large ischemic lesion 

by intracortical injection of endothelin-1. Computed tomography maps were 

used to demonstrate the reproducibility of the model in causing a large 

volume (27.6 ± 10.4 ml) lesion with infarct, penumbra and benign oligemia 

tissue states. 
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7.1.4. Validation of the method against CT perfusion 

Finally, validation of the DCE-NIR method was accomplished at each stage of 

development through comparisons to CT perfusion, the current clinical 

standard for CBF measurements. In the first study, the DCE-NIR 

measurements of CBF showed strong agreement with CT perfusion values  

(r = 0.84, p < 0.001), and the mean difference between the two techniques was 

−2.83 ml min−1∙100 g−1 with a 95% confidence interval of −19.63 ml min−1 100 

g−1 to 14.00 ml min−1 100 g−1. In the second study, the specificity and 

sensitivity of the dBF index measured from the variance signal was 

investigated in four animals. First, extracerebral blood flow and composition 

was modulated to determine the effect of the ECL on the measured index: the 

average change in dBF during these manipulations was 0.2 ± 2.4%. Second, 

the ability of dBF to track changes in CBF was examined by inducing 

hypocapnia and performing concomitant measurements of CBF with CT 

perfusion. In this case, measurements of dBF acquired on the surface of the 

head showed a similar decrease compared with CT perfusion values of CBF. 

In the third pig study, DCE-NIR measurements of CBF analyzed using 

KDOR showed strong agreement with CT perfusion values (r = 0.86,  

p < 0.001) across a range of blood flow levels from about 25 to 75 ml min-1 

100g-1. The mean difference between the two techniques was -1.7 ml min-1 

100g-1, which was bound by a 95% confidence interval of −16.3 to 12.9 ml min-

1 100g-1. Furthermore, the validation was performed in animals with an ECL 

thickness similar to adults. This final validation study confirmed that 

accurate measurements of CBF can be obtained from DCE-NIR 

measurements acquired on the surface of the head, during normal, oligemic 

and ischemic blood flows. 
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7.2. Future work 

7.2.1. Improvements to DCE-NIR and KDOR analysis 

The analytical method described in this thesis can be advanced in two 

different directions, depending on the demands of the situation. In certain 

cases, a large amount of information might be sought from a large number of 

inputs—e.g., for imaging applications. To properly characterize the spatial 

distribution of a parameter, such as CBF, it is necessary to increase the 

number of channels of data so that the system is not underdetermined. For 

example, a recent study demonstrated the use of a CW-NIRS instrument for 

acquiring DCE data on the surface of the head, simultaneously, in 900 

channels (Habermehl et al 2013). Another large-scale problem arises when 

attempting to analyze the DTOFs directly, instead of reducing the problem to 

the three statistical moments A, <t>, and V.  

Since KDOR differs from traditional optical reconstruction methods, in 

that it uses the NNLS algorithm with equality and inequality constraints, its 

current implementation is computationally demanding, due to a need to 

perform a full pseudo-inverse calculation for each iteration (Chen and 

Plemmons 2009). This limitation can be somewhat mitigated by applying a 

dimension-reduction method. For example, principle component analysis 

(PCA) has been incorporated into FMT reconstruction schemes without 

significant performance cost (Cao et al 2012). It stands to reason that an 

analogous method could be applied to KDOR large-scale problems with 

similar results. One immediate application could be to distinguish flow in an 

infarct region from normal brain and ECL.  There are other applications in 

which DCE measurements could improve the clinical utility of NIRS such as 

characterizing the uptake of a tracer into a tumor. In such cases, the goal 

would be to reconstruct dynamic parameters on an image space defined by a 

set of arbitrary node coordinates. 



191 

Moving in the other direction, there are certain clinical settings where 

it would be desirable to obtain hemodynamic measurements, but where there 

is no a priori spatial information. Considering that the accuracy of the CBF 

measurements obtained with the KDOR method were fairly insensitive to 

uncertainties in the ECL thickness in the error analysis from Chapter 6, it 

may be possible to use a standard landmarking system to place one or two 

optodes on the head and estimate CBF using a population average head 

geometry (Custo et al 2010; Okamoto et al 2004). Removing the dependence 

of the KDOR workflow on anatomical priors from another imaging modality 

would enable its use in remote or hostile environments. The development of 

"field-unit" optical systems has been investigated by government defense and 

humanitarian organizations as a means of directly assessing brain injury in 

patients for whom access to NCU is not available. In particular, the 

portability of biomedical optics compared to traditional imaging methods is 

desirable in remote villages or on the battlefield. Near-infrared spectroscopy 

has shown promise in assessing severity of brain injury and presence of 

hematoma (Kessel et al 2007; Gopinath et al 1995). Unlike these studies, 

which used simple CW instrumentation and did not account for ECL 

contributions, time-resolved NIR in combination with the methods described 

in this thesis would significantly improve accuracy and precision, and 

therefore the predictive value of the recovered parameters. While TR NIR is 

considerably less compact than CW NIR, scaled-down versions have been 

developed (Wilmink et al 2011; Re et al 2010) and are therefore quite feasible. 

7.2.2. Clinical validation 

Clinical trials, including validation studies and randomized controlled trials, 

are ambitious, yet necessary next steps before DCE-NIR can be accepted as a 

clinically useful tool for the management of NCU patients. Three principle 

objectives should be addressed.  
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First, CBF measurements determined using the DCE-NIR method 

should be compared to a clinical standard such as CT perfusion to determine 

their accuracy and precision in NCU patients compared with the animal 

model. The comparisons could be made during routine CT imaging, adding 

the CT perfusion scan to the protocol with only a slight increase in dose to the 

patient (2.0-3.4 mSv compared to 1.5-2.5 mSv for a routine head CT (Hoeffner 

et al 2004)).  

Second, it is necessary to determine the predictive value of DCE-NIR 

measurements of CBF for identifying DII in susceptible patients. For 

example, along the same lines as a previous study (Pham et al 2007), CT 

perfusion and DCE-NIR measurements could be obtained in SAH patients 

during the first two weeks of admission to the NCU. The two modalities could 

be compared in their abilities to predict the development of DII, as defined by 

the presence of delayed infarction on CT.  

Finally, should the first two objectives be met, a randomized controlled 

trial should be conducted comparing clinically relevant endpoints (i.e., 

Glasgow outcome scale, survival, etc.) of two groups of patients: those in 

whom CBF values are calculated with DCE-NIR at regular intervals during 

the acute recovery stage to inform patient management, and a control group 

for whom management is determined using current clinical practices. This 

final objective will be necessary before DCE-NIR can be recommended as 

standard-of-care.       

7.2.3. Future applications 

In Appendix A, the results of a recent numerical simulation are presented to 

highlight the use of the KDOR method in a completely different application. 

In particular, we investigated the ability of KDOR to recover the rate 

constants and molecular binding potential of a targeted tracer using the dual-

tracer method (Tichauer et al 2012). These numerical experiments suggest 
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that the KDOR method improves the quantification of other dynamic 

parameters, compared with the traditional two-step method employed in 

FMT and DOT. Since commercially available solutions already exist for small 

animal preclinical imaging, KDOR can likely be incorporated into existing 

systems to improve the accuracy of these devices in evaluating molecular 

expression and drug binding. 

 In addition to small animal experiments, KDOR could be used in 

conjunction with targeted tracers to detect primary or metastatic cancer in 

vivo. In one potential application, the dual tracer method could be applied to 

breast cancer imaging targeting the HER2 receptor, which is expressed in the 

majority of primary tumors and lymph node metastasis (Carlsson et al 2004). 

In another application, a passive leaky tracer could be used to assess tissue 

permeability, a hallmark of cancer progression, in a variety of different 

cancers (St. Lawrence et al 2013). In both cases, accurate quantification of 

dynamic parameters is necessary to properly direct and monitor treatment. 

7.3. Principle conclusions 

The salient finding of this thesis is that DCE-NIR techniques have the 

potential to assess cerebral hemodynamics at the bedside of NCU patients, 

given that: 

(i)  CBF measurements obtained using a depth-resolved CW 

NIRS method showed strong agreement with CT perfusion 

measurements of CBF acquired in juvenile pigs. 

(ii)   Relative changes in CBF derived from statistical moments 

of TR-NIR data were in good agreement with percent 

change in CBF measured by CT perfusion. 
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(iii) Numerical simulations demonstrated that KDOR 

significantly improves the accuracy of flow measurements 

obtained from a heterogeneous medium (e.g., the adult 

head). 

(iv) Experimental multichannel TR-NIR data analyzed with the 

KDOR method provided accurate quantification of CBF in 

an adult pig model of ischemia. 
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APPENDIX A 

Applying KDOR to small animal fluorescence 

imaging of molecular binding 

A.1.  Background 

The kinetic deconvolution optical reconstruction (KDOR) approach can be 

extended to more complex tracer kinetic models to characterize the behaviour 

of targeted tracers which bind to receptors of interest. Targeted tracer 

methods have been extensively used in more established imaging modalities 

such as positron emission tomography (PET), and have recently been applied 

to planar fluorescence imaging to quantify molecular expression of epidermal 

growth factor receptor (EGFR) in tumors (Tichauer et al 2012). Similar to 

computed tomography (CT) perfusion, PET molecular imaging methodology 

involves two-steps: spatial reconstruction of tracer concentration and 

subsequent kinetic analysis. Spatial reconstruction in PET is a well-posed 

problem: the radioisotope undergoes positive beta decay, and subsequent 

postitron-electron annihilation, producing two 511 keV gamma photons that 

are emitted at  almost 180° and can be used to localize the source of the decay 

(i.e., a radiolabeled tracer) with sub-centimeter resolution. However, using a 

two-step (TS) reconstruction process in optical tomography will result in loss-

of-information that will decrease the accuracy of recovered kinetic 

parameters. An alternative approach is to use the kinetic deconvolution 

optical reconstruction (KDOR) algorithm to characterize the R(t) function for 
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each region directly, and then to obtain information from these recovered 

functions by fitting them with a kinetic model. This approach allows the 

kinetic information to be extracted from the imaging data in a single 

inversion, mitigating the loss-of-information from the spatial reconstruction 

step. 

 In molecular imaging with targeted and untargeted probes, the uptake 

of a tracer by the tissue can be described by the following convolution: 

     ),(1 tRtCKtC a   (A.1) 

where K1 is the rate constant governing the extraction of the tracer into the 

interstitial space, and K1 = F x E, where E is the extraction fraction, and F is 

the blood flow. Note that this notation differs slightly from applications 

involving vascular tracers such as ICG, since this model specifically 

characterizes the uptake of tracer into the tissue and does not attempt to 

model the vascular dynamics of the dye. To extract meaningful information 

from the impulse residue functions of targeted and untargeted tracers, 

mathematical models are derived through compartmental analysis (Goldberg 

et al 1980; Hine et al 1980; Tichauer et al 2012), assuming the targeted 

tracer can be in one of three “spaces”: the arterial space, Ca(t), unbound in the 

extracellular extravascular space (EES),Cf(t), or bound to its receptor in the 

EES, Cb(t). The untargeted tracer is assumed to only occupy the arterial 

space and the unbound EES.  The transport of each tracer from one 

compartment to the other is described by first order rate constants (e.g. K1 

and k2 describe transport between blood and the ESS, and k3 and k4 describe 

transport between the free and bound states), and is summarized in Figure 

A.1. 
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Figure A.1: The dual-tracer compartment model 

The targeted tracer, CT(t), characterizes the delivery, uptake and binding of a ligand to a 

receptor-of-interest. The untargeted tracer, CU(t), is designed to behave identical to the 

targeted tracer in terms of delivery and uptake, but does not have the ability to occupy the 

bound space. By the simultaneous injection of targeted and untargeted tracers, parameters 

K1, k2, and k3/k4 can be characterized. (Adapted from Tichauer et al 2012). 

If an untargeted tracer is selected that has the same arterial input function, 

Ca(t), as the targeted tracer, and the binding kinetics (k3 and k4) are much 

faster than the vascular leakage kinetics (k2), then the following set of 

equations describes the residue function in Eq. A.1 for the targeted, RT(t), 

and untargeted, RU(t), tracers:  

  
t

BP

k

T etR 


 1

2

  (A.2a) 

   ,2tk
U etR


   (A.2b) 

where BP is the binding potential and is equal to k3/k4 by definition (Tichauer 

et al 2012). Often, the measurement of Ca(t) is difficult, and is avoided by 

combining the targeted and untargeted model-specific versions of Eq A.1 

(Lammertsma and Hume 1996). However, pulse dye densitometers can 

quantify the Ca(t) of indocyanine green and its derivatives (Iijima et al 1997), 

and Ca(t) can be estimated for near-infrared and red dyes using widely 

available standard pulse oximeters (Elliott JT et al 2012b). Since both of 
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these approaches enable the Ca(t) to be measured independent of the FMT 

data at high temporal resolution, Ca(t) can be used as a time-reference for the 

FMT projection data. In this case, the KDOR method recovers the K1R(t) 

from each region, which is analogous to vector RF from Eq. 5.3. (see Chapter 

5) in the dual-tracer approach, and can be formulized as: 

 
  UAU RACS   (A.3a) 

 
  TAT RACS   (A.3b) 

where SU and ST represent the signal vector measured at the wavelengths 

corresponding to the untargeted and targeted tracers, respectively, and RU 

and RT represent the stacked RT(t) and RU(t) functions from each region. An 

implicit assumption in this technique is that CA, the Toeplitz matrix of the 

AIF, is the same for both tracers; this requires consideration when designing 

probe pairs, but has been demonstrated to be a valid assumption in 

applications using IRDye 700DX and IRDye 800CW-EGF (both by LI-COR 

Biosciences, Lincoln, NE) (Samkoe et al 2012). The kinetic parameters (i.e., 

K1, k2, BP) are recovered by optimizing the following expression: 
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Optimization was performed in MATLAB using the fminsearchbnd function 

(D’Errico 2005).  

A.2. Numerical experiment 

The numerical simulations presented in this subsection demonstrate the 

ability of KDOR to quantify the molecular expression of a targeted tracer in 

small animal imaging of cancer using FMT. Numerical simulations were 

performed with NIRFAST using the heterogenous optical digimouse (Dogdas 
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et al 2007) and the previously described fan-beam FMT configuration 

(Tichauer et al 2011). This configuration is shown in Fig. A.2. Fluorescence at 

the targeted (800 nm) and untargeted (700 nm) dye wavelengths was 

simulated in the digimouse head and signal was recorded in the five detectors 

simultaneously with an integration time of 12 seconds. This was repeated for 

32 source detector positions, with a rotation time (deadtime) between 

positions of 32 seconds.  A complete set of optical data (32 source-positions x 5 

detectors) was acquired every 23.5 minutes for 2.5 hours.  

 

 

Figure A.2: Fan beam FMT and digimouse mesh used in simulations 

(A) The FMT system, based on published work by the Optics in Medicine group at Dartmouth 

College, consists of one source position and five detector positions, which rotate around a 

gantry to collect tomography data. A cross section of the mouse head with a tumor region is 

shown in the centre of the system. (B) The digimous mesh used in the simulations, showing 

the tumor inclusion located in the head slice.  

 Targeted and untargeted tracer uptake in each tissue region was 

simulated using Eq. A.1. The true (input) values for the kinetic parameters 

are given in Table 1 and are from kinetic planar imaging data (Tichauer et al 

2012). An arterial input function was simulated using a biexponential model 

of the form tdtb ceae   , for which parameters a-d were defined as 0.15 uM, 
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3.6 min-1, 0.05 uM, and 44 min-1. This model was previously shown to fit 

experimental arterial input functions in mice with good agreement (Samkoe 

et al 2012). Gaussian white-noise of 20% was added to the FMT signal and to 

Ca(t). The targeted and untargeted uptake curves are shown in Figure A.3. 

 

Figure A.3: Simulated uptake curves 

The uptake curves used in the forward model for the background (grey solid line) and the 

tumor (black solid line) regions, for the targeted (A) and untargeted (B) tracers. The arterial 

input function is also shown (black dashed line). 

 Reconstruction of kinetic parameters was performed using the KDOR 

and TS methods. In the KDOR approach, the region-specific K1R(t) functions 

for the targeted and untargeted tracers were reconstructed from Eq. A.3, and 

kinetic parameters were extracted by minimizing Eq. A.4. In the TS 

approach, a time-series of targeted and untargeted concentration maps were 

reconstructed using a Levenberg-Marquardt approach (Dehghani et al 2008) 

with hard anatomical priors and these regions-of-interest were then used to 

define the tracer uptake curves. Kinetic parameters were extracted by fitting 

the tracer uptake curves with the convolution in Eq. A.1. In both cases, 

reconstruction was performed on a homogeneous mesh (μa = 0.01 mm-1, μs′ = 

1.0 mm-1) rather than the heterogeneous mesh used in the forward data, to 

avoid the inverse crime. To compare the precision and accuracy of the two 

approaches, the reconstruction procedure was repeated 100 times. 
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A.3.  Results and discussion 

For the tumor region, the KDOR-recovered K1R(t) functions and the tissue 

uptake curves recovered from the reconstructed fluorophore maps are shown 

in Fig. A.4. Both untargeted and targeted R(t) functions recovered with the 

KDOR approach show a strong agreement with input values—the percent 

difference in area under the fitted and input curves was less than 0.01% in 

all cases and were not significantly different. Whereas the values recovered 

using the TS method show marked deviations from the true values. 

 

Figure A.4: Functions recovered with KDOR and TS methods 

The mean KDOR-recovered K1R(t)  (open circles ± SD) for the 100 repetitions, along with the 

true (black line) and mean model-fitted (red line) K1R(t) functions for the targeted (A) and 

untargeted (B) tracers. The mean C(t) uptake curves recovered with the two-step approach 

(open squares  ± SD), along with the true (black line) and mean model-fitted (red line) uptake 

curves for the targeted (C) and untargeted (D) tracers. 

 Kinetic parameters were recovered by fitting the corresponding dual-

tracer model functions to these curves. Figure A.5 presents box-and-whisker 
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plots for the three kinetic parameters recovered for the two regions 

(background and tumor) with KDOR and TS methods. In general, KDOR is 

more accurate and precise in recovering the kinetic parameters. In fact, the 

TS method is only capable of accurately recovering the background K1 

parameter, and in even in this case, exhibits high variability.  

 

Figure A.5: Kinetic parameters recovered with the two approaches 

Box-and-whisker plots of K1, k2 and binding potential recovered with the KDOR and TS 

method for the background (top row) and tumor (bottom row) regions. Boxes are bound by the 

1st and 3rd quartiles, and the median is given by the centre line. Error bars are min and max, 

with outliers shown as crosses. Dashed lines show the true value of the parameter. 

 The most important parameter in preclinical cancer imaging 

applications is BP, which can be used to assess molecular expression of a 

particular receptor, and evaluate the affinity of a particular ligand (e.g., a 

prospective drug) for its receptor. Both methods exhibited different levels of 

BP underestimation, likely owing to spatial blurring causing contamination 

from the low-BP background. However, this underestimation was five times 

less pronounced when KDOR was used. Also contributing to this 
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improvement, the temporal resolution of the functions recovered with KDOR 

show significant improvement over the uptake curves characterized from the 

reconstruction fluorophore maps. This is a direct result of using the 

independently-measured AIF to time-stamp each data projection. Of 

particular interest, the mean error and 95% confidence interval in the tumor 

BP recovered by KDOR was −5.86% (−25.0 - 13.3%), whereas the with the TS 

approach, the error was −32.6% (−49.0 - −16.5%). The improved accuracy in 

the KDOR-recovered values of K1 and k2 are also notable, since these 

parameters could indicate enhanced vascular permeability, which is a 

hallmark of tumor angiogenesis. Surprisingly, the errors in all KDOR-derived 

parameters were comparable to reported results using more robust planar 

imaging techniques (Tichauer et al 2012). This finding can be explained by 

the negative monotonicity temporal constraint on the R(t) reconstructions 

(see Chapter 5), which is valid irrespective of the kinetic model used since all 

compartment models decay exponentially. Further studies are ongoing to 

investigate the accuracy of this KDOR approach in animal studies. 
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