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Abstract The social networking scene has evolved tremendously over the years. It has grown
in relational complexities that extend a vast presence into popular social media platforms on
the internet. With the advance of sentimental computing and social complexity, relationships
which were once thought to be simple have now become multi-dimensional and widespread in
the online scene. This explosion of data in the online social scene has attracted much research
attention. The main aims of this work revolve around the knowledge discovery and datamining
processes of these feature-rich relations. In this paper, we provide a survey of relational learning
and discovery through popular social analysis of different structure types which are integral to
applications within the emerging field of sentimental and affective computing. It is hoped that
this contribution will add to the clarity of how social networks are analyzed with the latest
groundbreaking methods and provide certain directions for future improvements.

Keywords Online Social Networks · Social Internetworking Scenarios · Homogeneous Networks ·
Heterogeneous Networks · Hybrid Networks · Multi-Dimensional Relational Learning

1 Introduction

Networks today span wide areas of interest. These include, and are not limited to online social
relationships, biological networks, marketing, politics, etc. [2]. Information networks are formed
from nodes with interconnecting links [2]. Complex schemas provide a realistic representation
(e.g. Bespoke(star), Multi-Relation, Bipartite, Edge-node (multi-hub), etc.) of how they have
evolved over a temporal space [68], [70], [71]. Unique relationships between nodes are represented
by high-dimensional, complex structures [2], [95]. Such complexities pre-define the co-existence
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of sub-structures commonly known as communities within these networks [2]. On a functional
scale, these networks are capable of social and biological inferences by uncovering latent rela-
tional intelligence established between actors of a community. These inferences contain a rich
source of detected emotions and feelings such as collaboration, prediction, reciprocities, status,
etc. The multi-disciplinary applications of social networks have gained substantial recognition
and scholarly interest over the past years in a vast variety of areas - especially in the emerging
field of sentimental and affective computing. Some of the more popular ones include Link Predic-
tion, Community Detection, Recommender Systems, Outlier and Fraud Detection, Evolutionary
Processes, Mood Identification, Depression Detection, Emotional Disorder Identification, etc. [2],
[73].

Social Networks are made up of metadata entities connected to each other through relational
dyads [103]. As a way to represent complexities between different types of networks, various
approaches have been developed to identify the depth of this dimensionality [40], [41], [43]. Re-
lationally, the answer to the research question of how nodes are connected to each other, and
to what degree of depth has a deep impact and significance towards how social schemas are
structured. In the chapters that follow this survey, each unique structure will be given a proper
introduction and investigation of its own.

Nucleus structures represent the most fundamental, basic building blocks which constitute the
agglomeration of predicate structures. These atomic structures determine how networks evolve
over time [3]. They are usually constrained to a maximum of no more than 10 nodes which are
tightly interconnected with each other [2]. As Nucleus relational structures agglomerate, they
form Cliques which are slightly larger clusters of closely interconnected relations. These small
clustered subsets of social relations between selected actors establish a semi-independence related
to the larger network from which they are formed. Cliques in turn subsequently evolve into com-
munities [73], which are then characterized by larger, more randomized relational hypergraphs
which are grounded by a firm set of belief states [4].

Homogeneous Networks Homogeneous Networks refer to distinct network types of super-structures
containing one similar type of node in multiple instances. These instances are interconnected to
each other through a single, identical relational structure type [2]. The kinds of networks formed
in theory are limited in both dimensionality and complexity, and oftentimes referred to as ”flat”
networks [29]. This ”limitation” in literature and traditional study is not due to the natural
(un)realistic aspect of how these networks are formed/represented [44]. Instead, it is due more
to the early graph models and to how these networks were, intuitively ”thought” to represent
the (study) information of interest.

Heterogeneous Networks Heterogeneous Networks (HNs) on the other hand, are intended to
generally reflect on high levels of abstraction representative of actual structural data [2]. They
can perhaps be considered by some research to represent a working analysis of the closest next
generation framework to a real-life social network [29]. As an emerging research area however,
this architecture still contains limitations which prevent it from being able to effectively model
a given realistic social structure accurately [1]. Heterogeneous networks remain largely a con-
ceptual rather than a functional model of implementation [19]. Recently, there have been some
developments in common work-arounds for these attempts. These include:

1. The wide use of Markov Chain logic to quantify state spaces by which HNs transition prob-
abilistically across time frames [45].
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2. Area Under Curve (AUC) analysis to characterize the efficiency of predictive case models
[26].

3. Energy models like Markov Logic Networks (MLNs) to predict the evolutionary state behavior
of HNs [51], [73].

4. Multivariate Auto-Regressive (AR) models that attempt to explain the regressive state di-
mensionalities of highly correlated HN data [30].

5. Clustering Ensemble methods that selectively extract information of interest from a highly
dimensional data sub-space.

6. The inference to the stability of features and associated metrics for further computational
analysis [29], [76], [79].

7. Shapley value based variants to predict confidence scores of given structural patterns identified
from baseline models [31].

8. Markov Thermal percolative models (MTPM) that emulate heat transfer mechanisms of
influence, trust, sentiment, etc., in the diffusivity of information through a HN [15].

9. EM Wave Theory analyses such as divisive and spectral methods to detect communities in
HNs through identification and detection of feature fundamental frequencies of interest which
are obtained from Fourier transformations [5].

Hybrid Networks Hybrid Heterogeneous Networks (HHNs) are smaller sub-problem sets of the
HNs superset. They are directly modeled from HNs to satisfy the need for a more accurate
definition of the social network in question. This is done from a more focused perspective that
directly addresses the problems of lossy generalization and computational overload, derived from
their parent superstructures [2], [104]. For example, Facebook is a fully functional Heterogeneous
Network which includes multiple entity types like user profiles, events, news, ads, groups, etc.
Several HHN models exist in literatures that have been widely used for study in the areas of
datamining and knowledge discovery [2]. For completeness sake, the study of HHNs is also worth
mentioning in the later chapters, as one of our more robust and novel initiatives of this survey
paper. Additionally, this helps the general research community gain deeper insights into the
structural characteristics of the functioning aspects of the entire HN.

Social Internetworking Scenarios Social Internetworking Scenarios (SIS) emerged from the far-
sighted vision of a unified social interactivity across various online platforms. Current popular
social networks include but are not limited to: Facebook, Yahoo, OrCHiD, LinkedIn, Twitter,
Instagram, Google, etc., with more niche online communities like research gate, SRJ, etc., es-
tablishing their growing online presence daily. The postulation is based on the principle of users
and groups from various OSNs in todays social marketplace interacting with each other through
high density linked pathways known as bridges [21]. The order of complexity which SIS seeks to
solve is undoubtedly several times that of HNs. Today, SIS remains largely an untrodden area of
research due to its sparse but large volumes of highly complex data which requires management
and handling [21].

2 Community Detection

Community Detection is an important research topic of structural analysis within OSNs and
SISs. This research tackles the problem from two significant viewpoints. One mainstream ap-
proach involves analyzing node attributes and the similarity indices between them. This method
is based on the postulation that a community is made up of nodes with high similarity indexes
between them. These networks are modeled after a modular organization, revealing the existence
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of special affinities among the vertices within the group [69]. The other mainstream approach
involves examining the relational attributes between the actors within group. This method is
based on the social study that interconnected nodes within the community will have high node
degrees between one another. Translated into a friend network like Facebook, this means that if
node A has a high degree of mutual friends (directly or indirectly connected) with node B, then
node A and B must belong to the same community [69]. Such a common indicative measure is
known as modularity; and is simply given as:

ModX =
ΦA ∪ ΦB
ΦA ∩ ΦB

(1)

Where ΦA and ΦB are immediate neighbor relations of nodes A and B respectively. There-
fore, if modularity is high, then relationally nodes A and B belong to different communities. If,
however, modularity is low, then similarly nodes A and B belong to the same community. It is
a common measure to determine if a node is strongly connected to other similar nodes within
the network. This method too is based on a similarity measure like the first. For example, in
social networks, communities correspond with a group of friends/colleagues/people who attend
the same institution or who come from the same hometown. In protein interacting networks,
communities represent functional groups of peptides that evolved within a superstructure. In co-
authorship (heterogeneous) networks, communities refer to highly correlated disciplines between
the authorship of similar papers [64], [65].

2.1 Community Detection Techniques

Community Detection Techniques are broadly confined to three major structural scopes of study:
Homogeneous networks, Heterogeneous networks, and Social Internetworking Scenarios [57], [85].
Listed in ascending orders of complexity and size, these methods suffer from a limited scope of
study and utility. In a homogeneous network, only actors of a single type exist, and this feature
extends into uni-dimensional relationships with other actors from the same social circle [56]. This
type of network is easy to analyze since structurally, both node and links are confined to one di-
mension [63], [67]. Many approaches have been developed to detect the community membership
of each actor under this study. Some developments include latent space models [Fig.1], block
model representation [Fig.2], spectral clustering [Fig.3] and modularity maximization [Fig.4].

Intuitively, a stable community is recognized by strong internal connections and weak external
links. Strong and Weak here represent established relational densities of varying scales. Thus,
most clearly defined and stable communities are often characterized by dense intra-community
bonds and sparse intercommunity links at node edges [63], [72], [74]. Nguyen et al. in [3] presents
a framework for detecting stable communities by first enriching the links within a chosen net-
work with weighted stability indices based on a mutual friends similarity measure. The main
aim of their research is to seek a community partition that remains socially wealthy over time.
However, this method suffers limitations of stationary distributions where the random walker is
only allowed to walk within and not between communities. Furthermore, their proposed solution
essentially reduces to a similar problem in modularity where the wealth of a network is measured
as the difference between the sampled and apparent strength of node degree expectations within
a community. As an NP hard problem, this stochastic estimation based solution suffers from
resolution when the network size grows arbitrarily large.
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(a) Figure 1: Latent Space Model (b) Figure 2: Block Model

(c) Figure 3: Spectral Clustering (d) Figure 4: Modularity Maxi-
mization

The four most popular approaches to the Community Detection Problem

Charkraborty et al. in [4] provides a study into when vertex orderings stay invariant and how this
changes the results of the community detection algorithms. They show that using invariant or-
derings of vertices, the variation of the community detection results can be significantly reduced.
Through a comparison of their results, they observed that constant communities correlates to a
strength metric that is determined by the number of different external communities to which it
is connected.

Cheng et al. in [5] proposed a network sparsification pre-processing step to selectively elimi-
nate weak edges in the network (characterized by inter-community links). In their paper, they
claim that this approach improves the cluster partitioning capabilities of a spectral method that
dissects the bipartite network repeatedly into clusters which are closer to the ground truth.
However, their methods follow data reduction techniques that remove information which may
be apparent and influential towards structural changes in the organization of communities. This
can cause errors in detecting large communities of low edge similarity measures. Again, such a
solution faces the tricky problem of electing suitable thresholds for graph partitioning and edge
removal.

Lancichinetti et. al in [6] provides insight into combining consensus clustering techniques with
existing community detection methods in a consistent manner to detect communities both ac-
curately and with high stability as reflected in the resulting partitions. Additionally, they argue
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that their framework is also useful in determining the evolutionary nature of community struc-
tures in temporal networks.

Seffi et. al in [7] proposes a method to utilize the non-determinism of a community detection
process (e.g. modularity, spectral clustering, etc.) to identify invariant nodes called community
cores that are more similar to ground truths than communities in real and artificial networks.
Their method however, suffers from detection accuracy problems as known null models are not
scalable to large network sizes. Hence, the prediction errors of calculated significance scores of
cores grow exponentially in proportion to network size.

Li et. al in [8] develops a mutuality tendency theory that builds on the intuition that nodes
establishing a two-way dyadic reciprocity feature have a tendency to establish mutual connec-
tions between themselves more frequently than those which occur by chance. Their proposed
algorithm is developed from a spectral clustering framework but with the added capability of be-
ing mutuality tendency aware. However, as a spectral method their pre-processing step involves
”flattening” a high level multi-dimensional network like slashdot by nonlinear data reduction
techniques that could contain truth information related to the actual community structure in
real life scenarios.

Delvenne et al. in [9] proposes a measure of quality for the spectral clustering methods based on
the clustered autocovariance of a dynamic Markov process over time taking place in the network.
They applied their results over constructive and real networks, including hierarchical (structured)
graphs, social (unstructured) networks and a peptide network to obtain reduced descriptions of
protein interaction over different time scales.

Heterogeneous networks on the other hand contain rich information embedded in the form of meta
nodes and meta paths through hyperlinks [78], [72]. Simplifications by data reduction techniques
will lead to inaccurate detection of community structures [61], [77], [83]. In a highly complex
space, uni-dimensional measures are inadequate at describing the detection process. Currently,
one of the more popular and intuitive methods of handling such a problem is to firstly reduce
dimensions of the presented heterogeneous network into single dimension layers and apply the
homogeneous networks community detection algorithms to them. Secondly, detected community
positives are then integrated across the manifold [66], [72], [84].

Liu et al. in [10] tackles the problem of high dimensional heterogeneous networks by first building
a bipartite network of node and link vertices reflected in the original network. Their method suc-
ceeds in detecting communities in their constructed bipartite network, but is highly inaccurate
and not suitable for modularity based approaches for community detection. Furthermore, their
method’s computational efficiency does not scale well with large network sizes.

In a similar vein, Liu et al. in [11] proposed a method of detecting communities for a tripartite
network (3 types of nodes in a 3-uniform hypernetwork) and extending it up to k-dimensionality
superstructures for community detection. Their solution relies on information compression which
is another popular data reduction technique borrowed from the disciplines of information the-
ory. Essentially, most compression algorithms are lossy and as a major drawback, this strategy
eliminates some of the valuable information of the original network during the reduction process
which is non-recoverable at the later reconstruction phases.

Meng et al. in [12] suggests a combination of different semantic (meta) social information paths
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which use a matrix decomposition method similar to [80], [81] and [82] to extract the similarity
weighted measures of interconnected pathways between source and ending objects (which they
declare have to be of the same type). They show that their results fair better than spectral and
path- selection clustering. As an agglomerative type clustering method however, the method is
memoryless and does not keep track of previous transitions. The semantic path type matrix is
also highly sensitive to noise and outliers and can also break up large clusters. Additionally, no
objective function is sought to be minimized through the community detection process. There-
fore, this method also suffers from inaccuracies when identifying cluster numbers and their correct
sizes.

Tang et al. in [14] and [15] proposes unified models and the learning of sparse social dimensions
for detecting community structures through two steps. The first step is achieved by integrating
through multiple dimensions to discover hidden community structures shared by heterogeneous
interactions. The second step is to cluster them through an edge-centric clustering scheme. In
their experimentation and results, this method appears to be the most robust because the extrac-
tion of features eliminates noise and outliers which might otherwise interfere with the tabulated
results. Lastly, partition integration is the accumulation of all k-means partitions of individual
dimensions within the HN. A summation of all such partitions also sums up the uncertainties
which are likely to yield results with relatively high uncertainties.

Mucha et al. in [16] developed a generalized model of network quality functions in each node
from one laplacian slice which connects to itself in other laplacian slices. Their framework allows
the study of community structure in a very general setting encompassing networks that evolve
over time, addressing hyperlinks (multiplicity) and multiple scales (time).

Liu et al. in [17] proposes a method of detecting communities through a measure of compos-
ite modularity which is made up of weighted component modularity against the fraction of edges
in the subnetworks of individual dimensions within the hypergraph. This method is superior to
the one proposed in [13] because it does not require a priori knowledge about the number of
communities as ground truths for their computation and detection processes. However, a major
drawback lies in their assumption that all links are treated equally when assigning weights. This
means that edges which contain noise are amplified as a result of adding high weights. This con-
sequently results in inaccurate detection of communities because of the presence of noisy edges.

Zhen et al. in [18] develops a framework based on regularized joint non-negative matrix fac-
torization (RJNMF) that utilizes hyperlink and content information to improve the accuracy
of community detection methods. Content information is derived from matrix factorization and
structure similarities are obtained directly from combining multiple link and content informa-
tion, similar to methods used in [75] and [86]. As a topic content probability technique, NMF
qualitatively leads to worse mixtures over time because of the lack of a Dirichlet prior (which
helps control sparsity) on top of the data generation process. This means that NMF will be prone
to giving incoherent topics when used with content mining that affects the accuracy of detected
communities using their proposed RJNMF.

Aggarwal et al. in [19] proposes the use of a single local succinctness property to extract com-
pressed descriptions of the underlying community representation in a social network with the use
of a min-hash approach. However, as an agglomerative link clustering technique, it suffers from
the same drawbacks as [12] in being highly susceptible to noise, computationally inefficient and
diffractive (cluster-wise).
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Social Internetworking Scenarios are a developing area of interest within the OSN community
and propose to consider even higher levels of dimensionality (and hence complexity) at even
larger scales of data volumes [57], [58], [59].

Buccafurri et al. in [21] proposes a conceptual framework for constructing stereotypical maps
in a social internetworking scenario to cluster users of similar stereotypical projections together.
Their proposed method (SISO) contains 3 layers of processing: the stereotype detection layer,
the user stereotypical map construction layer, and the SIS stereotypical map construction layer.
The aim of this conceptual framework is to detect communities of hyper structures based on the
stereotypical behavior metric of nodes/actors within these topological graphs.

Pasquale et al. in [22] adopts the use of k-path edge centrality measures to rank edges based
on their centrality scores. With the added advantage of maximizing modularity, their results
show improvement over traditional methods like spectral and/or modularity clustering because
they consider both the global and local information of the network. However, their methods still
require a priori knowledge of existing community structures as ground truths to work effectively.
This a priori knowledge in large heterogeneous architectures may not always be available and
can remain sparse over long periods of time [20].

3 Link Prediction

As a fundamental measure of structural strength, link prediction provides a wide variety of pre-
dictive scores to estimate the quality of multi-dimensional relationships between meta nodes [88].
Link prediction is a well-defined research area which tries to solve the problem of predicting miss-
ing future inferences of relationships between nodes [44], [106], [107]. The fundamental problem
of link prediction centers on likelihoods of the inferred link existence given a priori knowledge of
node attributes and structure [89], [91]. As a wide field of research, several methods attempting
to justify such inferences have been developed. The first use of link predictive methods on social
networks in [23], [27] and [28] were done on flat homogeneous networks. Largely used as baseline
models for network structures of higher dimensionalities and complexities, link estimation and
analysis fall under two broad categories of approaches [44], [29], [31]. The first is static node
attribute based while the second is structural based. Static node attribute based methods infer
the metrics associated with links from identified node features which produce high correlations
between each other. These striking feature similarities are then used to infer the ”strength”
of an interconnecting relationship [87], [90]. Some of the popular measurement metrics used
within this field of study include the Jaccard’s Coefficient (JC), Preferential Attachment (PA),
Adamic/Adar(AA), SimRank(SR), and Common Neighbors(CN) [30], [33]. A formal definition
and explanation of these popular terms are given in Table 1.1 below. Structural based methods
are concerned with estimating the existence of links by drawing upon features identified within
the node structure of the network [34], [35], [36], [37]. Popular estimators include Katz constant
(K), Centrality Measure (CM), Shortest Path Distance (SPD), Rooted Page Rank (RPR) and
Hitting Time (HT). A formal definition and explanation of these popular measures is given in
Table 1.2.
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Table 1.1 Popular Social Measurement Metrics

Table 1.2 Popular Social Estimators

3.1 The Problem Of Link Prediction

Link prediction models generalize the methods of logically inferring missing links from present
feature observations [99], [100], [105]. The problem of link prediction extends beyond the mere
inference of relationships and similarities between the connecting actors when network complex-
ity increases [87], [92], [101]. The ultimate goal of link prediction is to make this intuitive notion
of inference precise and accurate [39], [42]. Several measures and methods are used as indicators
for the inference algorithms and performance index of the implementations respectively. In a
homogeneous network, link prediction can be reduced to solving a one-dimensional problem of a
flat layered relational structure between single node types. In a heterogeneous network, the link
prediction problem grows in complexity across multiple logical structural layers of node connec-
tions. Each layer describes a unique relational structure between the nodes themselves [93], [94],
[97]. In a social internetworking scenario (SIS) scheme, link prediction becomes a problem that is
extremely complicated to solve [108], [109], [110]. This is because solution manifolds increase ex-
ponentially in relation to the dimensionality of heterogeneous networks. In social internetworking
scenarios, links among different social networks assume a fundamental role of relationally con-
necting the same user across different social circles together. These missing edges contain very
high levels of information that functions to bridge relational structures across different complex
hypergraphs. In predicting missing links of such edges, a new discovery of bridges must first be
made which overlaps across the problem of link prediction.
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3.2 Methods Of Link Prediction

Leskovec et al. in [23] presents a link predictive model that infers the presence of missing links
through an adjacency matrix of signed relationships between nodes within a network. In their pa-
per, the authors fused the link prediction problem with the sign prediction problem. Their studies
of link sign prediction on three datasets of popular OSNs (Epinions, Slashdot, and Wikipedia),
using logistic regression classification of individual node features to predict the sign conven-
tions significantly improves performance over previous univariate unsigned (undirected) graph
approaches for link prediction.

Figure 5. Basic Triadic Friendships of three interconnected node actors P, O, and X.

Backstrom et al. in [24] tackles the problem of link prediction by effectively combining meta
node and hyper-edge attribute information based on their developed method of supervised ran-
dom walks. The goal of their algorithm is to learn a function that assigns strengths to edges
based on likelihood ratios that the random walker will transition through a probabilistic path
between two arbitrary nodes which do not have an established relationship. They performed
experiments on Facebook and co-authorship networks and their results show large improvements
over random walks with restarts (their baseline comparison) and supervised machine learning
techniques which require feature extraction and generalization [96], [98], [102].

Fire et. al [25] proposes a method of identifying missing links through the use of simple structural
attributes and features. They show through their implementation, that a machine-learning clas-
sifier is capable of performing much better at the link prediction task than conventional attribute
based classifiers. The experimental results demonstrated that using the friends-measure for link
prediction gave better results when compared to the use of more popular measures like JC, CN,
AA, etc. However, their research currently considers link prediction using only graph topology
features. As a result, if the given graphical network is sparse and contains missing link infor-
mation, such an approach will quickly diverge from the actual ground truth in the prediction task.

Liden et al. [26] elaborates on the problem formulation of link prediction and establishes an
intuitive notion of optimizing proximity measures that theoretically leads to more accurate pre-
dictions of missing and unobserved links. They advocate that both network topology and node
attributes can work together to infer missing links more accurately than conventional attribute-
based or structural based singular approaches. Their listed variables for the actual consideration
include finite sums over paths in the network like shortest path distances and number of shared
common neighbors.
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Chen et al. [27] in their study evaluated four friend recommender systems that qualify the prob-
lem of link prediction by establishing links between 2 or more people who have similar interests
and attributes. Their studies discovered that algorithms based on structural network information
were able to produce better-received recommendations and find more known contacts for users,
while algorithms using object similarity of the relational structure were better at discovering new
friends. Results tabulated from their study show that the algorithms they have used to compare
performance of the link prediction problem are effective in making people recommendations from
social network structures.

4 Structural Evolution

4.1 Markov Logic Networks

Markov Logic is an area of research that focuses on stochastically predicting the evolution of
networks using a predefined set of behavior beliefs [124]. Such beliefs may be established inde-
pendently or learned from past node and structure state transition behavior. Independent beliefs
are also known as ground truth primitives [116], [120], [121]. In a Markovian sense, cliques within
a network are associated with a potential energy function that dictates their ground truth states
[111], [123], [113]. Such functions are also a factor affecting the transitional probabilities from
one state to another temporally [112]. In short, a Markov Logic Network commonly referred to
as Markov Random Fields (MRF) of a graph G(V,E) is given by:

P (X = x) =
1

Z
exp(Σjwjfj(xj)) (2)

where

Z = Σx∈ρ exp(Σjwjfj(xj)) (3)

Which essentially states that the joint probability distribution (which is feature conditional)
of all nodes (variables) of the graph is a log linear curve of the weighted exponentiated sum of all
features of the clique states [114], [122], [121]. In the abovementioned mathematical relations, ρ
is defined as the superset of all possible assignments to the network structure’s random variables.
fj denotes the clique structural features at all j states and xj corresponds to the probabilistic
distribution of the j-th posterior feature state of each clique in question, where, in the most direct
translation, there is one feature corresponding to each possible state xk of each clique. Its weight
is given as:

wk = log φk(xk) (4)

Where φk is referenced as the clique potential at any given state in its transitions. Markov
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Logic has been used as an evolutionary inference mechanism to predict the structural behavior
of any given knowledge domain based relational schema [124]. It does this by creating a tai-
lored template from combining probabilities with first-order logic specific to the relations and
variable features of the respective graph entities in question [115], [124]. Yet, its methods are
NP-complete and it scales poorly when the size of the network grows arbitrarily large [117],
[119], [120]. To circumvent exponentially increasing complexity with structural growth, MLNs
often rely on other disciplines of Markovian statistical learning like Markov Chain Monte Carlo
(MCMC), Gibbs Sampling, and up until recently, Hamiltonian Dynamics (HMC) [118], [121],
[125]. The true performance measures of the latter Markovian processes are often far superior
to MLNs. This arises from the fact that Markovian Stochastic Processes uses a softer set of
first order Knowledge Base (KB) constraints. Statistical Logic-based approaches however, derive
from direct brute force Markovian inferences which require hard First Order KB constraints in
a manifold. The trade-off from such a compromise is accuracy for speed [120]. MCMC, Gibbs
Sampling and HMC are all capable of converging faster than a strict first-order logic inference
mechanism, towards an approximation of the actual ground truth distribution (assuming no local
minimas or maximas within the search solution space) [125]. MCMC with Gibbs Sampling and
HMC all provide for an accurate enough approximation of the structural schema given enough
samples of the posterior distribution surfaces which it builds between each transitional state. A
First Order Knowledge Base (KB) is a set of sentences or formulas in First Order Logic [51].
These formulas are constructed using four types of symbols: Constants, Variables, Functions and
Predicates. Symbols represent Object entities within the logic network, variables refer to any
one of such objects that may change during the course of time, functions (mostly probabilistic)
negotiate the transitions through which these state changes occur, and predicates are exist-
ing relational constraints (links) between object entities (nodes). Together, they form a complete
description of the Markovian Logic Network and its internalized working mechanisms [117], [121].

Markov Chain Models have been used in a variety of scenarios to predict the behavior of networks
over a time frame. In [45] Ching et al. extended Markov Chain models into a multi-dimensional
space to model multi-variate change with high complexity multi-categorical data. Based on a
proposed linear programming method of parameter estimation with a complexity of O(n3L),
their method scales poorly with increasing dimensionality (variables). Their method presents
two problems which detection and prediction algorithms are faced with. Firstly, if the patterns
of observable data are short and suffer from data sparsity, then state transitioning probabili-
ties will be erroneous given poor a priori estimates. Secondly, convergence to the real structural
distribution will be near impossible given the high error rates accumulated through cubic com-
plexity correlations. The log probability weights Wj will have to be carefully chosen and are
often done through trial and error. For high order complexities with sparse data observables, the
convergence rate of the first-order Markovian logic process functionals entropies. A higher order
Markov chain may be required to tackle the problem of high dimensionality metadata.

Piccadi et. el. in [46] uses a Markov Chain random walk to determine a community quality
measure identified in their paper as persistence probability to identify clusters with compara-
tively strong internal connectivity. An analysis of their study was presented on four networks
which showed that their results produce a sharper definition of quality in the detection of com-
munities in comparison to traditional community detection algorithms. However, like [45], this
method suffers from a requirement to pre-determine a threshold parameterization of community
quality which it assumes as a priori information to the random walk process. Also, a lumped
Markov process requires a clustering of original communities into node clusters which are inde-
pendent distributions from other node clusters. This means that as a single node can only belong
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to one cluster and not the other, detecting overlapping communities will become a challenge.
Furthermore, the modular approach of their model methods lacks granularity and overlooks the
time varying nature of edge and hyper-edge attributes within the node cluster. This could impact
the accuracy of an identified community given a predefined quality threshold to satisfy.

To address the problem of inaccurate community detections from a predefined quality threshold
through lumped Markov models in [46], Hoffman et al. in [47] proposed bounding the errors that
could lead to inaccurate observations from lumping of the microstates of the Markov chain into
coarser meso-state levels of prediction. An important observation the authors have made through
their work is that in a mesoscopic scale, deviations from a microscopic scale are linearly related
by uniform bounds through pair-wise state transitions. Their results show that their bounds
are consistently uniform and not asymptotic. However, their method requires an ergodic, time
homogeneous, and reversible Markov Chain, which necessitates the instantiation of a stationary
distribution of the lumped model. The functional flaw is that social networks are a mixture of
lumped communities that do not always establish these initial working prerequisites. This will
lead to widening inaccuracies through successive iterations of the power-law structure as ergodic-
ity breaks down. Additionally, this method also requires the careful selection of a weighted norm
that preserves detailed balance. If the parameterization choice fails, lumping Markov chain mod-
els as node clusters will not scale well to prediction performance of a predefined quality threshold.

In [48], Bunescu et al. performs information extraction through Relational Markov Networks
(RMN) which considers arbitrary dependencies between extractions. The time complexity of
their method in computing messages from a potential node to a label node however, is O(n2L).
Their tests on two datasets of Yapex1 and Aimed2 show that their method incorporating the use
of global entity influencing logical OR templates for cliques significantly improves performance of
protein (information) extraction over localized independent extractions through an F-measure.
However, this method suffers from a problem of accuracy which limits the performance of the
system.

In [49] Taskar et al. presents an in-depth exploration of Relational Markov Networks as a design
of a representation language that allows for flexible modeling of complex relational interactions
in a heterogeneous structural domain. The authors focus on supervised learning as a motivation
for their framework. They argue that structurally, an important source of information is often
captured through links. In their results, the authors discussed two particular templates which
they have found to be of beneficial use in several applications through RMN models: similarity
templates which relate to the classification of links or objects that share a certain graph based
property and transitivity templates that relate tuples of objects and links in an organized trian-
gular tessellation on the hypergraph’s structural schema.

In [50] Domingos et al. proposes the use of Markov Logic to combine probabilistic distribu-
tions with first-order logic to address the paradigm of competing tenets between uncertainty
and complexity in machine learning applications. They argue that Markov Logic outperforms
traditional approaches like Stochastic Logic Programs, Probabilistic Relational Models (PRMs),
Bayesian Logic Programs, Relational Dependency Networks, etc. It achieves this through the
use of well-defined mathematical relations of extending first order logic by attaching weights to
transitional states of graphical relational entities.

1 URL: www.sics.se/humle/projects/prothalt/
2 URL: ftp.cs.utexas.edu/mooney/bio-data/
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Richardson et. el. in [51] implemented a single representation of both first-order logic and prob-
abilistic graphical models into a ground Markov Network for inference and learning of stochastic
evolutionary processes of real-world networks. They propose a novel implementation, MaxWalk-
Sat, which performs inference by grounding the minimal subset of the network descriptors re-
quired for answering an information query through Gibbs sampling over identified initial states
of this subnetwork. Preliminary tests done on real-world university domain data are good and
illustrate the promise of MLNs.

In [52] Pedro et al. establishes the use of MLNs in the domain of structured databases to address
the problem of data entity resolution in the presence of outliers and noise; usually in the form of
similar (corrupted) duplicate records. They show that MLNs are able to efficiently support the
data cleaning and preparation stages of the data mining process. The authors propose the use of
hybrid measures like predicate and reverse predicate learning to improve performance over pure
word-based and string-based approaches for entity resolution. As the entity resolution problem
is domain dependent, such relations have to be taken into account when constructing formulas
for the first-order logic with ground truths established in the first order KB.

Singla et al. in [53] explores the discriminative learning aspects of Markov Logic ground struc-
tures to predict information about co-authorship within a meta schema of hyper nodes and links.
They developed an algorithm for discriminative learning of MLN parameters by combining the
voted perceptron with a weighted satisfiability solver. The results of conducted experiments on
two real-world domains show much promise in this general direction of approach.

Lowd et al. in [54] explores several alternatives to weight learning ranging from per-weight
learning rates to second-order methods. Their efforts were focused on solving the problem of
inconsistencies due to the ill-conditioning of widely varying clauses which causes a slow gradient
descent from state of the art discriminative learning methods, the voted perceptron algorithm.
Their developed MLN weight learning methods outperformed the perceptron because of its ef-
fective use of second-order information. A major flaw of weight learning for Markov Networks is
that they can be extremely ill-conditioned, making simple gradient descent-style algorithms very
slow to converge.

Poon et al. in [55] presented the first unsupervised approach to co-reference resolution with
performance accuracies, rivaling traditional supervised approaches through the joint inference
across mentions. Their approach is based on Markov Logic to powerfully describe uncertainty
in their joint inferences. Their leverages on apposition, predicate nominals, and transitivity paid
off in their results when their system achieved an F1 score 7-9% higher than Haghighi and
Klein (2007). However, co-reference, being an inference mechanism itself, is still susceptible to
ill-conditioning of performance if training with noisy data.

4.2 Trust Analysis

Trust Computing spreads across many applications in today’s digital age. Essentially, trust
evolves as a result of stable bonds shared between entities. Such bonds contain a rich set of
multi-dimensional attributes and similarities that correlate to the behavior of node entities di-
rectly and indirectly connected to it. Although trust is an inferred property of node behavior
derived from latent relational constraints, its measure is highly complex and vast. Essentially,
it is based on a set of mutually identified predicates that define a set of ground truths which
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constitute towards a set of belief states that node behavior will be constrained to expected out-
comes. Broadly speaking, trust is defined in three main domains: Transitivity, Asymmetry and
Personalization. It is also precisely the relational constraining forms of these feature attributes
that leads to the complex structure of any trust network.

Trust analysis is a relational learning technique that empowers applications with data integrity
protection mechanisms, whenever there are exchanges of information. A problem that trust com-
puting grapples constantly with is the question of how to provide for data requested without
sacrificing the disclosure of sensitive fields. As a relational approach, trust analysis has profound
implications on data security and privacy. Essentially, through the learning of trust relations be-
tween entities, modern-day applications are able to provide for more secure and granular access
to sensitive data and information.

In [126], Wang et al. emphasizes the use of trust relations through the correlation of application
purpose as a measure of providing the level of access to data. Their work provides an infor-
mation management framework based on relational integrity between requester and requestee.
Relationally, trust varies in proportion to the reputation of a person/entity/requesting source.
Most privacy models however, provide sharing of data through implementation of security polices
only, which in turn restricts the sharing of information on a needs based requirement irrespective
of the purpose of the information request. Additionally, most privacy management policies seek
to generalize information towards high levels of anonymity that are costly to decipher at the re-
ceiving end, thus preventing the efficient sharing of low level data and information of interest. In
this vein, the authors thus propose associating data access through an application-wise intended
purpose” for the IR process.

A fine balance exists between privacy and utility. Many social information transactions work
on the principle that some amount of privacy will have to be sacrificed in order to provide for
the information utility requested by the other party. In practice, many applications have yet to
find a suitable fine-tuned solution based on this balance for IR applications. In a bold attempt
to passively empower applications with such security features, Sun et al. in [127] extends on
[126] by incorporating purpose and trust into anonymizing data so that both privacy of data is
preserved for the trustor while at the same time, an adequate utility is provided for the trustee
requesting the IR. The authors achieve the abovementioned balance of data security to adequate
utility through the use of entropy to prioritize the importance of attributes required by the IR
process. In information theory, entropy is defined as a probabilistic measure of the likeliness (or
unlikeliness) that a piece of information received at a destination was directed from an interesting
source in question.

Although entropy as a predicate function seeks to assimilate sensitive information into anonymity
through randomizing (generalizing) multi-layered hierarchy attributes such that information be-
comes encoded and indiscernible, it suffers from major drawbacks. One such drawback is the
problem of overfitting (as in [129]). Firstly, as information entropies the conditional entropy
function tends to overfit the data presented in its current state which creates high computational
overheads for the degree decomposition of a presented attribute Ai. As a result, the complexity
of the decomposition task increases exponentially in proportion to the distribution degrees of
entropy. This is given in the equation below:

Deg(Ai) =
Pi∑n
i=1 Pi

×Deg(T )for 1 ≤ i ≤ n (5)
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Which is defined so that the degree of decomposition of an attribute Ai is the weighted ratio
of the attribute priority Pi against all attribute priorities in the generalization hierarchy of the
degree of table anonymizations, T corresponding to the height of the generalization hierarchy mi.

Secondly, entropy is not truly infinitely random in a Gaussian manifold. It is only as random as
the bounds its distribution is contained in. Li et al. in [128] extends the prior developments in
[127] by furthering this constraint in their developed entropy model on l-diversity anonymized
dimensions to tackle the problem of overfitting. The authors define two types of disclosures in
their work: the identity disclosure and the attribute disclosure and argue that k-anonymity is not
enough to protect the integrity of data. Although effective in tackling the problem of overfitting,
constraining the problem set to l-diverse dimensions presents serious limitations to the concept
and requirement of information entropy. Even though it may be adequate to prevent similarity
attacks by implementing the α weighted categorical sum of sensitive information fields, reducing
the solution space provides a major advantage to patterned hacks. As a probabilistic measure,
entropy ensures that anonymity is maintained at any given time-aware state of generalized data
representation, as long as that presented data independency is above a certain threshold of ran-
domness. Although it is resilient against similarity attacks, it may not prevent patterned hacks
from occurring. These kinds of intrusions depend largely on the search space in question. If the
space is small, patterned attacks have the advantage of reducing complexity in their identification
schema and are thus able to decode information accurately within a shorter amount of time.

The reason why similarity attacks fail is simply because the former tries to find a one dimen-
sional answer in a multi-dimensional solution space, and in so doing arrives at indeterministic
results because the solution space overfits the search. However, the latter instead bridges this
gap by considering high-complexity data space manifolds of patterned co-occurrences and solves
for them simultaneously. This thereby produces more accurate and deterministic results with
every single search (however, at the prime cost of speed if the search/solution space is large).
Thus, while entropy-governed anonymization methods increases the probabilistic scores of ran-
domness to measures above negative log-linear distribution characteristics of entropy models;
De-anonymization techniques therefore, learn these relations which seek to reduce that possibil-
ity to zero. Increasing the solution space however, provides a more resilient protection scheme
against relational-learning based compromises; however, at the prime cost of utility measure-
ment. In section 3.1 of [128], the authors argue that it is necessary to balance the opposing goals
of data privacy and utility. Their evidence is provided by the discernibility metric (DM) given
by the equation:

DM =
∑

QI−groupG
|G2| (6)

In the equation, |G| is the size of the QI-group G. As can be easily derived from the abovemen-
tioned relation, the complexity of discernibility is therefore O(m2) where m denotes the size of
the QI group in question. An objective function therefore, would be to minimize this cost from
the direct process of anonymizing discernable data into smaller l-diversity dimensions however,
again, at the jeopardy of the security drawbacks mentioned above.

4.3 Sentiment Computing and Folksonomy

Sentiment Computing is an emerging but well-defined area of relational learning applied tech-
niques. Essentially, numerous efforts have been made to develop intelligent algorithms which
are capable of detecting emotions in the form of sentiments expressed over the occurrences of
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key events. Sentiment as an expressive form of emotions over short texts is a highly complex
but fully evolved hyperlinked network of social relations between actor node entities. They de-
fine the underlying scores over the formation of links between nodes and how they may evolve
over time. The methods include the use of natural language processing techniques, text analysis
and computational linguistics to identify and extract subjective information from source materi-
als [129]. Its approaches of identifying social subjectivity in emotions are wide and varied. They
include, but are not limited to, signed relational graphs, transitivity pattern detection and identi-
fication, Term Frequency-Inverse Document Frequency (TF-IDF) bag-of-words, cosine similarity
measure, other TF variants (e.g. sublinear scaling, maximum normalization, Query Weighting,
Pivoted Normalization, etc.), Latent Direchlet Allocation (LDA), K-means clustering, Hierarchi-
cal Modeling, agglomeration, etc. [130].

Folksonomy on the other hand is a derived system of classifying emotions based on their identified
tags and their frequency of occurrences. There are two branches of scientific thought approaches
to the problem of classification in this domain. One approach is based on intrinsic tag charac-
teristics and pattern recognition schemes while the other focuses on application based tagging
techniques. Several algorithms developed in this area include but are not limited to: social Sim
Rank (SSR), Social Page Rank (SPR), and Ranking-based Multi-correlation Tensor Factoriza-
tion (RMTF) [131]. Both Sentiment analysis and folksonomy have impactful implications on the
process of information retrieval.

In [129], Rao et al. explores the use of maximum entropy techniques constrained to topic levels
for modeling of social emotion classification over short and sparse text. The challenge of senti-
ment identification over short text as compared to full document pages is the lack of relational
subjective word co-occurrences for sentiment analysis methods to effectively reconstruct the con-
textual topic of the text. This means that in short texts, topic-level identification models suffer
from severe data sparsity problems. To overcome the problem of data sparsification inherent in
short texts, the authors propose the use of maximum entropy (ME) methods to identify prob-
abilistic thresholds beyond which the contextual relevance of the sentiments expressed within
short texts assimilates into generality. The drawback of using classical ME as explained before
is the problem of overfitting. The problem with sparsification of words is that their underlying
meanings and latent information get displaced over a large superset of inter-correlated contexts
of use. The authors argue that it is difficult to generalize the sparsity problem of short texts
with a single topic and propose to extract fine topics in social information exchanges through
the breakdown of documents into bitterms and learning the global distributions to identify the
contextual topic in question. This method of modeling is referred to as the Bitterm Topic Model
(BTM). In short texts, grammar words such as pronouns, articles, conjunctions and prepositions
are often omitted. This can be quite challenging for the sentiment analysis algorithm to detect.

Through their conducted experiments, the authors have shown that topic-level based maxi-
mum entropy modeling outperforms other unsupervised sentiment classification and tagging ap-
proaches of real-world short text documents and remains competitive in comparison to various
other baseline techniques. However, the constraint of topics within a corpus solution space is
still vast and may result in indeterministic outcomes if the parameters of latent sentiment word
co-occurrences are not tuned properly. This requires the entropy distribution to be further con-
strained to the specific sentiments tagged within the social information exchange. Which again
gives rise to another statistical question: how can we determine the actual distribution of senti-
ments expressed in a short text given only a sparse a priori co-occurrence of data points?
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In a similar vein, Xie et al. in [132] explores the relevancy of contextual data to the corpus tag-
ging of sentiments in folksonomy of OSNs. Their work involves modeling of contextual data in 3
phases: pre-filter, post-filter and implementation. The authors also define two kinds of contexts
which are used for tagging of sentiments expressed over a series of social information exchanges.
They are the social context model and the verbal context models.

The experiments conducted on the Movielens dataset with their context-aware search optimiza-
tions against baseline search methods (which are not context aware and only matches query Q
with resource profiles R), show that a dominant context incorporating both verbal and social
contextual data outperforms baselines and other contextual-aware variants of search optimiza-
tions.

4.4 Fuzzy Logic and Artificial Intelligence

Fuzzy logic is a branch of artificial intelligence that associates itself with quantifying the spread
of uncertainties at decision boundaries. Some popular forms of Artificial Intelligence research
include but are not limited to: Fuzzy Logic, Artificial Neural Networks (ANN), Support Vec-
tor Machines (SVMs), K-Nearest Neighbor (KNN), and Genetic Algorithms (GA). In almost all
branches of stochastic approaches (and therefore Online Social Network Analysis), a major flaw
of most classification (and therefore, detection, labeling, etc.) approaches are that of nodes at the
edges of the identified communities and groups. In order to effectively learn from an observation
pattern to uncover pivotal information of interest, social relational learning approaches will have
to deal with decision ambiguities which are further amplified at the boundaries of such groups
of interest. This ”vagueness” is then consequently expressed as a probabilistic distribution of
likelihoods over predefined quantized (mostly binary) thresholds.

While some AI methods adopt a certain degree of ”fuzziness” in their approaches at attempting
to solve a theoretical problem logically (and hence, therefore practically), there are others still
well received within the research community that adopt a hard decision-boundary, rule-based
approach. The concept of ”fuzziness” is nothing more than simply a softening the ”strict” condi-
tions which exist at the boundaries of most rule-based models (SVM included). As an illustration,
refer to Figures 6 and 7 below:
As can be seen from the Figure 6, at the decision boundary, if an edge node is detected, the

probabilities associated with its membership of either community A or B is 0. Community mem-
bership then, is given by a rectangular function as:

rect(µA/B) = Π(µA/B) (7)

Where

Π(µA/B) =

{
0 Where µA/B ≤ µA/Bb

1 Where µA/B ≥ µA/Bb

(8)

Where A/Bb are nodes defined at the boundaries of either community A and /or B. However,
with the softening of hard conditions defined at the boundaries in Figure 7, the membership
functions becomes µĀ : X → [0, 1] and µB̄ : X → [0, 1] respectively. Where, µĀ and µB̄ denote
the fuzziness of memberships in either community groups A or B respectively.

In fact, for realistic online social networks, such crisp boundaries are rarely defined, if ever.
Community edge nodes are oftentimes, members of many other such social groups in question,
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(a) Figure 6: Crisp Community Sets Model (b) Figure 7: Fuzzy Community Sets Model

Figure: Differences in membership distributions between well-defined and fuzzy community boundaries.

(a) Figure 8: Crisp Overlapping Communities Model (b) Figure 9: Fuzzy Overlapping Communities Model

Figure: Differences in membership distributions between well-defined and fuzzy overlapping communities.

thereby creating regions of decision ambiguities where more than one community overlaps. If these
regions were to be defined within enclosed hard boundary conditions (e.g. A∩B), then all nodes
which lie within these intersections are definite misclassifications. However, if the boundaries
governing such intersections were ”blurred” out by a ”vagueness” (most conveniently described
in most cases as a Gaussian Kernel Mask), then a corresponding distribution filtered out from
the softening of these hard constraints will be described as in Figures 8 and 9 below.
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As can be seen, the trade-off from ”weakening” the strict boundary conditions is such that mem-
bership of nodes detected from the exact center of the community structure can never be inferred
with absolute certainty. It is always lesser than the probability of ”1.” However, the benefit from
this trade-off is acquired at the boundaries, where certain discriminative measures can be used
to weight the membership of the edge nodes in question. For such a discriminator as K-NN
for example, the decision problem then reduces to a minimization of the proximities between
the edge node and its K-nearest neighbors the larger the ”K” the more granular (and there-
fore accurate) the measure. In Figure 9, the smaller ”peaks” in the distribution are artefacts
(outliers) which may be effectively frequency filtered. Essentially, Fuzzy Logic as an intuitive
logical method imposes a spread of ambiguity over the entire model subspace of interest, which
moderates expectations between absolutes of certainties and uncertainties often defined by hard
boundary constraints.

In [133] the authors explore the correlations between generalization capabilities of classifiers
and their fuzzy counterparts. The authors argue that uncertainties exist in every aspect of the
classification process. This includes both the learning and the reference phases of the classifier.
Their observation led to a key discovery of methods of training a classifier to classify samples
within the fuzzy set effectively.

Training of a classifier becomes a task which is specific to the type of classifier used to solve
the classification problem in question. There is a clear distinction made between crisp classifiers
like SVM (which maximizes the Euclidean distance between points of two or more groups) and
vague classifiers like K-NN (which classify nodes based on the localized spread of its neighbors).
While different classifiers are adept at making decisions under fuzzy conditions, uncertainties are
not only restricted to the algorithms employed under such conditions. Such uncertainties may
be reflected as observations of partial information and feature ambiguities.

The fuzziness of fuzzy refers to such pre-existing ambiguities already prevalent in an existing
ill-defined set of observables. As a measure of indefiniteness associated with the retrieval of in-
formation of interest, the authors mentioned that entropy, as a non-probabilistic approach, can
be used to measure the likelihood of making a confidently correct distinction between observed
and inferred data sets.

In [134], the authors again expanded on their study on generalization and fuzziness towards high
dimensional data structures. From their experimentation, they conclude their discovery with the
consensus that generalization of a classifier improves stochastically, when fuzzy randomness of a
highly complex data set increases. However, when data dimensionality is reduced, complexity de-
creases as classifier generalization performance decreases. In this paper, the authors propose the
use of an extreme learning machine (ELM) as a single layer feed forward neural network (SLFN)
classification approach. Their results and experiments show that there are existing correlations
between the fuzziness and generalizations of the classifier. Their graphical representations on 12
data sets calculated from the Pearsons correlation between changing accuracies and fuzziness
levels indicate that generally, given a level of relative complexity in the existing data set, the
level of fuzziness reaches a threshold where generalization performance of the classifier dips.

In [135], the authors apply the logic of fuzziness onto multiple instance learning (MIL) algo-
rithms. They argue that current research done on Multiple Instance Learning algorithms involves
only the informativeness of a bag of training samples in order to make a decision on whether to
select it for learning. In their paper, the authors developed the MIAL (Multiple Instance Active
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Learning) algorithm which automates the selection of training bags which contain both high in-
formativeness and diversity. As a measure of fuzziness, the authors study the sparsity of instances
within the bag of training data. Their experimental results show that bags with greater internal
instance sparsity tend to score a higher dissimilarity degree, which in turn correlates well to a
higher diversity index. Such bags can then be chosen by the Active Learning classifier for multiple
instance learning. However, the performance of MIL in diversity-based approaches suffers when
instance distributions are not as irregular and its occurrences are not very differentiable from
each other.

5 Conclusion

Social Networks have evolved from the pre-digital ages to the online internet scene. With the
explosion of data prevalent in every aspect of social function in today’s social structure, more
efficient and robust methods of discovering knowledge from data mining approaches are required
to organize and infer useful social relationships for various real-world applications like recom-
mendation, topic modeling, trust reciprocity, etc. In this paper, we have covered a wide scope
of current research literature on various relational learning techniques employed in the Online
Social Network context. The widely used methods covered in this survey are involved in inferring
and identifying relationships co-referenced from structures and include but are not limited to:
Detection, Prediction and Markovian Logic approaches from their related core social perspec-
tives of Communities, Links and Networks. It is hoped that this survey will provide both a wider
and deeper perspective on the various methods and techniques used to learn from relational
structures so that new knowledge can be uncovered from highly complex and voluminous data
of the Online Social Networks scene. In conclusion, relational structures are the building blocks
of social networks that relate to how actual relationships evolve in real-life scenarios.
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95. Lü, Linyuan and Zhou, Tao“Link prediction in complex networks: A survey”. Physica A: statistical mechanics
and its applications, Vol. 390, No. 6, pp. 1150-1170, 2011, Elsevier.

96. Buccafurri, Francesco and Lax, Gianluca and Nocera, Antonino and Ursino, Domenico“Discovering Hidden
me Edges in a Social Internetworking Scenario”. SEBD, pp. 15-26, 2012.

97. Buccafurri, Francesco and Lax, Gianluca and Nocera, Antonino and Ursino, Domenico“Discovering links
among social networks”. Journal Of Machine learning and knowledge discovery in databases, pp. 467-482, 2012,
Springer.

98. Ahmad, Muhammad Aurangzeb and Borbora, Zoheb and Srivastava, Jaideep and Contractor, Noshir“Link
prediction across multiple social networks”. Data Mining Workshops (ICDMW), 2010 IEEE International Con-
ference on, pp. 911-918, 2010, IEEE.

99. Ching, W and Zhang, S and Ng, M“On multi-dimensional Markov chain models”. Pacific Journal of Opti-
mization, Vol. 3, No. 2, 2007, Yokohama Publishers. The Journal’s web site is located at http://www. ybook.
co. jp/pjo. html

100. Piccardi, Carlo“Finding and testing network communities by lumped Markov chains”. PloS one, Vol. 6, No.
11, pp. e27028, 2011, Public Library of Science.

101. Hoffmann, Karl Heinz and Salamon, Peter“Bounding the lumping error in Markov chain dynamics”. Applied
Mathematics Letters, Vol. 22, No. 9, pp. 1471-1475, 2009, Elsevier.

102. Bunescu, Razvan and Mooney, Raymond J“Relational markov networks for collective information extrac-
tion”. ICML-2004 Workshop on Statistical Relational Learning, 2004.

103. Taskar, Ben and Abbeel, Pieter and Wong, Ming-Fai and Koller, Daphne“Relational markov networks”.
Introduction to statistical relational learning, pp. 175-200, 2007, MIT Press.

104. Domingos, Pedro and Lowd, Daniel“Markov logic: An interface layer for artificial intelligence”. Synthesis
Lectures on Artificial Intelligence and Machine Learning, Vol. 3, No. 1, pp. 1-155, 2009, Morgan & Claypool
Publishers.

105. Richardson, Matthew and Domingos, Pedro“Markov logic networks”. Machine learning, Vol. 62, No. 1, pp.
107-136, 2006, Springer.

106. Singla, Parag and Domingos, Pedro“Entity resolution with markov logic”. Data Mining, 2006. ICDM’06.
Sixth International Conference on, pp. 572-582, 2006, IEEE.

107. Kok, Stanley and Domingos, Pedro“Learning the structure of Markov logic networks”. Proceedings of the
22nd international conference on Machine learning, pp. 441-448, 2005, ACM.

108. Singla, Parag and Domingos, Pedro“Discriminative training of Markov logic networks”. AAAI, Vol. 5, pp.
868-873, 2005.

109. Lowd, Daniel and Domingos, Pedro“Efficient weight learning for Markov logic networks”. Knowledge dis-
covery in databases: PKDD 2007, pp. 200-211, 2007, Springer.



26 Ji Zhang* et al.

110. Poon, Hoifung and Domingos, Pedro“Joint unsupervised coreference resolution with Markov logic”. Pro-
ceedings of the conference on empirical methods in natural language processing, pp. 650-659, 2008, Association
For Computational Linguistics.

111. Tran, Son and Davis, Larry“Event modeling and recognition using markov logic networks”. Computer vision–
ECCV 2008, pp. 610-623, 2008, Springer.

112. Snijders, Tom AB“Markov chain Monte Carlo estimation of exponential random graph models”. Journal of
Social Structure, Vol. 3, No. 2, pp. 1-48, 2002.

113. Domingos, Pedro“Mining social networks for viral marketing”. IEEE Intelligent Systems, Vol. 20, No. 1, pp.
80-82, 2005.

114. Kok, Stanley and Domingos, Pedro“Learning Markov logic networks using structural motifs”. Proceedings
of the 27th international conference on machine learning (ICML-10), pp. 551-558, 2010.

115. Dierkes, Torsten and Bichler, Martin and Krishnan, Ramayya“Estimating the effect of word of mouth on
churn and cross-buying in the mobile phone market with Markov logic networks”. Decision Support Systems,
Vol. 51, No. 3, pp. 361-371, 2011, Elsevier.

116. Domingos, Pedro and Richardson, Matthew“Markov Logic: A Unifying Framework for Statistical Relational
Learning”. Statistical Relational Learning, pp. 339-347, 2007.

117. Staab, Steffen and Domingos, Pedro and Mike, P and Golbeck, Jennifer and Ding, Li and Finin, Tim and
Joshi, Anupam and Nowak, Andrzej and Vallacher, Robin R“Social networks applied”. IEEE Intelligent systems,
Vol. 20, No. 1, pp. 80-93, 2005, IEEE.

118. Davis, Jesse and Domingos, Pedro“Deep transfer via second-order markov logic”. Proceedings of the 26th
annual international conference on machine learning, pp. 217-224, 2009, ACM.

119. Ching, Wai-Ki and Fung, Eric S and Ng, Michael K“A multivariate Markov chain model for categorical data
sequences and its applications in demand predictions”. IMA Journal of Management Mathematics, Vol. 13, No.
3, pp. 187-199, 2002, Oxford University Press.

120. Ching, Wai-Ki and Ng, Michael M and Fung, Eric S and Akutsu, Tatsuya“On construction of stochastic
genetic networks based on gene expression sequences”. International Journal of Neural Systems, Vol. 15, No. 4,
pp. 297-310, 2005, World Scientific.

121. Siu, T and Ching, W and Ng, M and Fung, E“On multivariate credibility approach for portfolio credit risk
measurement”. Quantitative Finance, Vol. 5, pp. 543-556, 2005.

122. Ching, WK and Fung, ES and Ng, MK“A higher-order Markov model for the Newsboy’s problem”. Journal
of the Operational Research Society, Vol. 54, No. 3, pp. 291-298, 2003, Palgrave Macmillan.

123. Lafferty, John and McCallum, Andrew and Pereira, Fernando and others“Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data”. 2001, Williamstown.

124. Getoor, Lise and Friedman, Nir and Koller, Daphne and Taskar, Benjamin“Learning probabilistic models of
relational structure”. ICML, Vol. 1, pp. 170-177, 2001.

125. Taskar, Benjamin and Segal, Eran and Koller, Daphne“Probabilistic classification and clustering in relational
data”. International Joint Conference on Artificial Intelligence, Vol. 17, No. 1, pp. 870-878, 2001, LAWRENCE
ERLBAUM ASSOCIATES LTD.

126. Wang, Hua and Sun, Lili“Trust-involved access control in collaborative open social networks”. Network and
System Security (NSS), 2010 4th International Conference on, pp. 239-246, 2010, IEEE.

127. Sun, Xiaoxun and Wang, Hua and Li, Jiuyong and Zhang, Yanchun“Injecting purpose and trust into data
anonymisation”. computers & security, Vol. 30, No. 5, pp. 332-345, 2011, Elsevier.

128. Sun, Xiaoxun and Li, Min and Wang, Hua“A family of enhanced (L, α)-diversity models for privacy pre-
serving data publishing”. Future Generation Computer Systems, Vol. 27, No. 3, pp. 348-356, 2011, Elsevier.

129. Rao, Yanghui and Xie, Haoran and Li, Jun and Jin, Fengmei and Wang, Fu Lee and Li, Qing“Social emotion
classification of short text via topic-level maximum entropy model”. Information & Management, Vol. 53, No.
8, pp. 978-986, 2016, Elsevier.

130. Li, Xiaodong and Xie, Haoran and Chen, Li and Wang, Jianping and Deng, Xiaotie“News impact on stock
price return via sentiment analysis”. Knowledge-Based Systems, Vol. 69, pp. 14-23, 2014, Elsevier.

131. Xie, Haoran and Li, Qing and Mao, Xudong and Li, Xiaodong and Cai, Yi and Rao, Yanghui“Community-
aware user profile enrichment in folksonomy”. Neural Networks, Vol. 58, pp. 111-121, 2014, Elsevier.

132. Xie, Haoran and Li, Xiaodong and Wang, Tao and Chen, Li and Li, Ke and Wang, Fu Lee and Cai, Yi and Li,
Qing and Min, Huaqing“Personalized search for social media via dominating verbal context”. Neurocomputing,
Vol. 172, pp. 27-37, 2016, Elsevier.

133. Wang, Xi-Zhao and Xing, Hong-Jie and Li, Yan and Hua, Qiang and Dong, Chun-Ru and Pedrycz, Witold“A
study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning”.
IEEE Transactions on Fuzzy Systems, Vol. 23, No. 5, pp. 1638-1654, 2015, IEEE.

134. Wang, Xi-Zhao and Wang, Ran and Xu, Chen“Discovering the Relationship Between Generalization and
Uncertainty by Incorporating Complexity of Classification”. IEEE Transactions on Cybernetics, 2017, IEEE.

135. Wang, Ran and Wang, Xi-Zhao and Kwong, Sam and Xu, Chen“Incorporating Diversity and Informativeness
in Multiple-Instance Active Learning”. IEEE Transactions on Fuzzy Systems, Vol. 25, No. 6, pp. 1460-1475,
2017, IEEE.


