265 research outputs found

    Community detection in graphs

    Full text link
    The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.Comment: Review article. 103 pages, 42 figures, 2 tables. Two sections expanded + minor modifications. Three figures + one table + references added. Final version published in Physics Report

    Signal Processing and Machine Learning Techniques Towards Various Real-World Applications

    Get PDF
    abstract: Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Análise de desempenho de métricas de grafos para reconhecimento de tarefas de imaginação motora das mãos a partir de dados de eletroencefalografia

    Get PDF
    Orientadores: Gabriela Castellano, Romis Ribeiro de Faissol AttuxDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: Interfaces cérebro-computador (BCIs, brain-computer interfaces) são sistemas cuja finalidade é fornecer um canal de comunicação direto entre o cérebro e um dispositivo externo, como um computador, uma prótese ou uma cadeira de rodas. Por não utilizarem as vias fisiológicas convencionais, BCIs podem constituir importantes tecnologias assistivas para pessoas que sofreram algum tipo de lesão e, por isso, tiveram sua interação com o ambiente externo comprometida. Os sinais cerebrais a serem extraídos para utilização nestes sistemas devem ser gerados mediante estratégias específicas. Nesta dissertação, trabalhamos com a estratégia de imaginação motora (MI, motor imagery), e extraímos a resposta cerebral correspondente a partir de dados de eletroencefalografia (EEG). Os objetivos do trabalho foram caracterizar as redes cerebrais funcionais oriundas das tarefas de MI das mãos e explorar a viabilidade de utilizar métricas da teoria de grafos para a classificação dos padrões mentais, gerados por esta estratégia, de usuários de um sistema BCI. Para isto, fez-se a hipótese de que as alterações no espectro de frequências dos sinais de eletroencefalografia devidas à MI das mãos deveria, de alguma forma, se refletir nos grafos construídos para representar as interações cerebrais corticais durante estas tarefas. Em termos de classificação, diferentes conjuntos de pares de eletrodos foram testados, assim como diferentes classificadores (análise de discriminantes lineares ¿ LDA, máquina de vetores de suporte ¿ SVM ¿ linear e polinomial). Os três classificadores testados tiveram desempenho similar na maioria dos casos. A taxa média de classificação para todos os voluntários considerando a melhor combinação de eletrodos e classificador foi de 78%, sendo que alguns voluntários tiveram taxas de acerto individuais de até 92%. Ainda assim, a metodologia empregada até o momento possui várias limitações, sendo a principal como encontrar os pares ótimos de eletrodos, que variam entre voluntários e aquisições; além do problema da realização online da análiseAbstract: Brain-computer interfaces (BCIs) are systems that aim to provide a direct communication channel between the brain and an external device, such as a computer, a prosthesis or a wheelchair. Since BCIs do not use the conventional physiological pathways, they can constitute important assistive technologies for people with lesions that compromised their interaction with the external environment. Brain signals to be extracted for these systems must be generated according to specific strategies. In this dissertation, we worked with the motor imagery (MI) strategy, and we extracted the corresponding cerebral response from electroencephalography (EEG) data. Our goals were to characterize the functional brain networks originating from hands¿ MI and investigate the feasibility of using metrics from graph theory for the classification of mental patterns, generated by this strategy, of BCI users. We hypothesized that frequency alterations in the EEG spectra due to MI should reflect themselves, in some manner, in the graphs representing cortical interactions during these tasks. For data classification, different sets of electrode pairs were tested, as well as different classifiers (linear discriminant analysis ¿ LDA, and both linear and polynomial support vector machines ¿ SVMs). All three classifiers tested performed similarly in most cases. The mean classification rate over subjects, considering the best electrode set and classifier, was 78%, while some subjects achieved individual hit rates of up to 92%. Still, the employed methodology has yet some limitations, being the main one how to find the optimum electrode pairs¿ sets, which vary among subjects and among acquisitions; in addition to the problem of performing an online analysisMestradoFísicaMestre em Física165742/2014-31423625/2014CNPQCAPE

    Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    Get PDF
    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios

    On relational learning and discovery in social networks: a survey

    Get PDF
    The social networking scene has evolved tremendously over the years. It has grown in relational complexities that extend a vast presence onto popular social media platforms on the internet. With the advance of sentimental computing and social complexity, relationships which were once thought to be simple have now become multi-dimensional and widespread in the online scene. This explosion in the online social scene has attracted much research attention. The main aims of this work revolve around the knowledge discovery and datamining processes of these feature-rich relations. In this paper, we provide a survey of relational learning and discovery through popular social analysis of different structure types which are integral to applications within the emerging field of sentimental and affective computing. It is hoped that this contribution will add to the clarity of how social networks are analyzed with the latest groundbreaking methods and provide certain directions for future improvements
    corecore