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RESUMO 

  Interfaces cérebro-computador (BCIs, brain-computer interfaces) são 

sistemas cuja finalidade é fornecer um canal de comunicação direto entre o 

cérebro e um dispositivo externo, como um computador, uma prótese ou uma 

cadeira de rodas. Por não utilizarem as vias fisiológicas convencionais, BCIs 

podem constituir importantes tecnologias assistivas para pessoas que sofreram 

algum tipo de lesão e, por isso, tiveram sua interação com o ambiente externo 

comprometida. Os sinais cerebrais a serem extraídos para utilização nestes 

sistemas devem ser gerados mediante estratégias específicas. Nesta dissertação, 

trabalhamos com a estratégia de imaginação motora (MI, motor imagery), e 

extraímos a resposta cerebral correspondente a partir de dados de 

eletroencefalografia (EEG). Os objetivos do trabalho foram caracterizar as redes 

cerebrais funcionais oriundas das tarefas de MI das mãos e explorar a viabilidade 

de utilizar métricas da teoria de grafos para a classificação dos padrões mentais, 

gerados por esta estratégia, de usuários de um sistema BCI. Para isto, fez-se a 

hipótese de que as alterações no espectro de frequências dos sinais de 

eletroencefalografia devidas à MI das mãos deveria, de alguma forma, se refletir 

nos grafos construídos para representar as interações cerebrais corticais durante 

estas tarefas. Em termos de classificação, diferentes conjuntos de pares de 

eletrodos foram testados, assim como diferentes classificadores (análise de 

discriminantes lineares – LDA, máquina de vetores de suporte – SVM – linear e 

polinomial). Os três classificadores testados tiveram desempenho similar na 

maioria dos casos. A taxa média de classificação para todos os voluntários 

considerando a melhor combinação de eletrodos e classificador foi de 78%, 

sendo que alguns voluntários tiveram taxas de acerto individuais de até 92%. 

Ainda assim, a metodologia empregada até o momento possui várias limitações, 

sendo a principal como encontrar os pares ótimos de eletrodos, que variam entre 

voluntários e aquisições; além do problema da realização online da análise. 

  

 

 

 



 

 

ABSTRACT 

  Brain-computer interfaces (BCIs) are systems that aim to provide a direct 

communication channel between the brain and an external device, such as a 

computer, a prosthesis or a wheelchair. Since BCIs do not use the conventional 

physiological pathways, they can constitute important assistive technologies for 

people with lesions that compromised their interaction with the external 

environment. Brain signals to be extracted for these systems must be generated 

according to specific strategies. In this dissertation, we worked with the motor 

imagery (MI) strategy, and we extracted the corresponding cerebral response 

from electroencephalography (EEG) data. Our goals were to characterize the 

functional brain networks originating from hands’ MI and investigate the 

feasibility of using metrics from graph theory for the classification of mental 

patterns, generated by this strategy, of BCI users. We hypothesized that 

frequency alterations in the EEG spectra due to MI should reflect themselves, in 

some manner, in the graphs representing cortical interactions during these tasks. 

For data classification, different sets of electrode pairs were tested, as well as 

different classifiers (linear discriminant analysis – LDA, and both linear and 

polynomial support vector machines – SVMs). All three classifiers tested 

performed similarly in most cases. The mean classification rate over subjects, 

considering the best electrode set and classifier, was 78%, while some subjects 

achieved individual hit rates of up to 92%. Still, the employed methodology has 

yet some limitations, being the main one how to find the optimum electrode 

pairs’ sets, which vary among subjects and among acquisitions; in addition to 

the problem of performing an online analysis. 

 

 

 

 

 

 

 



 

 

F I G U R E  L I S T I N G 

 

Figure 2.1. Brain lobe division.. ..................................................................................... 23 

Figure 2.2. Different types of neurons and their components.. ...................................... 23 

Figure 2.3. Cellular membrane structure.. ...................................................................... 25 

Figure 2.4. Illustration of ion transportation through protein channel.. ......................... 25 

Figure 2.5. Neuron as an electric dipole illustration.   ................................................... 27 

Figure 2.6. Illustration of (A) dry and (B) gel based electrodes. .................................... 28 

Figure 2.7. EEG positioning cap with gel based electrodes. .......................................... 29 

Figure 2.8. EEG positioning system example. ............................................................... 30 

Figure 2.9. 10-20 system positioning.. ........................................................................... 31 

Figure 2.10. Example of EEG blinking artifact. ............................................................. 32 

Figure 2.11. A general scheme of a BCI. ....................................................................... 38 

Figure 2.12. P300 potential illustration. ......................................................................... 40 

Figure 2.13. Context updating theory of P300 scheme. ................................................. 41 

Figure 2.14. Character matrix displayed for P300-BCI application. .............................. 41 

Figure 2.15. SSVEP response example. ......................................................................... 42 

Figure 2.16. SSVEP-BCI scheme. .................................................................................. 43 

Figure 2.17. EEG “activations” when subjects imagine right or left hand movement... 45 

Figure 2.18. Examples using nearest-neighbors’ electrodes (small Laplacian) and next-

nearest-neighbors (large Laplacian).. ............................................................................. 47 

Figure 2.19. Two different projection examples for the same original input data. ........ 48 

Figure 2.20. Example of two classes (blue and green) optimal separation using the least-

square LDA method.. ..................................................................................................... 49 

Figure 2.21. SVM optimum hyperplane to separate margins between two classes. ...... 52 

Figure 2.22. Mapping of input dataset x by function ɸ. ................................................. 54 

 

Figure 3.1. Illustrative example of a graph with 5 nodes. .............................................. 58 

Figure 3.2. Example of undirected graph (a) and directed graph (b).. ........................... 59 

Figure 3.3. Graph's degree distribution example. ........................................................... 61 

Figure 3.4. Clustering coefficients for the central node of a star graph. ........................ 62 

Figure 3.5. The graph's distance matrix (L) contains the minimum path length between 

nodes 'i' and 'j'. ................................................................................................................ 64 



 

 

Figure 3.6. A graph illustration for centrality measures comparison. ............................ 66 

Figure 3.7. Usual steps to build graphs from recorded brain signals. ............................ 70 

 

Figure 4.1. Experimental apparatus ................................................................................ 72 

Figure 4.2. Experimental paradigm. ............................................................................... 73 

Figure 4.3. Data smoothing illustration. ......................................................................... 74 

Figure 4.4. Possibilities for EEG patterns with two and three point motifs. .................. 75 

Figure 4.5. Example of motifs translation for an EEG time series with 20 points.. ....... 76 

Figure 4.6. Electrodes used for graphs’ construction. .................................................... 80 

 

Figure 5.1. Strength values distribution over the scalp. ................................................. 83 

Figure 5.2. Clustering coefficient values distribution over the scalp.. ........................... 86 

Figure 5.3. Characteristic path length values distribution over the scalp ....................... 89 

Figure 5.4. Betweenness centrality values distribution over the scalp. .......................... 92 

Figure 5.5. Relationship between BC and node path length (mu band) ......................... 94 

Figure 5.6. Relationship between BC and node path length (beta band) ....................... 95 

Figure 5.7. Eigenvector centrality values distribution over the scalp.. .......................... 96 

Figure 5.8. Normalized counting frequency of optimum electrodes for classification (mu 

band). ............................................................................................................................ 105 

Figure 5.9. Normalized counting frequency of optimum electrodes for classification (beta 

band). ............................................................................................................................ 106 

 

Figure A.1. Membrane equivalent circuit representation. Extracted from ................... 123 

Figure A.2. Membrane equivalent circuit representation for Hodgkin and Huxley’s model 

for the action potential. ................................................................................................. 128 

Figure A.3. Transition scheme between states O and C. .............................................. 130 

Figure A.4. Action potential form illustration .............................................................. 135 

Figure A.5. Sodium and potassium conductance variation during the action potential 

firing. ............................................................................................................................ 135 

 

Figure B.1. Strength values distribution over the scalp (subject 1). ............................. 137 

Figure B.2. Strength values distribution over the scalp (subject 2). ............................. 138 

Figure B.3. Strength values distribution over the scalp (subject 3). ............................. 139 



 

 

Figure B.4. Strength values distribution over the scalp (subject 4). ............................. 140 

Figure B.5. Strength values distribution over the scalp (subject 5). ............................. 141 

Figure B.6. Strength values distribution over the scalp (subject 6). ............................. 142 

Figure B.7. Strength values distribution over the scalp (subject 7). ............................. 143 

Figure B.8. Strength values distribution over the scalp (subject 8). ............................. 144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

T A B L E S  L I S T I N G 

 

Table 2.1. EEG frequency bands. ................................................................................... 35 

 

Table 4.1. Summary of motifs properties and quantities. ............................................... 77 

 

Table 5.1. Strength mean values ± standard deviation for each graph during each MI task 

for all subjects, averaged over both acquisitions. ........................................................... 85 

Table 5.2. Graphs’ mean clustering coefficient values during each motor imagery task, 

for all subjects. ................................................................................................................ 88 

Table 5.3. Graph’s mean characteristic path length values during each motor imagery 

task, for all subjects. ....................................................................................................... 91 

Table 5.4. Summary of average basic metrics values. Results are shown for both graphs 

and during each MI task. ................................................................................................ 91 

Table 5.5. Reduced chi-squared values for the three models tested (mu band). ............ 94 

Table 5.6. Mean accuracy rates (strength, clustering coefficient and characteristic path 

length). ............................................................................................................................ 99 

Table 5.7. Average maximum accuracies obtained when using optimal electrodes sets for 

classification.. ............................................................................................................... 101 

Table 5.8. Mean classification accuracies ± standard deviation for the centrality measures. 

. ..................................................................................................................................... 102 

Table 5.9. Mean classification accuracies ± standard deviation for centrality measures 

combinations. ................................................................................................................ 103 

Table 5.10. Average maximum classification results obtained using individual pairs of 

electrodes for classification (centrality measures)........................................................ 103 

 

Table C.1. Individual classification results (strength, all nodes). ................................ 146 

Table C.2. Individual classification results (clustering coefficient, all nodes)............. 147 

Table C.3. Individual classification results (characteristic path length, all nodes). ..... 148 

Table C.4. Individual classification results (betweenness centrality, all nodes).. ........ 149 

Table C.5. Individual classification results (eigenvector centrality, all nodes). ........... 150 

Table C.6. Individual classification results (strength, specific nodes). ........................ 151 



 

 

Table C.7. Individual classification results (clustering coefficient, specific nodes). ... 151 

Table C.8. Individual classification results (characteristic path length, specific nodes)..

 ...................................................................................................................................... 151 

Table C.9. Individual classification results (betweenness centrality, specific nodes).. 152 

Table C.10. Individual classification results (eigenvector centrality, specific nodes).. 152

 

Table D.1. Optimum electrodes for classification per subject and acquisition (strength, 

mu band)…………………………………………………………………………........154 

Table D.2. Optimum electrodes for classification per subject and acquisition (clustering 

coefficient, mu band). ................................................................................................... 155 

Table D.3. Optimum electrodes for classification per subject and acquisition 

(characteristic path length, mu band). .......................................................................... 156 

Table D.4. Optimum electrodes for classification per subject and acquisition 

(betweenness centrality, mu band). .............................................................................. 157 

Table D.5. Optimum electrodes for classification per subject and acquisition (eigenvector 

centrality, one pair, mu band). ...................................................................................... 158 

Table D.6. Optimum electrodes for classification per subject and acquisition (strength, 

beta band). .................................................................................................................... 159 

Table D.7. Optimum electrodes for classification per subject and acquisition (clustering 

coefficient, beta band). ................................................................................................. 160 

Table D.8. Optimum electrodes for classification per subject and acquisition 

(characteristic path length, beta band). ......................................................................... 161 

Table D.9. Optimum electrodes for classification per subject and acquisition 

(betweenness centrality, beta band). ............................................................................. 162 

Table D.10. Optimum electrodes for classification per subject and acquisition 

(eigenvector centrality, beta band). .............................................................................. 163 

 

 

 

 

 

 



 

 

L I S T  O F  A C R O N Y M S 

BC Betweenness centrality  

BCI Brain-computer interface 

CAR Common average removal 

CC Clustering coefficient 

CNS  Central nervous system 

DC Degree centrality 

EC Eigenvector centrality 

EEG Electroencephalography 

EPSP Excitatory post-synaptic potential 

ERD Event related desynchronization 

ERP Event related potential 

ERS Event related synchronization 

fMRI Functional magnetic resonance imaging 

ICA Independent component analysis 

IPSP Inhibitory post-synaptic potential 

LDA Linear discriminant analysis 

LSLDA Least-squares based linear discriminant analysis 

LSVM Linear kernel based support vector machine 

MI Motor imagery 

NIRS Near-infrared spectroscopy 

PSD Power-spectral density 

PSVM Polynomial kernel based support vector machine 

SDP Second degree polynomial 

SL Surface Laplacian 

SNR Signal-to-noise ratio 

SSVEP Steady state visually evoked potential 

STP Single-term exponential 

SVM Support vector machine 

TTE Two-term exponential 

VEP Visually evoked potential 

  

 



 

 

C O N T E N T S 

 

1.Introduction ............................................................................................................... 18 

2.EEG based Brain-Computer Interfaces (EEG-BCIs) ............................................ 21 

2.1. Electroencephalography ....................................................................................... 22 

2.1.1. Biophysical aspects of the EEG signal generation ........................................ 22 

2.3.2. EEG instrumentation ..................................................................................... 28 

2.3.3. EEG frequency bands .................................................................................... 35 

2.3.4. General remarks about EEG .......................................................................... 36 

2.2. What is a BCI? ..................................................................................................... 37 

2.3. Main strategies to generate input signals for EEG-BCI....................................... 39 

2.3.1. P300 ............................................................................................................... 39 

2.3.2. SSVEP ........................................................................................................... 42 

2.3.3. Motor Imagery (MI) ...................................................................................... 43 

2.4. Common signal processing techniques in EEG-BCIs ......................................... 45 

2.4.1.  Temporal Filtering........................................................................................ 46 

2.4.2. Spatial Filtering ............................................................................................. 46 

2.5. Classification approaches .................................................................................... 47 

2.5.1. Linear Discriminant Analysis........................................................................ 48 

2.5.2. Support Vector Machines .............................................................................. 51 

2.6. Final remarks regarding MI EEG-BCIs ............................................................... 55 

3.Graph Theory ............................................................................................................ 57 

3.1. Basics of Graph Theory ....................................................................................... 58 

3.2. Common Graph Metrics ...................................................................................... 60 

3.2.1. Degree ........................................................................................................... 60 

3.2.2. Clustering Coefficient ................................................................................... 62 

3.2.3. Characteristic Path Length ............................................................................ 63 



 

 

3.2.4. Centrality measures ....................................................................................... 65 

3.3. Graphs in MI-BCI applications ............................................................................ 69 

4.Materials and Methods ............................................................................................. 72 

4.1. Data acquisition ................................................................................................... 72 

4.2. Data preprocessing ............................................................................................... 73 

4.3. Brain connectivity ................................................................................................ 74 

4.4. The motifs method ............................................................................................... 75 

4.5. Pearson's Correlation ........................................................................................... 78 

4.6. Graphs construction and metrics calculations...................................................... 78 

4.7. Data classification ................................................................................................ 81 

5.Results and Discussion .............................................................................................. 82 

5.1. Graphs’ Topology ................................................................................................ 83 

5.1.1. Strength (S; also the degree centrality) ......................................................... 83 

5.1.2. Clustering Coefficient (CC) .......................................................................... 86 

5.1.3. Characteristic Path Length (L) ...................................................................... 88 

5.1.4. Betweenness Centrality (BC) ........................................................................ 92 

5.1.5. Eigenvector Centrality (EC) .......................................................................... 95 

5.1.6. General remarks regarding the graphs’ topology .......................................... 97 

5.2. Classification results ............................................................................................ 99 

5.2.1. Strength, clustering coefficient and characteristic path length ..................... 99 

5.2.2. Centrality measures ..................................................................................... 102 

5.2.3. Optimum pairs of electrodes for data classification .................................... 104 

5.2.4. General remarks regarding data classification ............................................ 106 

6.Conclusions and future perspectives ..................................................................... 108 

References.................................................................................................................... 112 

Appendix A.Some membrane electrophysiological aspects .................................... 123 

A.1. Membrane resting potential derivation ............................................................. 123 



 

 

A.2. Hodgkin and Huxley’s model for the action potential ...................................... 128 

Appendix B.Strength individual results ................................................................... 137 

Appendix C.Individual classification results ........................................................... 145 

C.1. Using all graphs nodes ...................................................................................... 145 

C.2. Using specific node pairs .................................................................................. 150 

Appendix D.Optimum electrodes for classification ................................................. 153 

D.1. Mu band ............................................................................................................ 154 

D.1.1. Strength ...................................................................................................... 154 

D.1.2. Clustering coefficient ................................................................................. 155 

D.1.3. Characteristic path length ........................................................................... 156 

D.1.4. Betweenness centrality ............................................................................... 157 

D.1.5. Eigenvector centrality................................................................................. 158 

D.2. Beta band .......................................................................................................... 159 

D.2.1. Strength ...................................................................................................... 159 

D.2.2. Clustering coefficient ................................................................................. 160 

D.2.3. Characteristic path length ........................................................................... 161 

D.2.4. Betweenness centrality ............................................................................... 162 

D.2.5. Eigenvector centrality................................................................................. 163 

Attachment A.Informed Consent Form ................................................................... 164 

 

 

   

 

 

 

 

 



| 18 

 

 

Chapter 1 

Introduction 

 

The central nervous system’s (CNS) role in how our environment is perceived by us is 

doubtlessly fundamental. It is responsible for processing and interpreting external stimulations 

such as light, sound, pain, heat and so on. There are, however, several disabilities that can affect 

its proper function and, therefore, decrease the quality of life of people that suffer from them. 

Data from 2010 of the Brazilian Institute of Statistical Geography (IBGE – Instituto 

Brasileiro de Geografia Estatística) reveal that over 45 million people suffer from a type of 

disability [IBGE, censo demográfico 2010], accounting for 23.9% of the total Brazilian 

population. Specifically, visual (18.8% of the total population), motor (6.9%), hearing (5.1%) 

and mental/intellectual (1.4%) disabilities were pointed out in the study. Motor disabilities (as 

much as some other types of disabilities) can be caused by a variety of factors, such as traumatic 

injuries and diseases.  

In the case of motor disabilities, traumatic injuries include damage done to the spinal 

cord of the CNS, which can result in limps paralysis. Paralysis denomination varies if only the 

legs or both legs and arms are affected. The first case is denoted by paraplegia, whilst the latter 

is called quadriplegia. Injuries to the spinal cord can be caused, for instance, by car accidents, 

violence acts and falls. Some diseases that can cause motor disabilities are cerebral palsy, 

muscular dystrophy, multiple sclerosis, spina bifida, amyotrophic lateral sclerosis, arthritis and 

stroke. 

Depending on the extent of the disability, there are measures that can be implemented 

to increase the life quality of people affected by it. In the case of motor disabilities, an 

increasingly studied assistive technology over the last years is the brain-computer interface 

(BCI). BCIs are systems that enable communication with external devices through brain 

signals, without using the conventional physiological pathways. Thus, these systems do not 

require any physical movement, and, in theory, even people with severe disabilities should be 

able to control them, even locked-in patients [Kubler et al., 2001], the ones who have lost all 

their mobility, making it very hard to communicate with the external environment.
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BCIs aim to provide a direct communication channel between the brain and an external 

device. Applications vary widely, and these systems can be used, for instance, to move a cursor 

in a computer screen [Cheng et al., 2004], control spelling devices with virtual keyboards 

[Obermaier et al., 2003], moving a wheelchair [Iturrate et al., 2009], monitoring emotional 

states of patients [Widge et al., 2014] and rehabilitation applications [Holper et al., 2010]. 

As ideal as they may sound, a lot of research is still needed to be done in order to 

optimize the performance of BCIs. Fundamental steps of BCIs include signal acquisition, 

processing and classification for the desired application. Given the complexity of the brain, this 

is not expected to be a trivial task. In fact, each operational step of a BCI is very demanding 

and can constitute a research topic by itself. Regarding brain signal acquisition, 

electroencephalography (EEG) has been the most used technique. 

In EEG-BCIs, there are two main strategies currently used to generate mental patterns 

for identifying the user’s intent: evoked potentials and imagery (see Chapter 2). Regarding 

imagery (more specifically, motor imagery), there is no optimum way established in the 

literature to proceed with such systems. Traditional analysis is restricted to applying different 

classification approaches to the spectral power density of the EEG brain signals. More recently, 

however, the concept of brain connectivity and how different brain regions interact with each 

other have been studied as potential and novel applications for BCIs [Gupta and Falk, 2015; 

Demuru et al., 2013; Elasuty and Eldawlatly, 2015; Salazar-Varas and Gutiérrez, 2015; Ghosh 

et al., 2015; Asensio-Cubero et al., 2016].  

 In this work, we focused on exploring approaches for feature extraction in motor 

imagery EEG-BCIs using metrics from graphs theory. We characterized graphs topology for 

each motor imagery task studied, extracted different metrics from these graphs and, then, we 

applied commonly used classifier algorithms in the BCI research area to discriminate between 

the tasks. Thus, the two main goals of this work were: 

 To characterize EEG hand motor imagery response using graph features; 

 To explore the feasibility of using graph metrics as features for a BCI classifier. 

This thesis is divided as follows. Chapter 2 focuses on BCIs, reviewing the most recurring 

types in the literature and their applications. Also, a description of the technique used to extract 

the brain signals, EEG, is made. Some basic anatomical aspects are briefly reviewed, and 

methodological aspects, from how data is acquired to the technique limitations, are described. 

Chapter 3 presents basic concepts from graph theory, and how it can be used for the 
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investigation of the proposed problem. Chapter 4 explains the methodology used, and Chapter 

5 describes and discusses the obtained results. Finally, Chapter 6 presents conclusions and 

future perspectives. Also, a few interesting but not strictly necessary discussions and 

deductions, and sets of results, are presented in Appendixes A to D. 
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Chapter 2  

EEG based Brain-Computer Interfaces (EEG-BCIs) 

 

 Brain-computer interfaces (BCIs) are systems that allow direct communication to 

external devices from brain signals, without using the conventional physiological 

pathways, such as talking or muscle movement.  BCIs are an alternative form of 

communication and interaction for people affected by specific brain conditions or spinal 

cord injury preventing them to move. Currently, EEG is the most used technique for BCI 

signal acquisition, although some other techniques are also being studied, such as 

functional magnetic resonance imaging (fMRI) [Berman et al., 2011; Hermes et al., 2011; 

Halder et al., 2013] and near-infrared spectroscopy (NIRS) [Sitaram et al., 2007; Kanoh 

et al., 2009]. Each technique has its limitations, and different combinations of these 

techniques for BCI applications are also under study. This chapter focuses on EEG-BCI 

applications, it discusses brain electrical potentials and thought strategies commonly used 

in BCI, particularly, motor imagery (MI). Also, an overview of the EEG technique is 

given and processing methods commonly used in BCI signal processing are featured. 
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2.1. Electroencephalography 

 The electroencephalography (EEG) technique is used to measure the brain’s 

electrical activity. Its first recordings were done by Richard Caton (1842 – 1926), a British 

scientist, in 1875 [Finger, 2001]. In his studies, Caton used a galvanometer, an instrument 

that could measure small currents and potential differences between two points. He 

observed that positioning electrodes on two distinct points of the brain’s external surface 

yielded a current reading in the device. The first person, however, to perform an 

electroencephalogram exam per se was a German neurologist, Hans Berger (1873 – 

1941). Presently, EEG may not be the most used technique, and many others are 

commonly practiced in diagnostic medicine, such as magnetic resonance imaging (MRI), 

computed tomography (CT) or positron emission tomography (PET). However, when it 

comes to measuring the brain electrical activity directly, EEG is the technique of choice. 

Among the main clinical uses of EEG, are searching for the focus of an epileptic crisis 

and evaluating sleep disorders. EEG has also been widely used to extract brain signals for 

Brain-Computer Interfaces (BCIs). In this section, some basic knowledge necessary for 

understanding the EEG signal generation and other relevant aspects of this technique are 

covered. 

2.1.1. Biophysical aspects of the EEG signal generation 

Basic anatomic aspects 

 The brain is an important part of the central nervous system (CNS), responsible 

for integrating and processing information. It has different functional regions; that is, 

distinct areas of the brain are commonly associated with different functions. One or more 

areas, however, can interact to yield some specific function. A common basic division 

when studying the brain comes in lobes: frontal lobe, temporal lobe, parietal lobe and 

occipital lobe (Figure 2.1).  

 The frontal lobe is the largest and most anterior part of each hemisphere [Ribas, 

2010], and is responsible mainly for short-term memory, planning of future actions and 

motor control. The parietal lobe is concerned with sensory strip location, reading, writing, 

calculations and somatic sensation. The occipital lobe is largely associated with vision, 

and, the temporal lobe, with hearing, learning, memory and emotion. These latter three 

functions are due to the temporal lobe’s deep structures, such as the hippocampus and 

amygdaloid nuclei [Kandel et al., 2013]. 
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Figure 2.1. Brain lobe division. Extracted from [Kandel et al., 2013]. 

 The nervous system contains two important types of cells: the neurons and the 

glial cells (or glia) [Kandel et al., 2013]. The human nervous system has about 86 billion 

neurons [Herculano-Houzel, 2012]. They can have many different morphologies, and 

their classification can depend on neurotransmitters used, electrophysiological properties 

or direction of neural impulse propagation. 

 Regardless of a neuron’s type, each one has four well-defined regions: the cell 

body (or soma), the dendrites, the axon and presynaptic terminals [Kandel et al., 2013]. 

The cell’s nucleus is located in the soma. Both dendrites and axon originate from the cell 

body. Dendrites are structures carrying electrical impulses from other neurons into the 

soma, and axons are the physical paths in which these impulses are carried from the soma 

to other neurons. Transmission or reception of neuronal impulses occur at the synaptic 

terminals. Figure 2.2 illustrates these regions for different types of neurons.  

 

Figure 2.2. Different types of neurons and their components. Adapted from [Kandel et al., 2013]. 
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 In Figure 2.2, the ‘input’ site represents neuronal impulses that arrive from post-

synaptic terminals at the dendrites, which are carried to the soma (integrative region), 

where they will be summed. The axon is represented by the ‘conductive’ region, and the 

pre-synaptic terminals are the ‘output’ region, where electrical impulses will be 

transmitted to other neurons.  

 Glial cells support neurons, commonly surrounding all of their different parts. Glia 

classification is usually done according to morphological and molecular criteria. All types 

of glia, however, have some common characteristics, such as being associated with 

neurons, having a different structure from neurons themselves and being lineally related 

to them [Saham, 2005]. 

 Glia function and its contribution to the EEG signal have been matters under 

discussion. Some authors believe that the EEG measure is due mainly to neurons, with 

just a modest contribution from glial cells [Silva, 2010]. Their role, however, in 

generating extracellular potentials measurable with EEG has also been discussed 

[Speckmann et al., 2005; Somjen et al., 1979; Kuffler et al., 1966]. In [Saham, 2005], the 

authors review a variety of glial cells studies regarding some important aspects such as 

synaptogenesis, regulation of synaptic activity, neuronal conduction, neuronal migration 

and reciprocal control of cell survival between glia and neurons; but a decisive conclusion 

was not reached. More recent works have started to point out functional aspects of glial 

cells as contributors to the EEG signal. Astrocytes (a type of glial cell) have been 

associated with the maintenance of oscillations in the gamma range (about 25 – 80 Hz), 

through vesicular release in these cells. Also, TeNT (tetanus neurotoxin) expression in 

astrocytes has been reported to reduce the gamma band power density in EEG, in vivo. 

The gamma frequency range has been associated with several cognition functions, such 

as learning and memory, suggesting astrocytes may play a major role in these tasks [Lee 

et al., 2014]. This type of cells has also been related to important roles regarding neuronal 

circuits, indicating possible causal factors that regulate synchronized activation of 

neuronal ensembles [Poskanzer and Yuste, 2011].  

 Basically, the generation of the extracellular fields (which can be measured with 

EEG) lies in the cellular membrane structure and the ions that surround it. This membrane 

consists of a lipid bilayer with proteins inserted into it (Figure 2.3). While some of these 

proteins have purely structural function, others constitute channels available to the 
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passage of certain types of ions, of which the most involved into the production and 

propagation of the electrical impulse are Na+, K+, Ca+2 and Cl-. 

 A difference in ion concentration between intra and extracellular media results in 

an electrical potential gradient, which makes the ions diffuse through their specific protein 

channels (Figure 2.4). The so-called membrane potential is dictated by the ion 

concentration configuration between both media.   

 

Figure 2.3. Cellular membrane structure. Adapted from [Alberts et al., 2010]. 

 

Figure 2.4. Illustration of ion transportation through protein channel. Extracted from [Ermentrout and 

Terman, 2010].  

 The membrane potential can be maintained either by diffusive passive ion 

transport, in which ion concentration gradients are dictated by the selective permeability 

of the protein channels, or active transport of ions, when the use of external energy is 

necessary, which in many cases comes from ATP hydrolysis. Regarding active 

transporters, the Na+ - K+ pump is maybe the most important one, and it functions by 

pumping three Na+ ions out of the cell to every two K+ ions that are pumped in for every 



2 . 1 .  E l e c t r o e n c e p h a l o g r a p h y  | 26 

 

 

pump turnover. Another relevant active transporter is the Na+ - Ca+2 exchanger, which 

functions driving three Na+ inward and one Ca+2 outward. This transporter is not ATP-

based directly, since the Na+ ions being driven down their concentration gradient is what 

provides the energy source in this case. This necessary Na+ concentration gradient, 

however, is maintained by the ATP-based Na+ - K+ pump.  

 There are four physical laws that dictate ion movement in the biological 

membrane and, therefore, its electrical potential: particle diffusion caused by 

concentration differences, drift of ions caused by electric potential gradients, the 

relationship between the diffusion coefficient (D) and the drift mobility (µ), and the 

principle of separation of charges in biological systems. This last one states that, in a 

given volume, the total charges of cations and anions are approximately the same 

[Johnston and Wu, 1996]. The cell membrane, due to its charge separation, constitutes an 

exception to this rule. A mathematical description of this potential from these phenomena 

can be found in Appendix A.  

The neuron as an electric dipole 

 When neurotransmitters arise from the synapses to the dendrites, they cause the 

post-synaptic terminal channels of the next neuron to open up. If the stimulus is 

excitatory, the membrane will depolarize; that is, its potential will increase to a more 

positive value, and the potential will be called an excitatory post-synaptic potential 

(EPSP). If, however, the stimulus is inhibitory, the membrane will hyperpolarize to a 

more negative potential, responding to an inhibitory post-synaptic potential (IPSP).  

 In the case of an IPSP, for instance, two situations could occur: the inflow of a 

negative current to the intracellular medium or an outflow of positive current to the 

extracellular medium (either way, the membrane potential hyperpolarizes). For an EPSP, 

the depolarization can occur due to the inflow of positive current or the outflow of 

negative current. Regardless of the stimulus type (IPSP or EPSP), the electrical flow 

causes potential changes along the cell, and the creation of regions of charge sink (current 

flowing into the cell) and source (current flowing out of the cell), inducing the neuron to 

behave like an electric dipole (Figure 2.5). The EEG signal is often attributed to this 

synaptic activity, being measured as the summation of electrical fields generated by the 

interaction of the dipoles. Non-synaptic activity can also contribute to the EEG signal, 
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although to a lower extent [Olejniczak, 2006]. Neuronal responses such as the action 

potential (Appendix A) are considered too fast to significantly impact the EEG signals.  

 Since EEG electrodes are much larger than a single neuron, what they measure is 

an average signal of a population of brain cells. Besides, a single electrode measure is 

influenced, although to different degrees, by populations of neurons located not 

necessarily just below it. To yield a visible EEG measure, a combination of approximately 

108 neurons in a minimal cortical area of 6 cm² are needed [Olejniczak, 2006]. Each 

neuron generates a relatively small amplitude signal and, taking into account the 

attenuation occurring at the skull and scalp, EEG mostly measures the neuronal activity 

of pyramidal cells located on the cortex surface [Sanei and Chambers, 2007]. Note that 

the signal recorded by a specific electrode does not detect electrical activity exclusively 

from the site upon which it is located. In fact, as dipoles, all cortex neurons contribute to 

the signal, although some more than others, given the characteristics of the electrical field 

of a dipole. Thus, it is necessary to keep in mind that the signal of an EEG electrode can 

be highly affected by various neurons populations. An elaborated analysis should take 

this into account. 

 

Figure 2.5. Neuron as an electric dipole illustration.  In this example, inhibitory synapses function as 

charge source, and excitatory synapses, as charge sink. Extracted from [Graben and Rodrigues, 2013] 
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2.3.2. EEG instrumentation 

Electrodes 

 Electrodes are the EEG sensors responsible for measuring variations in the brain 

electrical potential. They are positioned on the subject’s scalp, and their measure provides 

data from a population of neurons noninvasively. The measured signal has a very low 

amplitude and suffers from a great attenuation, which makes the acquisition step very 

challenging and relevant, greatly affecting data quality. EEG electrodes are made of metal 

and can have different shapes, such as discs, needles or cups. In addition, they can be dry 

or gel (or paste) based electrodes (Figure 2.6). For dry electrodes, there exists direct 

contact between scalp and sensor, whilst for gel based electrodes this contact is 

intermediated by a layer of an electrolyte material. 

 The electrode material plays an important role in EEG signal acquisition, and not 

only the materials’ electrical conductivity should be taken into account. Electrodes are 

made of metal, which discharges ions into solution when in contact with the electrolyte. 

Therefore, an ion-electron exchange occurs between electrode and electrolyte, resulting 

in the creation of two layers in the space between these two components: one of ions, and 

another one of electrons. The formation of each one of these layers occurs at different 

rates, which depend on the materials used. The rate difference causes a voltage to appear, 

termed the half-cell potential [Usakli, 2009], which can interfere with the signal quality. 

 

Figure 2.6. Illustration of (A) dry and (B) gel based electrodes. Figure (A) extracted from 

http://www.gtec.at. and (B) from http://www.unicog.org/pmwiki/uploads/Main/EEGElectrode.jpg. 

 With some electrodes, there is a free exchange of charge across this double layer, 

and they are termed to be nonpolarized (or reversible) electrodes. They are usually 

indicated by the symbol Ag-AgCl, due to its constitution: the metal Ag electrode is coated 

by an AgCl gel layer. These electrodes are very common, due to their low impedance, 
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low susceptibility to motion artifacts and capacity to record very slow potential changes 

[Beltramini, 2014; Picton et al., 2000].   

 When the transfer of charge is very small across the double layer, the electrode is 

said to be polarized (or nonreversible). In this case, the device functions as a capacitor, 

cutting off high frequencies and DC voltages [Usakli, 2009].  

 The impedance of the electrode tissue interface depends on several factors, such 

as skin preparation, existing hair in between and electrolyte temperature [Usakli, 2009]. 

Since the skin is filled with sweat glands, it can generate ionic potentials. Besides, its 

external layer has insulator properties. Therefore, it is common to use a kind of paste to 

remove this outer layer.   

 Gel based electrodes are commonly present in caps with pre-defined electrode 

positioning (Figure 2.7). When working with this type of device, it is necessary to clean 

the scalp's skin before gel application, in order to remove superficial dust and oil. In 

addition, filling the space inside the electrode with gel is a demanding task and, in some 

applications, 100 or more electrodes may be necessary. Had caps not been invented, the 

electrodes would need to be positioned one at a time (which may actually be the case for 

some applications). 

 

Figure 2.7. EEG positioning cap with gel based electrodes. Extracted from [Aalto university website]. 

 The type of electrode to use will depend upon the application sought. Dry 

electrodes are a more recent technological development and more easily set, since they 

have direct contact via mechanical pressure. Gel-based electrodes, on the other hand, can 

take a reasonable time to prepare for acquisition (in some cases, a few hours).  A few 

studies show that there are optimum conditions within which these electrodes can replace 

gel-based ones in specific applications [Mihajlovic and Molina, Fiedler et al., 2014]. 
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When choosing which set to use, then, the sought result should be kept in consideration, 

such as specifications for each type, including signal-to-noise ratio and electrode 

impedance. Also, when possible, acquiring and comparing data with both types of 

electrodes should be a good manner to determine if gel-based electrodes could be replaced 

by dry ones. However, such a study is very demanding and not always possible to do. 

Electrodes positioning systems 

 As an attempt to give EEG acquisitions some common basis, positioning systems 

have been developed (Figure 2.8).  In positioning systems, letters indicate anatomical 

regions: frontal (F), occipital (O), central (C), temporal (T), parietal (P) and ears (A). 

Central electrodes are always accompanied by the letter ‘z’. Numbers indicate to which 

hemisphere the position belongs to: even numbers are located on the right hemisphere, 

and, odd numbers, on the left one. Nasion and inion are common reference points. A 

system’s name indicates how distances between adjacent electrodes are calculated. In the 

10-20 system, for instance, the nasion-inion and left-right ear distances are measured. 

Electrodes next to these reference points are placed at 10% of the distance measured. 

Intermediate electrodes are placed at 20% of that distance (Figure 2.9). 

 

Figure 2.8. EEG positioning system example. 10-20. Extracted from [Wikimedia commons website]. 

 There are other positioning systems, such as the 10-10 or 10-5 systems. They 

differ only in the distance used to place electrodes from one another (and, consequently, 

in the total number of electrodes each system comprises). 
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Figure 2.9. 10-20 system positioning. Taken from http://www.bem.fi/book/13/13.htm. 

Noise 

 EEG recordings can provide very good insight about the situation under study. 

The signal is, however, very noisy, making its analysis difficult, tricky and challenging 

in many occasions. In general, there are four strategies used to reduce noise: elimination 

of noise sources, averaging, rejection of noisy data and noise removal [Repvos, 2010]. 

Also, there are two types of noise that are usually present in EEG data: external and 

physiological noise.  

 External sources include those of electromagnetic fields, such as TVs, computers, 

AC power lines, mobile phones, notebooks and so on. Noise that comes from these 

sources can easily be controlled by simply avoiding letting any device of this kind near 

the EEG sensors. When possible, replacing devices working on AC with others that work 

on DC is also helpful. In addition, isolating the EEG recording room from any external 

electromagnetic source, such as in a Faraday cage, should provide an effective 

minimization of electromagnetic external noise. This approach, however, has a very high 

building cost [Repvos, 2010]. 

 Physiological noise sources occur in many forms, and they include interference 

from the heart’s electrical activity, blinking artifacts, motion artifacts, breathing artifacts 

and the skin potentials. Motion artifacts can be avoided by asking the patient not to move 

(of course, this is not possible if one is performing a motor study, or one in which some 

kind of movement is necessary). Blinking artifacts are a little trickier, in the sense that, 

being an automatic behavior, trying to interrupt blinking might induce artifacts in the 
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signal [Repvos, 2010]. Skin potentials exist because of the presence of sweat glands’ ionic 

potentials and the outer insulator layer of the skin. An abrasive cream can be applied to 

remove this layer, and it is a good way to reduce these potentials. Also, skin potentials 

can vary during acquisition depending on the temperature or the individual's stress level, 

factors that can lead to sweat.  

 Averaging in order to reduce noise is used when the noise is assumed to be 

random, with zero mean and constant variance. Being this the case, averaging over the 

experiment time should cancel the noise out. This, however, is only useful when a stable 

and reproducible signal is sought, such as is the case for an evoked response in an event 

related potential (ERP) [Repvos, 2010]. 

 Rejection of noisy data consists simply of eliminating parts of the data made 

unusable by noise. One way to do so is by simple visual inspection: some artifacts really 

stand out to the eye (Figure 2.10), being easily spotted. Besides, apparent artifacts usually 

show up in more than one channel. Some EEG analysis software tools perform automatic 

artifact detection. However, a good knowledge of the artifact sought is important to 

correctly set the parameters of the software’s algorithm.   

 

Figure 2.10. Example of EEG blinking artifact. It is really noticeable that the artifact stands out, having 

a larger amplitude than the rest of the data. Taken from http://www.intechopen.com/. 

 The removal of noise usually includes some kind of filtering or subtracting of a 

noisy component from the signal by previous application of some sort of mathematical 

regression.  
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 With filtering, it is possible to remove specific frequencies (or frequency range) 

that are a priori known to be mainly noise; for instance, the noise introduced by the 

electrical power line (50 Hz or 60 Hz, depending on the location). Other types of filters 

that are not in the frequency domain can also be used, such as the CAR (Common Average 

Filter) spatial filter. This filter averages the data from all channels and subtracts this value 

from every channel, in order to eliminate common features that are present in all channels 

at the same time.  

 In the case of subtraction of a noisy component, this can be done by modeling the 

component (for example, the cardiac rhythm) and directly subtracting it from the signal. 

For instance, independent component analysis (ICA) could be used to estimate the 

sources of the signal, identify purely noisy components, remove them from the original 

signal and reconstruct it to obtain a signal that is “free” of that particular noise source 

[Jung et al., 2000; Repvos, 2010]. 

Amplifier  

 The EEG amplifier is a differential amplifier. It amplifies differences between two 

input signals, rejecting any common voltage between them [Laplante, 2005]. This means 

that any common artifact present in the two input signals should be suppressed; which is 

particularly good for EEG, since environmental electromagnetic interference, for 

instance, usually has a much larger amplitude than the physiological response.  

 The signal measured by the amplifier has two important bases: the ground 

electrode and the reference electrode. The ground electrode is simply the one that is 

chosen to be at zero potential (that is, 0 V). The reference electrode should, ideally, be 

positioned on an electrically neutral site. In practice this is not always possible, and the 

signal measured by each electrode represents the activity upon that specific electrode and 

upon the reference electrode [Beltramini, 2014]. Common locations for placing reference 

electrodes include the mastoids, ear lobes and the nose. Another alternative consists of 

using the signal average of all electrodes as the reference. This latter option is more 

precise when there is a large number of electrodes, since it is the situation that results in 

good scalp coverage.   

 The amplifier's ability to suppress common voltages between the two input signals 

is characterized by what is called "common mode rejection" (CMR). The larger the CMR 

is, the higher the signal-to-noise ratio (SNR). In CMR, the input signals must be treated 
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equivalently, and, to accomplish this, the ratio of the electrode impedance to the 

amplifier's input must be considered [Kappenman and Luck, 2010].  

 Electrode impedances are largely dictated by skin properties. An increase in 

electrodes impedances lead to a CMR decrease, accompanied by a decrease in SNR. 

Therefore, in recordings using high impedance electrodes, more trials may be needed to 

perform signal averaging in order to increase the SNR, which could be very time 

demanding and not feasible in some cases. If all other acquisition parameters are equal, 

low impedance electrodes should give a more statistically significant recording.  

 As already stated, the use of abrasive creams and proper skin cleaning can reduce 

the skin's influence to the electrodes impedance. For many electrodes systems, however, 

reducing each electrode's impedance is a very demanding task. Besides, abrasion of the 

skin may cause bleeding into the electrodes, which will have to be disinfected, another 

onerous activity. An alternative to work with a high impedance electrode system dealing 

with the SNR reduction is to use high entrance impedance amplifiers [Kappenman and 

Luck, 2010]. Nonetheless, using a high entrance impedance amplifier does not account 

for a problem generated by the skin potentials artifacts.  

 Any differences in the skin's conductance under the electrodes leads to a different 

voltage offset for each electrode, creating an electrical potential between them. If the 

electrical properties of the skin in the sites under each electrode are different, this potential 

will vary over time. Two main ways to reduce skin potential artifacts are: to keep the 

recording environment cool and dry, which should avoid changes in the sweat level; and 

the abrasion of the skin [Kappenman and Luck, 2010].   

 The entrance voltage in the amplifier can be approximated by [Beltramini, 2014]: 

𝑉diff  ≈
VA

1 +  
ZA + ZB

Zdiff
+  

ZA

Zcm

−  
VB

1 +  
ZA + ZB

Zdiff
+  

ZB

Zcm

. 
(2.1) 

 In (2.1), VA and VB stand for the measured potential in electrodes "A" and "B", 

respectively, in reference to the ground electrode. ZA and ZB are these electrodes' 

impedances, Zdiff represents the entrance differential impedance and Zcm is the common 

mode entrance impedance, that is, when VA and VB are equal. This approximation stands 

when Zmc >> ZA, Zmc >> ZB and Zdiff >> ZA + ZB [Beltramini, 2014]. Clinically, standards 

for EEG digital recording state that electrodes entrance impedance should be less than 5 
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kΩ; for the amplifier, the minimum entrance impedance should be of 100 MΩ [Nuwer et 

al., 1998].  

 When the denominators of (2.1) approach 1, Vdiff is simply VA - VB, and this 

constitutes the most accurate situation possible. This occurs when Zdiff and Zcm are much 

larger than ZA and ZB; that is, the lower the electrodes impedances are when compared to 

Zdiff and Zcm, the closer to the best scenario situation one would be. 

 In regarding pre-processing of the data, to properly visualize and analyze the EEG 

signals, it is necessary that they undergo a series of steps. Raw EEG data has a very low 

amplitude, of the order of microvolts, and contains five components: desired biopotential, 

undesired biopotentials, the power supply interference of 50/60 Hz (and its harmonics), 

interference signals due to the tissue/electrode interface and noise [Sanei, 2007; Teplan, 

2002]. The signals must be amplified before the ADC (analog-to-digital converter) and 

filtered, mainly to reduce noise. 

 Usually, high-pass filters have a cut-off frequency of about 0.5 Hz, to eliminate 

the slow component of breathing. To eliminate the 50/60 Hz power supply noise, 

commonly a notch filter with a null frequency of 50/60 Hz is used [Sanei, 2007]. It is 

important to make sure that the amplifier and filters do not distort the signal.  

2.3.3. EEG frequency bands 

 EEG signal amplitudes usually range from 2μV to some hundreds of microvolts. 

Commonly, frequencies from 1 to 100 Hz are analyzed, and they are often divided for 

study purposes (Table 2.1). EEG sampling frequencies (which should not be confused 

with the measured frequencies) can range from 100 Hz to 5 kHz, in some cases. 

Table 2.1. EEG frequency bands. There exist some variations upon these definitions in the literature. This 

table was based upon the indications of [Vidal, 1973]. 

Band name Frequency range (Hz) 

Delta 1-4 

Theta 4-7 

Alpha 7-13 

Beta 13-30 

Gamma 30 - 100 
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 Every band is also associated to some brain state. The delta band is commonly 

linked to deep sleep stages of normal adults or people under anesthesia influence; the 

theta band is associated with sleeping in adults and is very present in infants and children; 

the alpha band is present when a person is not focusing in a specific task; the beta band 

is associated with problem solving, states of attention, cognitive functions and active 

thought; the gamma band is known to be linked to stress or anxiety states. Some authors 

do not even dissociate the beta and gamma bands, putting them under the same ‘beta 

band’ label. Other subdivisions such as alpha 1, alpha 2, beta 1, beta 2 and so on are also 

possible, depending on the application and area of study. 

 Another important band that is not listed in the table (because it is contained within 

the alpha band) is the mu (µ) rhythm. It is defined by activity extracted from 8 to 13 Hz 

over the sensorimotor cortex during waking neural activity [Volkmar, 2013]. It is well 

established that this rhythm reflects the synchronized activity of large groupings of 

pyramidal neurons in the brain's motor cortex [Pfurtshceller et al., 1997; Volkmar, 2013]. 

The decrease in the power of this band and the gradual desynchronization of neural 

activity is known to constitute this band attenuation. According to [Volkmar, 2013], µ 

band attenuation has been observed "during both execution and observation of actions 

falling within one’s behavioral repertoire". The mu rhythm is particularly relevant in 

motor imagery based brain-computer interfaces, and will be discussed ahead.  

2.3.4. General remarks about EEG 

 EEG is the technique of choice when it comes to measuring the brain's electrical 

activity, being widely used in monitoring activity in coma patients, produce biofeedback, 

locate epilepsy's seizures origin, test drug effects, investigate sleep disorder, among 

others. Given the technique's portability, non-invasiveness and low-cost, it has been 

widely used in BCI (brain-computer interface) research. It provides relatively high 

sampling rates, reaching 5 kHz in some cases, which enables a very good temporal 

resolution to measure electrophysiological phenomena. Although EEG has poor spatial 

resolution, it is still able to monitor localized activity from populations of neurons. It, 

however, records a signal that is very noisy and highly influenced by external 

electromagnetic sources, requiring pre-processing steps able to compensate for this. 

 Nonetheless, implementing all needed steps, EEG can provide very useful 

information and insight into electrophysiological phenomena occurring within the brain, 

constituting an efficient tool for studying this fascinating organ. 
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2.2. What is a BCI? 

 Brain-computer interfaces (BCIs) are systems capable of acquiring a user’s brain 

signals, processing them and interpreting them in order to interact with an external device, 

for example a computer, a wheelchair, or a prosthesis of some kind. Figure 2.11 shows a 

general scheme of a BCI: brain signals are generated by the system's user, according to a 

pre-defined strategy; they are measured by a technique; then, the signals must be 

processed to reduce noise and artifacts; and some characteristic of the signal is extracted, 

usually called the signal "features". Feature extraction is a key step in BCIs success, since 

this step basically sends to the classifier algorithm what characterizes the desired and 

expected brain response. The classifier algorithm has the role of associating each feature 

set to different signals, that are, finally, translated to specific commands to be sent to the 

external device that the user wishes to control. 

 BCIs depend upon the user's intentional control, since they should associate a 

response to a mental task performed by him/her. [Pfurtscheller et al., 2005]. This means 

that the user generates mental patterns, according to a thought strategy, which the system 

associates with some event [Graimann et al., 2010]. The used strategy imposes limits to 

the BCI hardware and software, especially in the manner neural signals are processed. As 

with any human activity, it requires practice to improve, and the training time depends on 

the strategy itself. In addition, the system itself should adapt to its user, being able to 

respond to variations between different users and to the change of their strategies in time. 

Depending on the type of brain signals generated, ideally, a feedback can be given to the 

user in order to let them know if the chosen strategy is giving the expected results. If these 

results are not being achieved, he/she can try to modulate his/her brain signals and obtain 

better results.  
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Figure 2.11. A general scheme of a BCI. Extracted from [Pfurtscheller et al., 2005]. 

 Initially, BCIs were developed to improve the life quality of patients with serious 

motor deficits. In particular, the ones in the called "locked-in" state; a state in which they 

have lost all their mobility and have absolutely no manner of communication with the 

external environment [Wolpaw et al., 2002; Kubler et al., 2001].  More recently, however, 

BCIs have been investigated for other uses, such as monitoring the emotional state of 

patients [Widge et al. 2014] and soldiers [Miranda et al. 2014], monitoring the 

wakefulness state of drivers [Chuang et al. 2010], videogames [Bos et al. 2010] etc. BCIs 

can also provide insight into functional mechanisms of the brain, since understanding 

how responses to be used in such systems are generated is a crucial step of a BCI.  

 BCIs can rely on endogenous or exogenous tasks. The first ones are independent 

of external stimulation, and are based on mental tasks that can generate brain signals 

simply by enough concentration, such as motor imagery. This can be, however, a very 

tiring approach, as focusing in these types of task is not so simple. The latter ones are 

based on evoked responses due to external stimulation, such as visual stimuli. Their 

behavior is currently more well-established than signals generated by endogenous tasks, 

which constitutes an advantage. Nonetheless, their dependence on external stimulation is 

their main disadvantage, since additional external devices are needed to generate 
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stimulation. Regardless of what type of task a BCI relies on, each one has its own 

advantages and disadvantages, which should be considered for each specific case. 

 Currently, there are many techniques for measuring brain signals, from non-

invasive ones, such as functional magnetic resonance imaging (fMRI), near-infrared 

spectroscopy (NIRS), EEG and magnetoencephalography (MEG); semi-invasive 

techniques, such as electrocorticography (ECoG); to totally invasive ones, such as neural 

probes. For use in BCIs, each technique has advantages and disadvantages. The main 

advantage of the non-invasive methods is the fact that they are, precisely, non-invasive. 

This, however, comes at the cost of more recording noise and harder to decode data. Still 

in the non-invasive techniques, fMRI has the best spatial resolution but a high cost, while 

EEG has better temporal resolution, worse spatial resolution but lower cost. In addition, 

EEG equipment is portable. With all this considered, EEG has been the most used 

technique in BCI studies [Panoulas et al., 2010], and was also adopted in the present work. 

In the following section, we describe the main strategies used for generating brain signals 

in an EEG-based BCI. 

2.3. Main strategies to generate input signals for EEG-BCI 

 In EEG-BCI studies, brain signals are usually triggered by a specific external 

stimulus; the EEG response is then called an "event related potential", or ERP.  An ERP 

is, therefore, a very small voltage that is generated in the brain in response to specific 

events or stimuli [Sur and Sinha, 2009]. The main types of ERPs used for EEG-BCIs will 

be discussed in this section. 

2.3.1. P300  
 

 P300 is an ERP, so called due to the fact that its positive amplitude peak occurs at 

about 300 ms after initial stimulation (Figure 2.12). It is a response located at the 

parietocentral scalp area (FCz, Cz and Pz) [Al-ani and Trad, 2010; Picton, 1992; 

Pritchard, 1981]. The first report of the P300 wave dates from 50 years ago [Sutton et al., 

1965]. In this study, the authors found results that suggested an inverse relationship 

between the P300 amplitude and the stimulus probability [Pritchard, 1981]; that is, the 

lower the occurrence probability of a stimulus, the higher the evoked P300 amplitude. 

The P300 wave is associated with decision-making, being a brain response to an event 

with low occurrence probability and to a task that requires the subject's attention. It can 
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be evoked by auditory, visual or somatosensory stimuli that are particularly significant 

and infrequent.  

 In Figure 2.12, N1, P2 and N2 indicate components of the waveform that are 

sensory evoked responses which do not correspond to the task responsible for evoking 

the P300. For instance, let P3 be evoked by a specific target event, "T", and N1, N2 and 

P2 be components present in a standard stimulation, "S". Every time a new stimulus is 

the same as the standard stimulus "S", P300 is not evoked, and only N1, N2 and P2 are 

the present components. If, however, the new stimulus is different from "S" (that is, "T"), 

and the subject is focused on the task, the P3 response is evoked in addition to N1, N2 

and P2. The scheme in Figure 2.13 illustrates this process. This is known as the "context 

updating theory of P300" [Polich, 2003].  

 In BCI applications, the P300 wave is associated with the peak picking (PP) 

technique [Al-ani and Trad, 2010; Meinicke et al., 2003; Garrett et al., 2003; Bayliss et 

al., 2004; Bayliss and Inverso, 2005; Samili Khorshidi et al., 2007; Hoffman et al., 2008].  

PP is an algorithm designed to detect the P3 component in the waveform "using the 

difference between the minimum and maximum amplitude in a trial" [Al-ani and Trad, 

2010]. To do so, the difference between the maximum and minimum points of the 

recorded P300 data is evaluated within a time window. If this difference exceeds a 

threshold value, the algorithm response is a detected P3 component.   

 

Figure 2.12. P300 potential illustration. The P300 component of the illustrated waveform is labeled as 

'P3'. Extracted from [Al-ani and Trad, 2010].  
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Figure 2.13. Context updating theory of P300 scheme. The P3 potential is evoked only in response to 

the target stimulus "T". Extracted from [Polich, 2007]. 

 One of the main applications of P300 in BCIs has been the P300-BCI speller, 

which displays a matrix containing letters and numbers. Depending on the system, each 

letter flashes one at a time, or an entire row or column of the matrix flashes at a time. The 

principle is that a P3 component should be evoked every time the intended letter flashes 

(Figure 2.14). When this happens, the system detects the P300 wave and is able to identify 

the selected row, column or letter. Eventually, the user can spell entire sentences and 

communicate with the outside environment. BCIs of this type have been reported in the 

literature with accuracy rates 95%, showing it is a promising application [Donchin et al., 

2000; Farwell and Donchin, 1988; Kaper et al., 2004; Krusienski et al., 2006; Rivet et al., 

2009; Sellers et al., 2006]. 

 

Figure 2.14. Character matrix displayed for P300-BCI application. Extracted from [Rivert et al., 2009]. 
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 Other applications involve other types of decision-making processes, such as 

discriminating between daily tasks [Hoffman et al., 2008], or giving commands to a 

wheelchair [Iturrate et al., 2009].  

 Given its nature and detectability, P300 is a well-established response that has 

been demonstrated to be very useful and successful in BCI applications. 

2.3.2. SSVEP 

 A visually evoked potential (VEP) is an ERP that occurs in response to visual 

stimulation. The steady state visually evoked potential (SSVEP) is a special case of VEP, 

and it constitutes a response to stimuli modulated in a specific frequency range, from 3.5 

to 75 Hz [Panoulas et al., 2010]. The SSVEP response has the same fundamental 

frequency as that from the source that originated it. For instance, if a person is stimulated 

by a 14 Hz blinking LED, the corresponding SSVEP response will have its fundamental 

frequency set at 14 Hz. It usually also includes the fundamental frequency's harmonics 

series (Figure 2.15). This type of response is more pronounced at the occipital lobe, since 

it is the region of the brain directly associated with visual processing.  

 It is important to note that SSVEPs and VEPs are different, and what distinguishes 

them is the repetition rate of the stimulation. An isolated visual stimulation will not 

produce an SSVEP. This response will only occur if the stimulus is presented repetitively, 

from a rate of 5 to 6 Hz or greater, originating an oscillatory response in the brain - the 

SSVEP [Al-ani et al., 2010]. 

 

Figure 2.15. SSVEP response example. It is possible to note the higher peak at the fundamental frequency 

(7 Hz) and smaller peaks at the harmonic frequencies (14 Hz, 21 Hz, 35 Hz). Extracted from [Panoulas et 

al., 2010].  
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 If two or more frequencies are presented as stimuli, the one that the BCI's user is 

focusing on is the prevalent one in the SSVEP response [Panoulas et al., 2010]. Therefore, 

the use of SSVEP in BCIs commonly involves presenting different flashing stimuli on a 

screen, and associating a specific command to each stimulus. The user's choice can then 

be identified by analyzing the peaks of the signal in the frequency-domain (Figure 2.16). 

 

 

Figure 2.16. SSVEP-BCI scheme. Left: choices are presented to the user, flashing at different frequencies. 

Center: the EEG signal is measured at the occipital cortex. Right: The Fourier Transform of the EEG signal 

shows peaks at the frequency corresponding to the stimulus the user was looking at, accompanied by its 

harmonics. Adapted from [Zhu et al., 2010]. 

 SSVEP-BCIs have the advantage of generating a robust response without 

requiring much training from the user. However, they do require their users to have good 

voluntary eye movement control [Panoulas et al., 2010]. Overall, given the nature of the 

SSVEP response, it seems a very feasible tool for BCI use. In [Guger et al., 2012], the 

authors explore how feasible an SSVEP-BCI was to 53 volunteers, obtaining an average 

accuracy of 95.5%, with no subject obtaining accuracies below 60%. They concluded that 

SSVEP-BCIs are systems that can provide very good classification rates with small 

training sections.   

2.3.3. Motor Imagery (MI) 

 Some changes in EEG data occur due to events that cause an increase or decrease 

in the spectral power of certain frequency bands, such as motor behavior, sensory 

stimulation and mental imagery [Pfurtscheller et al., 2001]. These changes are often 

viewed with aid of the Fourier Transform in the frequency domain of the signal. When 

an increase happens, the event is called an event-related synchronization (ERS), and, 

when a decrease occurs, it is an event-related desynchronization (ERD). The reason for 
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this to happen is considered to be due to the synchronization degree between neuronal 

populations [Panoulas et al., 2010]; that is, neurons firing synchronously should yield an 

ERS, and neurons firing asynchronously should yield an ERD.  

 ERS and ERD can occur simultaneously [Pfurtscheller et al., 2001]. At the same 

EEG electrode, for instance, at the same time, a certain frequency band can undergo an 

ERS, while another undergoes an ERD. In addition, at different scalp locations, the same 

frequency band can undergo an ERD at some region and an ERS at another one. 

 MI can be seen as a mental rehearsal of the motor act itself, without movement 

realization, and that triggers responses at similar areas to those for motor tasks 

(sensorimotor areas) [Pfurtscheller et al., 2001]. Hand movement is very well located in 

the motor cortex, and it is currently well established that MI of the hands results in an 

ERD of the µ band and central β rhythm at the contra-lateral hemisphere, and an ERS 

within the γ band at the ipsi-lateral hemisphere [Al-ani et al., 2010; Pfurtscheller and 

Aranibar, 1977; Pfurtscheller, 1999c; Neuper and Pfurtscheller, 1999a].  

 MI patterns are a little distinct than overt movement. During movement execution, 

the ERD found has a bilateral behavior [Pfurtscheller et al., 2001]. Therefore, ERDs of 

the contra-lateral hemisphere for µ and β rhythms are more evident during MI than during 

movement execution.  

 Figure 2.17 illustrates the contralateral ERD during hand MI for distinct subjects 

at different frequency ranges. Also, some ERS can be seen on the ipsilateral hemisphere 

for some subjects and frequencies. 

 MI-BCIs have an important advantage over P300-BCIs and SSVEP-BCIs, since 

they do not need external stimulation. MI-BCI users can, theoretically, imagine whatever 

they desire at any time, making it possible to give the system its input whenever it would 

be needed. In practice, however, it is not that simple. Although MI has been considered 

to have this characteristic response, imagining movements requires great focus, attention 

and effort, which the BCI user usually must train to develop [Slenes et al., 2013; 

McFarland et al., 1998; Hwang et al., 2009]. In addition, the brain response to MI usually 

has a large inter-variability and intra-variability, making the task of the classifier 

algorithm very demanding. On the other hand, MI-BCIs have been successful in aiding 

patients toward their motor rehabilitation, since they activate similar areas to the overt 

movement realization [Sharma et al., 2009; Wang et al., 2010]. 
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Figure 2.17. EEG “activations” when subjects imagine right or left hand movement. ERDs (red) and 

ERSs (blue) are indicated in a color scale for all three subjects (S1, S2 and S3). Note that MI of a specific 

hand causes ERDs on the contralateral hemisphere to which this task is done; while ERSs usually occur on 

the ipsilateral hemisphere. In addition, time courses of recorded signals are shown on the right to each scalp 

map, to each scalp location denoted by ‘1’, ‘2’, ‘3’ or ‘4’. Extracted from [Pfurtscheller and Neuper, 1997]. 

 In MI-BCI applications, it is usual to search for distinguishable patterns between 

two responses. For instance, to use left and right hand imaginations and attribute a 

command to each one of the hands. In a typical protocol, data from both hand MIs are 

acquired separately. Data are pre-processed and the feature extraction is made. It is very 

common for the feature to be the power-spectral density (PSD) of specific frequency 

bands. In theory, ERS and ERD should be noticeable as changes in the PSD. Left hand 

MI, for instance, should cause the contra-lateral µ rhythm PSD to decrease, due to the 

occurring ERD. Distinct values of PSD at specific locations for each task can, then, be 

used to train a classifier algorithm. More recently, feature extraction of MI using graphs 

has also been studied, and will be discussed later on. 

 MI, despite its challenges, presents itself as a very interesting strategy, mainly 

because it does not require external stimulation and seems to be the a “natural” approach. 

It has been subject of intense research in the BCI area, with various studies trying to 

overcome its challenges 

2.4. Common signal processing techniques in EEG-BCIs  

 In this section, some common preprocessing methods in BCI research and aspects 

regarding feature extraction that are relevant to the understanding of this work will be 

discussed. 
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2.4.1.  Temporal Filtering 

 Usually for BCI applications, the information sought is located in well-specified 

frequency bands of interest. In this context, frequency filtering refers to filtering the signal 

in order to leave only specific frequency bands. If the alpha band is sought, for example, 

a band-pass filter between 8 to 12 Hz can be used; low-pass frequency filters, on the other 

hand, can eliminate sources of (high-frequency) electromagnetic noise; and so on. 

2.4.2. Spatial Filtering 

 The application of spatial filters in BCI aims mainly the enhancement of the 

recorded EEG signal by increasing its signal-to-noise ratio. Two spatial filters are 

highlighted here: common average referencing and surface Laplacian.  

 A common average referencing (CAR) spatial filter averages the EEG signal 

across all recording electrodes, and subtracts this result, pointwise, at each electrode. This 

is expected to eliminate common artifacts arising in all channels at the same time. 

Differences in results of distinct EEG studies have been attributed, partly, to the 

difference on referencing the recording signal [Hagemman et al., 2001]. Assuming that 

the influence of the reference electrode is of equal magnitude in all EEG recording 

channels, then, a CAR filter should eliminate this effect over the recorded data [Stanny, 

1989; Al-ani et al., 2010]. Mathematically: 

𝑉𝐶𝐴𝑅
𝑖 =  𝑉𝑅

𝑖 −  
1

𝑛
∑ 𝑉𝑅

𝑗

𝑛

𝑗=1 

, (2.2) 

in which n is the total number of electrodes, 𝑉𝑅
𝑖   is the voltage time series recorded at 

electrode i and 𝑉𝐶𝐴𝑅
𝑖  is the voltage time series at the same i electrode after the filter 

application.  

 The surface Laplacian (SL) consists of the instantaneous second derivative of the 

electrical potential spatial distribution. This filter enhances the high-frequency spatial 

components, and can achieve high spatial resolution by using a large number of electrodes 

[Al-ani et al., 2010; Panoulas et al., 2010]. This procedure accentuates localized activity 

and attenuates more diffuse activity [McFarland et al., 1997]. A SL calculation, as defined 

by [McFarland et al., 1997], uses a finite difference method to approximate the second 

derivative by subtracting the mean activity of the surrounding electrodes of some 

electrode i of interest as follows: 
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𝑉𝑆𝐿
𝑖 =  𝑉𝑅

𝑖 −  ∑ 𝑔𝑖𝑗𝑉𝑅
𝑗

𝑗∈𝑆𝑖

, (2.3) 

with  

𝑔𝑖𝑗 =  

1
𝑑𝑖𝑗

∑
1

𝑑𝑖𝑗
𝑗∈𝑆𝑖

. (2.4) 

 Si represents the set of electrodes that surround the ith electrode under 

consideration. dij is the distance between electrodes i and j., that can be taken to be 

nearest-neighbors or not (Figure 2.18). 

 CAR and SL are amongst the most used space filters in EEG-BCI research, with 

increasingly popularity [Al-ani et al., 2010]. They are relatively simple approaches that 

can be used to enhance the EEG signal-to-noise ratio. 

 

Figure 2.18. Examples using nearest-neighbors’ electrodes (small Laplacian) and next-nearest-

neighbors (large Laplacian). What should change in the SL filter equation is just the distance between the 

electrodes. Channels to be included in the filter's range are black. Adapted from [McFarland et al., 1997]. 

2.5. Classification approaches 

 The classification step is a crucial part of a BCI’s scheme (see Figure 2.1), as it is 

the phase where the user’s intent is recognized and transformed into a command to be 

sent to the desired application. In this section, two classification approaches commonly 

used in BCI applications are discussed: linear discriminant analysis and support vector 

machines.  
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2.5.1. Linear Discriminant Analysis  

 Due to its robustness and simplicity, linear discriminant analysis (LDA) is used 

for all types of BCI. In MI-BCI, many works use LDA providing, as input, the PSD of 

specific frequency bands (usually the µ rhythm), as discussed above. The mathematical 

formulation of the problem is stated below. 

 Given an input data vector x, whose components are x1, x2,...,xn, (the so called 

“feature vector”), a linear classifier has the following structure: 

𝑦 =  𝒘𝑇𝒙 +  𝑥0, (2.5) 

in which ( . )T indicates the transpose of a matrix (or vector), w is a weight vector, to be 

determined, and 𝑥0 is an offset value. Expression (2.5) can be thought of as the projection 

into a line, by means of w, of the data vector x. If ||w|| = 1, the y value is just the projection 

of the corresponding x into a line in the direction of w. The values of the components of 

w are not important, since they are scaling factors for y; the direction of w, however, 

matters. Simply choosing to project the input data in lines having different directions can 

have great implication on the separation efficiency (Figure 2.19). However, if the input 

data from the chosen feature are highly overlapping, even the best choice of w may not 

be able to satisfactorily separate the classes [Duda et al., 2001]. 

 

Figure 2.19. Two different projection examples for the same original input data. Projection on the 

right shows better separation. Extracted from [Duda et al., 2001]. 
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 In general, for linear classifiers, distinction between two classes is done from a 

hyperplane of the form  𝒘𝑇𝒙 −  λ = 0 (see Figure 2.20), where λ is a decision threshold. 

If it is sought to discriminate between two classes, C+ and C-, then: 

{
 𝑦 =  𝒘𝑇𝒙 ≥  λ → the algorithm decides for C+ 

𝑦 =  𝒘𝑇𝒙 <  λ → the algorithm decides for C− . (2.6) 

 In MI-BCI research, searching for differences between recorded MI tasks is 

basically a pattern recognition problem. This type of situation is usually not simple, and 

its output can be affected by a variety of factors, such as the feature's choice and noise. In 

some cases, prior knowledge of the problem under study can be of great help in defining 

which features should be chosen. Ideally, it is sought to use a feature that is both simple 

and robust, in the sense of not being easily affected by noise. In some cases, however, 

this is not possible, and prior knowledge and context become even more important. 

 

Figure 2.20. Example of two classes (blue and green) optimal separation using the least-square LDA 

method. The red line is the hyperplane that best separates the two clusters. Data were generated randomly. 

 Many criteria can be used for choosing the parameters and decision threshold of 

the problem. In this thesis, to determine the w vector, we applied a least-squares based 

methodology. The least-squares method is commonly applied to many situations of data 

regression and classification.  

 In the case of data classification, the idea is to find the optimum hyperplane that 

best separates two data classes; for instance, classification of new data between two 

classes – right and left hands MI. By labeling each class, for instance, by “1” and “-1”, 
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the closer the classifier output (y) is to the corresponding class’ label, the more accurate 

the classifier is. Therefore, defining l as the labels’ vector, then: 

𝑙𝑖 = {
1, if 𝑥𝑖ϵ𝐶+

−1, if 𝑥𝑖ϵ𝐶− 
. (2.7) 

 Note that each element of l need not be “1” or “-1”, this is merely an example. 

Generally, any two constants would suffice.  

 In the most general case, let X be an n × d matrix, as follows (note that xi0 elements 

are analogous to the offset value x0 of (2.5)), for which each ith row is a vector 𝒙𝒊
𝑇 : 

𝑿 = (

𝑥10 𝑥11 ⋯ 𝑥1𝑑−1 𝑥1𝑑

⋮ ⋱ ⋮
𝑥𝑛0 𝑥𝑛1 ⋯ 𝑥𝑛𝑑−1 𝑥𝑛𝑑

). (2.8) 

  

 The labels’ vector l and the attribute matrix X are related by w: 

𝒍 =  𝒘𝑿. (2.9) 

 It is sought to minimize the quadratic norm of the residual value between the 

classifier output and the actual class label. Let this quantity be identified by the cost 

function J(w). Then: 

𝐽(𝒘) = ||𝑿𝒘 − 𝒍||². (2.10) 

 Alternatively, Equation (2.10) can also be written explicitly in terms of the matrix 

elements as: 

𝐽(𝒘) = ∑(𝒘𝑇𝒙𝒊 − 𝑙𝑖)²

𝑛

𝑖=1

. (2.11) 

 To minimize J(w), its first derivative at a given point must equal zero, and its 

second derivative at that same point must be positive. Therefore: 

𝑑𝐽(𝒘)

𝑑𝒘
= 0 → 2 ∑(𝒘𝑇𝒙𝒊 − 𝑙𝑖)𝒙𝒊 = 0

𝑛

𝑖=1

. (2.12) 

 Expression (2.12) can also be written as: 
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2 𝑿𝑇(𝑿𝒘 − 𝒍) = 0. (2.13) 

 Then: 

𝑿𝑇𝑿𝒘 = 𝑿𝑇𝒍. (2.14) 

 Matrix XTX is a square d-by-d matrix and often nonsingular [Duda et al., 2001]. 

Therefore, the solution for w from Equation (2.14) is: 

𝒘 = (𝑿𝑇𝑿)−𝟏𝑿𝑇𝒍 =  𝑿†𝒍. (2.15) 

 In (2.15),  𝑿† ≝  (𝑿𝑇𝑿)−𝟏𝑿𝑇 is known as the pseudoinverse of matrix X. Note 

that when the number of samples available for classification and the number of features 

are equal, that is, n = d, then the pseudoinverse is square, and coincides with the matrix’s 

regular inverse [Duda et al., 2001]. 

 In addition to providing a relatively simple mathematical formulation of the 

problem, LDA classifiers present the advantage of being of low computational cost when 

compared to more elaborated methods. Besides, they can be very robust given the right 

type of input features.  

2.5.2. Support Vector Machines 

 Support vector machines (SVMs) also seek to discriminate between classes by 

finding the hyperplane that best separates them. To do so, however, only the support 

vectors from each data class are used (providing the name for the method). Support 

vectors are the ones that lie on the margin of each data class (Figure 2.21). The hyperplane 

to be found must maximize the distance between the hyperplane itself and the support 

vectors.  

 Firstly, let us consider a two linearly separable classes classification problem. As 

previously, let xi denote the input data, li be the label for each xi and w be a weight vector. 

Given a parameter b, we can write 

{
𝒘𝒙𝑖 + 𝑏 ≥ + 1 →  𝑙𝑖  = +1
𝒘𝒙𝑖 + 𝑏 ≤ − 1 →  𝑙𝑖  = −1

. (2.16) 
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Figure 2.21. SVM optimum hyperplane to separate margins between two classes. 

 Basically, (2.16) states that 𝒘𝒙𝑖 + 𝑏  belongs to either one of the classes, 

depending on whether it is regarding a threshold indicating the margins of the classes. 

These inequalities can be summarized into just one expression: 

𝑙𝑖(𝒘𝒙𝑖 + 𝑏) − 1 ≥ 0, (2.17) 

which is valid for all i.  

 If data are linearly separable, then the equality situation in (2.16) occurs for data 

lying on the margins – that is, the support vectors. Then: 

𝑙𝑖(𝒘𝒙𝑖 + 𝑏) =  1. (2.18) 

Let us take the equation of the hyperplane to be  

𝑓(𝒙) =  𝒘𝑇𝒙 + 𝑏 = 0. (2.19) 

 Since the separating hyperplane is the decision boundary, any point on it must 

obey Equation (2.19). Note that w is orthogonal to the separating hyperplane. 

 Now, let dP be the distance between an arbitrary point P and the separating 

hyperplane, and Q be the projection of P onto the hyperplane (see Figure 2.21). If xP 

represents the data point on P, then, point Q is given by: 
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𝒙𝑄  = 𝒙𝑃 −
𝑑𝑃

𝑦𝑃

𝒘

||𝒘||
 . (2.20) 

 yP merely scales the expression according to whether the positive or negative 

labeled class is under analysis. Since Q lies on the decision boundary, it must satisfy 

Equation (2.19). Then, putting (2.20) into (2.19): 

 𝒘𝑇 (𝒙𝑃 −
𝑑𝑃

𝑦𝑃

𝒘

||𝒘||
) + 𝑏 = 0. (2.21) 

 Proceeding with the calculations: 

𝑑𝑃 = 𝑦𝑃 (
𝒘𝑇𝒙𝑃 + 𝑏

||𝒘||
). (2.22) 

 Given all training set points xP with their respective labels yP, the geometric 

margin of parameters (w, λ) with respect to this set is given by the smallest possible dP 

value. Maximizing the distance to this margin is a manner to find the optimal boundary, 

related to the classification boundary. This problem is analogous to minimizing the norm 

of w, subject to constraints (2.17). 

 The solution for this type of problem leads to an optimization problem of quadratic 

order. Its solutions may be found from the following Lagrangian [Leite, 2016]: 

𝐿(𝒘, λ, b) =
1

2
𝒘𝑇𝒘 −    ∑ λ𝑖[𝑦𝑖(𝒘𝑇𝒙 + 𝑏) − 1]

𝑛

𝑖=1

; (2.23) 

where λ represents the Lagrange multipliers and n is the number of samples available for 

training the classifier. To solve this problem, we want to minimize L with respect to w 

and b, and maximize it with respect to Lagrange’s multipliers. This means that: 

∂𝐿(𝒘, λ, 𝑏)

∂𝐰
= 𝒘 − ∑ λ𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

= 0; (2.24) 

 

∂𝐿(𝒘, λ, 𝑏)

∂𝑏
= ∑ λ𝑖𝑦𝑖

𝑛

𝑖=1

= 0. (2.25) 

 

 From (2.26): 
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𝒘𝑜𝑝𝑡𝑖𝑚𝑢𝑚 = ∑ λ𝑖𝑦𝑖𝒙𝑖

𝑛

𝑖=1

. (2.26) 

 Expression (2.28) shows that the optimum weight vector is a linear combination 

of the input data, for which the λi are non-zero. Now, putting (2.26) and (2.27) into (2.25) 

yields: 

𝐿(𝒘, λ, b) =  ∑ λ𝑖

𝑛

𝑖=1

−  
1

2
𝒘𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑇 𝒘𝑜𝑝𝑡𝑖𝑚𝑢𝑚. (2.27) 

 Thus, the task is to maximize L with respect to the Lagrange multipliers in order 

to find the maximum margin subject to constraints (2.25) and (2.17).  

 In the cases for which data classes are not linearly separable in the original space, 

it is possible to choose a function ɸ(x) that maps the data points to a higher dimension 

space, in which classes are linearly separable (Figure 2.22). 

 

Figure 2.22. Mapping of input dataset x by function ɸ. ɸ(x) takes the feature points to a new space of 

higher dimensionality, where classes are linearly separable. Extracted from [Leite, 2016]. 

 The mathematical formulation for this problem is very much alike to what was 

done previously. This time, however, the classifier output is written in terms of ɸ(x): 

𝑓(𝒙) =  𝒘𝑇ɸ(𝒙) + 𝑏. (2.28) 

 Thus, for this case, the optimum w is now taken to be 

𝒘𝑜𝑝𝑡𝑖𝑚𝑢𝑚 = ∑ λ𝑖𝑦𝑖ɸ(𝒙𝑖)

𝑛

𝑖=1

. (2.29) 

 Using (2.29) into (2.28) yields: 
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𝑓(𝒙) = ∑ λ𝑖𝑦𝑖ɸ
𝑇(𝒙𝑖)

𝑛

𝑖=1

ɸ(𝒙) + 𝑏. (2.30) 

 Note that the classifier’s output depends on a scalar product involving the function 

ɸ(𝒙). Therefore, it is not necessary to know exactly how ɸ(𝒙) operates over all data 

points; instead, the classifier can operate indirectly via the inner product of the function 

ɸ(𝒙). In this context, it becomes useful to define a kernel function K(u,v) as: 

𝐾(𝒖, 𝒗) = ɸ𝑇(𝒖)ɸ(𝒗). (2.31) 

 It can be ensured that K(u,v) indeed defines this scalar product, given that it 

satisfies the following conditions (known as Mercer’s conditions) [Cortes and Vapnik, 

1995]: 

∬ 𝐾(𝒖, 𝒗)𝑔(𝒖)𝑔(𝒗)𝑑𝒖𝑑𝒗 > 0; (2.32) 

this must be satisfied for all g, given that: 

∫ 𝑔2(𝒖)𝑑𝒖 <  ∞. (2.33) 

 A variety of kernel functions can be used. In this work, we used linear and 

polynomial kernels. A polynomial kernel of degree m is given by (2.34). 

𝐾(𝒖, 𝒗) =  (α𝒖𝑇𝒗 + 𝑐)𝑚. (2.34) 

 Adjustable parameters are the polynomial degree m, the constant c and the slope 

α. A linear kernel can be obtained simply by setting m = 1. 

 SVMs present the possibility of working with non-linear approaches and, even 

though the fitting is based only on the support vectors (which are, usually, in smaller 

number than the total input samples for the classifier training), the algorithm is very 

robust. Both linear and polynomial SVM were tested in this work, and their performances 

were compared to the least-squares based LDA.  

2.6. Final remarks regarding MI EEG-BCIs 

 EEG-BCIs have been shown to be a viable alternative for direct communication 

from brain signals. However, their main problem is to identify specific patterns within 

the recorded data that provide good classification rates. This poses other questions that 
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must be answered to satisfactorily deal with this problem: what is the best manner to 

perform data acquisition? What would be the best processing steps for a specific situation 

(if such one does exist)? What classifier should be used, and with what feature? 

Answering some of these questions requires prior knowledge of the problem under study. 

 In the case of MI-BCIs, during data acquisition, the subject must be provided with 

enough time to satisfactorily perform the proposed tasks. A lot of attention is necessary 

during trials to ensure no artifact will compromise data analysis. For MI, subjects tend to 

report having a hard time imagining their movements, suggesting that this task is not as 

trivial as it may seem.  

 Processing steps should be able to enhance the EEG SNR. EEG being a technique 

that is highly affected by noise, it can be very difficult to identify specific mental patterns 

if the signal has not been properly treated. Also, distinct combinations of processing steps 

used, method used for feature selection and classification algorithm can affect the 

classifier’s results. Also, high inter-subject variability suggests that BCIs’ performance 

can be enhanced if they are adapted to each individual user.  

 As discussed, there are many factors that can affect a BCI’s performance. A 

considerable amount of research is being done in each one of a BCI’s crucial steps: data 

acquisition, signal processing and data classification. Specifically, for MI-BCIs, still no 

optimum way of going through these steps has been established in the literature. In 

particular, the approach presented here explores non-conventional methods for feature 

extraction through metrics from graphs theory. In the next chapter, a description of graph 

theory is given. 
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Chapter 3 

Graph Theory 

 

 The main purpose of this work was to investigate the feasibility of using graph 

features obtained from MI tasks to distinguish between left and right hand motor imagery. 

Therefore, a basic notion of graph theory and some common metrics associated with it is 

necessary for fully understanding what was done. Graph theory is a subject about which 

whole books could be written, which is obviously not the purpose of this work. The aim 

of this chapter, then, is to summarize the main properties that have been commonly used 

in BCI studies with graphs. The chapter starts by shortly defining graphs, explaining 

common metrics and, finally, indicating how these have been used in BCI applications. 

.
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3.1. Basics of Graph Theory 

 Graphs theory is a mathematical field that allows description of phenomena from 

many areas, such as social networks, communications, neural networks and so on. 

Basically, a graph consists of an ensemble of elements that can interact with each other, 

pair-wise. Each of these elements is denominated a "node", and the interaction between 

them is termed a "link". If two nodes do not interact, it is said there is no link between 

them. Nodes can also be called "vertices" or "points", and links are sometimes termed 

"edges". 

 In the context of using graphs to model brain regions’ interactions by means of 

EEG data, two main approaches are largely used. One option is to consider each 

individual EEG electrode as a node, and to establish links between these nodes by some 

similarity measure using the signals' features, such as amplitude and phase. Another 

approach is to determine the EEG signal's sources and, then, to consider these sources as 

the graph's nodes. Their links can be determined in the same manner as previously stated. 

Regardless of the approach, the idea of applying graphs to EEG data is that they provide 

a model of interaction between distinct neuronal populations. 

 A more formal definition of graphs requires a mathematical formulation. A graph 

is a pair 𝐺 =  (V, E) of sets where 𝑉 =  {v1, v2,…,vi} represents its vertices, and 𝐸 =

 {(e1, e2), … , (ei, ej)} contains the edges. The notation (ei, ej) indicates that there is an 

existing link between nodes i and j. Figure 4.1 is an example of a simple graph, with 𝑉 =

 {1, 2, 3, 4, 5} and 𝐸 =  {(1,2), (2,1), (2,3), (3,2), (2,5), (5,2), (4,5), (5,4) }. 

 

Figure 3.1. Illustrative example of a graph with 5 nodes. Lines connecting nodes represent the links 

between them. 

 The mathematical representation of a graph is its adjacency matrix (A).  The 

matrix elements, 𝑎𝑖𝑗,  represent the connections between nodes i and j. For an undirected 
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graph, the interaction between any two nodes is symmetric, which means that 𝑎𝑖𝑗  =  𝑎𝑗𝑖. 

On the other hand, in a directed graph, in which interaction between two nodes has a 

directionality (such as an effect of causality or transfer of information), it is possible to 

have 𝑎𝑖𝑗  ≠  𝑎𝑗𝑖. In this case, the link is taken to be from node i to node j. Figure 4.2 shows 

an example, with binary undirected (left) and directed (right) graphs, and their 

corresponding adjacency matrices.  

 

Figure 3.2. Example of undirected graph (a) and directed graph (b). Both graphs have the same nodes; 

however, their adjacency matrices are significantly different. 

 Graphs can also be classified as "weighted" or "unweighted". The latter type are 

binary graphs, i.e., links between two nodes can either exist (𝑎𝑖𝑗  =  1) or not (𝑎𝑖𝑗  = 0). 

A weighted graph can have links with different values (weights), that are not necessarily 

zero or one. In this case, it is usual to indicate the elements of the adjacency matrix by 

𝑤𝑖𝑗, which represent the values of the links.  

 Weighted and unweighted graphs can be built from the same basic principle. For 

example, suppose it is sought to construct an adjacency matrix that describes the 

interaction between different brain regions by measuring its electrical activity using EEG 

electrodes. A statistical correlation method could be used to compare the signal's time 

series, and to assign a correlation coefficient to each pair i-j of electrodes, 𝑐𝑖𝑗. Therefore, 

each 𝑐𝑖𝑗 is an element of the adjacency matrix that describes this weighted graph. If it is 

desired to work with an unweighted graph, a threshold can be defined, to set every  𝑐𝑖𝑗 to 

1, if its value exceeds the threshold, or 0, otherwise.
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3.2. Common Graph Metrics 

 When working with small graphs, simple visualization of the graph may provide 

all the information needed from it. Frequently, however, graphs are built with a large 

number of nodes, making its analysis via simple visualization unfeasible. In such a case, 

graph metrics can help to extract information from the system represented by the graph. 

In this section, some common graph metrics often used are presented. 

3.2.1. Degree 

 The size of a graph is given by its total number of edges, and a graph's order is 

indicated by its total number of nodes [Bessa et al., 2010]. The degree property takes into 

consideration how many links are adjacent to each node. For an undirected graph, the 

degree of node i (ki) is given by: 

𝑘i = ∑ 𝑎𝑖𝑗

N

i=1

, (3.1) 

in which N is the total number of nodes. The degree is intuitively extended to weighted 

graphs by just replacing 𝑎𝑖𝑗 by 𝑤𝑖𝑗.  

 For directed graphs, it is possible that a node may only have links going inward 

or outward (Figure 3.2). It is necessary, then, to define two distinct types of degree: the 

in-degree (𝑘𝑖
𝑖𝑛), being the number of links a node receives, and the out-degree (𝑘𝑖

𝑜𝑢𝑡), 

which is the number of links exiting the node.  

𝑘𝑖
𝑖𝑛 = ∑ 𝑎𝑖𝑗

N

i=1

; (3.2) 

 

𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑎𝑗𝑖

N

j=1

. (3.3) 

 The mean degree of a graph is simply the arithmetic mean of the degree. For an 

undirected graph, this means that: 

〈𝑘〉 =
1

N
∑ 𝑘𝑖

N

j=1

. (3.4) 
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 The notation 〈𝑥〉 was used to express the mean value of the variable x. In this type 

of graph, in summing ∑ 𝑘𝑖
N
j=1 , it is accounted for the total number of edges (E), twice. 

Then: 

〈𝑘〉 =
2E

N
, (3.5) 

for an undirected graph. 

 In the case of directed graphs, the edges start and end in specific nodes, and the 

double-accounting that previously occurred for undirected graphs is no longer present. 

Then: 

〈𝑘𝑖
𝑜𝑢𝑡〉 = ∑ 𝑘𝑖

𝑜𝑢𝑡

N

i=1

; (3.6) 

〈𝑘𝑖
𝑖𝑛〉 = ∑ 𝑘𝑖

𝑖𝑛

N

i=1

; (3.7) 

〈𝑘𝑖
𝑖𝑛〉 = 〈𝑘𝑖

𝑜𝑢𝑡〉  =  
E

N
. (3.8) 

 An important property of a graph directly associated with the degree is the "degree 

distribution". It indicates the probability P(ki) of node i having the degree k. The degree 

distribution can be best seen in the form of a histogram (Figure 3.3). 

 

Figure 3.3. Graph's degree distribution example. 
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3.2.2. Clustering Coefficient 

 The clustering coefficient (CC) is a metric associated with the degree, that 

contains information on how the nodes are organized. It indicates the probability that two 

nodes that are adjacent (linked) to a certain node i are also adjacent to each other. 

Therefore, the clustering coefficient (C) can be expressed as: 

𝐶𝑖 =
number of closed triplets connected to node ′i′

number of triplets of connected vertices, centered on node ′i′
. (3.9) 

 Figure 3.4 shows different cases of clustering coefficient values for the same node. 

In (a), all neighbors to node i are also neighbors to each other, accounting for a CC of 1. 

In (c), these neighbors are not connected to each other, resulting in a CC of 0. In (b), an 

intermediate situation is shown.  

 

Figure 3.4. Clustering coefficients for the central node of a star graph. Three situations are shown: an 

entirely connected graph (a), with a CC for node i of 1; the opposite situation, for which CC for the same 

node is 0 (c); and an intermediate case (b). Extracted from [Costa et al., 2008]. 

 Let ki be the degree of node i for an unweighted graph. This means that this node 

has ki neighbors. Then, the maximum possible number of edges (𝐸𝑚𝑎𝑥
𝑖 ) occurs when all 

neighbors of i are connected to i and to each other, simultaneously, which translates into 

the denominator of (3.9). In this situation: 

Emax
i = (

𝑘𝑖

2
) ; 

 

(3.10) 

Emax
i =

ki!

(ki − 2)! 2!
=

ki(ki − 1)(ki − 2)!

2(ki − 2)!
; 

 

(3.11) 
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Emax
i =

ki(ki − 1)

2
. 

 

(3.12) 

 

 Let the numerator of (3.9) be expressed as bi. It can be seen as the product of 

elements of the adjacency matrix, since a contribution for the cluster coefficient will only 

exist if there is a closed triplet at node i; that is, if two nodes (j and l), adjacent to i, have 

non-zero matrix elements. Then, to compute bi, it must be taken into consideration three 

matrix elements, analyzing if a link exists between i and j, i and l, and j and l, 

simultaneously. Mathematically: 

𝑏𝑖 = ∑ ∑ 𝑎𝑖𝑗𝑎𝑖𝑙𝑎𝑗𝑙

𝑙𝑗

. (3.13) 

 Therefore, the expression for the clustering coefficient can be rewritten to take the 

following form: 

𝐶𝑖 =
bi

Emax
i

. (3.14) 

 Substituting (3.12) and (3.13) into (3.14) yields 

𝐶𝑖 =
2 ∑ ∑ 𝑎𝑖𝑗𝑎𝑖𝑙𝑎𝑗𝑙𝑙𝑗

ki(ki − 1)
. (3.15) 

 The average clustering coefficient is calculated simply by averaging Ci over the 

total number of nodes, N. 

〈𝐶〉 =
1

N
∑ 𝐶𝑖

N

i=1

. (3.16) 

 The extension of the calculation of the clustering coefficient for weighted graphs 

is not so straightforward as for the degree. Antoniou and Tsompa reviewed common 

calculations used to extend this concept to weighted graphs. They showed that all 

definitions of the clustering coefficient for a weighted network reduced to the definition 

(3.15) by replacing the adjacency matrix elements by their respective weights, 𝑤𝑖𝑗  

[Antoniou and Tsompa, 2008].  

3.2.3. Characteristic Path Length 

 It may be sought how far apart two nodes are from each other. A path between 

two nodes i and j of a graph can be defined as a sequence of n vertices, v1, ... ,vn, in which:  

𝑣1 =  𝑖 and 𝑣𝑛 =  𝑗; and for which any l defined in the interval 1 ≤ 𝑙 ≤ 𝑛 − 1, there is a 
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link between 𝑣𝑙 and 𝑣𝑙+1; and there is no vertices or links repetition within this sequence 

[Bessa et al., 2010]. 

 The path length between i and j refers to the number of edges connecting these 

two nodes corresponding to this path. The distance between these nodes is given by the 

shortest path length between them (lij). When i and j are adjacent to each other, 𝑙𝑖𝑗 = 1.  

 Using this concept, it is possible to define the graph distance matrix (L): a square 

matrix in which each element 𝑙𝑖𝑗 indicates the distance between nodes i and j (Figure 3.5).  

 

Figure 3.5. The graph's distance matrix (L) contains the minimum path length between nodes 'i' and 

'j'. For instance: from node '1', it is necessary to undergo two edges to reach node '5', and only one link, to 

node '4'. 

 For every node i it is possible to define its minimum path length by averaging all 

minimum distances to every possible reachable node from i: 

〈𝑙𝑖〉 =
1

N − 1
∑ 𝑙𝑖𝑗

N−1

j=1

. (3.17) 

 The network's average minimum path is the mean of every li: 

〈𝑙〉 =
1

N
∑ 𝑙𝑖

N

i=1

. (3.18) 

 As with the degree, the minimum path can directly be extended to weighted 

networks. Two different generalizations for this case are present in the literature, usually 

used in communication and transportation networks [Antoniou and Tsompa, 2008]. To 

define a new notation, let dij be the equivalent of lij, for weighted graphs. Then, regarding 

communication networks, the shortest path length between nodes i and j becomes: 
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𝑑𝑖𝑗 = 𝑚𝑖𝑛 ∑
1

𝑤𝑖𝑗
.

𝑖,𝑗

 (3.19) 

 Under this context, a large connection weight indicates great efficiency on 

communication between the two nodes i and j.   

 For transportation networks, the definition is: 

𝑑𝑖𝑗 = 𝑚𝑖𝑛 ∑ 𝑤𝑖𝑗.

𝑖,𝑗

 (3.20) 

 For both types of networks (communication or transportation), average values of 

the shortest path length are direct generalizations of (3.17) and (3.18).  

3.2.4. Centrality measures 

 Differently than from the previous metrics, centrality measures can only occur as 

local properties, as they are related to the relative importance of a node within a network. 

Since they can be defined under specific criteria, different types of centrality measures 

have been established in the literature [Newman, 2005]. In this thesis, three types of 

centrality were studied: degree centrality (DC), betweenness centrality (BC) and 

eigenvector centrality (EC). 

 As will be explained further (Chapter 4), working with weighted graphs was 

preferable. In our case, then, the DC coincides with the strength (or weighted degree) of 

a node. If W is a weighted adjacency matrix whose elements wij represents every 

connection weight between any pair of nodes i and j, then, the DC for node i is given by 

[Zhang et al., 2012; Barrat et al., 2004]:  

𝐷𝐶𝑖 = ∑ 𝑤𝑖𝑗.

𝑖,𝑗

 (3.21) 

 Note that the DC is a very simple measure, in the sense that only information about 

the weight of the connections is taken into consideration. A node can, however, possesses 

low connection weights and, even so, be important to the network regarding some other 

criterion. Consider, for instance, Figure 3.6, below. To simplify our discussion, let us 

assume that all connections have equal weight (this, however, need not to be the case). 

Node A, then, will present low DC when compared to nodes like B. On the other hand, 

this node is also the only one that connects the blue and red parts of the graph, being vital 

to perform communication between the two areas. Therefore, in the sense of information 
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flow, for instance, node A would be one of the most (if not the most) central nodes of the 

graph. The BC metric refers to this idea: node A would have a high BC value.  

 

 

Figure 3.6. A graph illustration for centrality measures comparison. Although node A has low DC 

values, it is vital for other interpretations, such as information flux through the red and blue parts of the 

graph. 

 Continuing with the example in Figure 3.6, node B is highly connected and can, 

also, intermediate flux (of information, people etc.) between other nodes, mainly within 

the red ones. It could, then, show high DC and BC values. Node C has only one 

connection and does not connect any other two nodes of the graph. It would, then, present 

low DC and zero BC. Figure 3.6, then, is an example that an important node regarding 

one centrality metric is not, necessarily, central under another criterion as well. 

 BC, then, accounts for how important a node is to intermediate interaction 

between any other two nodes of a graph. In more technical terms, BC for node i is related 

to how many shortest paths between any other nodes j and k (ljk) necessarily pass through 

i (ljk(i)). Mathematically [Monteiro, 2014]:  

𝐵𝐶𝑖 = ∑
𝑙𝑗𝑘(𝑖)

𝑙𝑗𝑘
𝑖≠𝑗≠k

. (3.22) 

 BC values can be normalized within the range (0,1) simply by the multiplication 

by the factor 
2

(𝑁−1)(𝑁−2)
, N being the number of nodes. BC measure frequently assumes 

that network flow preferentially happens through the graph’s shortest paths.  

 EC for node i is related to the ith component of the eigenvector associated with the 

largest eigenvalue of the adjacency matrix [Monteiro, 2004]. This measures account for 

the quality of the connections, in the sense that nodes with high EC values tend to connect 



3 . 2 .  C o m m o n  G r a p h  M e t r i c s  | 67 

 

 

with other nodes that, also, have high ECs [Newman, 2008]. The following paragraphs 

aim to provide a deeper insight into the idea EC is based on. 

 The EC is also called the Gould’s index of accessibility, since Gould was the first 

person to address this problem, for geographical applications [Gould, 1967]. The idea 

behind this measure is that the accessibility of a node should depend somehow on the 

other nodes . This can be seen as a consequence of the measure representing how 

accessible a node can be from other nodes. As a mathematical formulation, let xi 

determine the importance of node i. Dependence on the importance of other neighbor 

nodes j implies that, at the simplest scenario, xi is proportional to a linear combination of 

the importance of the nodes it is connected to. That is: 

𝑥𝑖 = c ∑ 𝑎𝑗𝑖𝑥𝑗

𝑗

. (3.23) 

 In (3.23), for simplicity’s sake, let us consider aij as each element of a binary and 

symmetrical adjacency matrix, A, of a graph. c is a proportionality constant, independent 

of i. Rewriting (3.23) in matrix notation gives: 

𝒙 = c𝑨𝑇𝒙; (3.24) 

with x being a vector comprising each node’s importance measure xi. Dividing both sides 

of (3.24) by c: 

𝑐−𝟏𝒙 = 𝑨𝑇𝒙. (3.25) 

 Note that (3.25) is an eigenvector equation for matrix AT (which is the same as A, 

since it was assumed to be a symmetric matrix), with eigenvalues c-1. This equation also 

gives an idea of why eigenvalues and eigenvectors may be associated to a notion of 

importance of a node, although it is not a formal description. The more detailed 

description given below is based on [Straffin, 1980], a work the reader is referred to, if 

he/she wishes a more complete formulation. 

 Instead of working with the matrix A, let us define a new matrix B, such that 

𝑩 = 𝑨 + 𝑰, (3.26) 
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with I being an n × n identity matrix. Note that B has the same eigenvectors as A, but 

with eigenvalues that are larger by one unity. Also, note that each element of Ak, that is, 

the adjacency matrix up to power k, represents the number of manners to travel between 

any two nodes. From the above definition of B, the elements of Bk are related to a very 

similar measure: the number of manners to travel between any two nodes by paths of 

length k [Straffin, 1980]. 

 Another feature used for justification of the EC comes from the Perron-Frobenius 

theorem, which states that, if M is a non-negative n × n matrix, then there is an eigenvalue 

λ1 such that: 

 λ1 is a positive and real value, being a simple root of the characteristic equation; 

 for any eigenvalue λi, with i ≠ 1, λ1 > |λi|; 

 λ1 has a unique eigenvector v1, up to constant multiples, and this eigenvector has 

all positive components. 

Since matrix B is primitive [Strafiin, 1980], Perron-Frobenius’ theorem applies. The 

eigenvectors of B, vi, can constitute a basis for which any vector y that is non-orthogonal 

to them can be written as:  

𝒚 = ∑ 𝑎𝑖𝒗𝒊𝑖 , (3.27) 

with v1 ≠ 0. 

 In the basis of its eigenvectors, Bk can be diagonalized to its eigenvalues. Then: 

𝑩𝑘𝒚 = ∑ 𝜆𝑖
𝑘𝑎𝑖𝒗𝑖  𝑖 . (3.28) 

 Dividing both terms of (3.28) by λ1: 

𝑩𝑘𝒚

𝜆1
𝑘 =

1

𝜆1
𝑘 ∑ 𝜆𝑖

𝑘𝑎𝑖𝒗𝑖  𝑖 . (3.29) 

 Now, since λ1 is the largest eigenvalue, then: 

𝒍𝒊𝒎
𝒌→∞

𝑩𝑘𝒚

𝜆1
𝑘 = 𝑎1𝒗1. (3.30) 

 Note that each ith element of v1 corresponds to the node i, and is seen as a measure 

of accessibility of that node, providing the notion for the EC.  
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3.3. Graphs in MI-BCI applications 

 The most common way to search for the expected response of a motor imagery 

task is to analyze the signal in the frequency domain. A decrease in the amplitude of the 

µ rhythm is usually expected on the motor cortex in the contralateral hemisphere 

regarding the hand MI.  

 One of the main problems with any type of BCI is the large inter and intra-

variability. The system must be capable of adapting to the user, and adaptation to the 

system by the user must also occur. An issue that arises from this is finding reproducible 

results. In this context, establishing “good” features as input to the classifier is essential. 

Theoretically, power spectra of specific frequency bands should be able to do this task; 

however, MI-BCIs have been demonstrated to be very complex, in the sense that MI is a 

task most people are not used to. In addition, there is not yet an optimum well established 

way for extracting features in MI-BCIs (and maybe this cannot be accomplished).  

 New approaches for feature extraction have been studied for MI-BCIs using graph 

theory by modeling the situation using a mathematical graph, and extracting metrics and 

characteristics that could be used in a classifier algorithm. It is important to note that a 

graph is a mathematical tool that does not, necessarily, describe an existing network 

(although many networks can, in fact, be modeled very accurately by graphs). As with 

any attempt to describe natural phenomena, it is only a model, that may work well, but 

not necessarily accounts for the reality; it is merely a way of perceiving and describing it. 

Regardless, many studies in neuroscience currently make use of graph theory to model 

brain interactions, and data analysis usually undergoes a few common steps shown in 

Figure 3.7. 

 Nodes determination of the graph to be constructed varies according to the 

technique used to extract the brain signals. FMRI (functional magnetic resonance 

imaging) and PET (positron emission tomography), for instance, are techniques 

denominated as "voxel-based" modalities, while EEG, MEG (magnetoencephalography) 

and fNIRS (functional near-infrared spectroscopy) are "sensor-based" modalities. For 

these last techniques, there are mainly two ways to determine graphs nodes, as already 

stated in Section 3.1: either the nodes are directly assigned to sensors, or to their 

reconstructed sources [Fallani et al., 2014].    
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Figure 3.7. Usual steps to build graphs from recorded brain signals. Nodes indicate specific brain sites, 

which may vary according to the technique used. Links between them are estimated through some 

correlation method. In this example, there is a definition of a threshold value to determine which links 

should be maintained in the graph. As final steps, graph metrics are extracted to characterize and classify 

different tasks or populations. Extracted from [Fallani et al., 2014]. 

 To establish the links, regardless of being a directed or undirected graph, weighted 

or unweighted graph, some statistical method to analyze the similarity between two time 

series should be used. In general, these methods take the N nodes, pairwise, attributing a 

similarity coefficient to them according to comparisons made between their time series, 

aiming to establish how similar they are to each other. By the end of this step, an N×N 

matrix containing all the similarity coefficients is obtained, sometimes called the 

correlation matrix, which originates the graph adjacency matrix. If it is sought to work 

with an unweighted graph, a threshold should be defined, in order to keep only the most 

significant links of the correlation matrix for the adjacency matrix. For a weighted graph, 

the common procedure is to normalize each element of the correlation matrix by dividing 

its value by the maximum value of the matrix, resulting in the weighted adjacency matrix 

(or simply weights matrix). 
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 In EEG-BCI and connectivity studies, a variety of correlation methods and 

applications are reported in the literature, such as Pearson's correlation, to evaluate 

affective states [Gupta and Falk, 2015]; phase locking value, to develop new tools for 

processing and analyzing EEG data [Shamas et al., 2015]; signal coherence, for multi-

class BCI [Salazar-Varas and Gutiérrez, 2015]; directed transfer function [Ghosh et al., 

2015]; and graph lifting transform, for developing an online BCI game [Asensio-Cubero 

et al., 2016]. Regardless of the method, the basic idea is the same: estimate the 

relationship between two nodes to determine if there is a link between them (in the case 

of unweighted graphs) or how significant is the link between them (in the case of weighted 

graphs).  

 Network studies have been an increasing field in neuroscience, accompanied by a 

fast development of new methods to be applied. Graph metrics have been widely used to 

characterize normal or abnormal brain states, or to try to determine a specific brain task. 

Graph applications have provided a unique opportunity for better understanding the brain 

[Fallani et al., 2014]. However, it should be noted that lack of physiological knowledge 

may result in purely mathematical measures, with questionable clinical value. In fact, the 

use of models growing in complexity can assist in developing ideas that are closer to the 

real functional mechanisms of the brain. For instance, it is well known that not all neurons 

are the same, nor are the manners through which they interact to one another; thus, models 

that take this into account (considering, for example, non-uniform nodes and edges) 

should be able to provide more accurate insights on the brain given, of course, the correct 

physiological interpretation.  

 In general, graphs in neuroscience seem like a very reasonable approach, being 

new analytical tools capable of providing a more complex understanding of the brain. 

However, according to [Fallani et al., 2014], the reason why network neuroscience has 

gained increasing popularity is, also, the reason why "the risk of a rush towards its frenetic 

and counterproductive application becomes more and more concrete", and therefore, they 

should be treated carefully. 
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Chapter 4 

Materials and Methods 

4.1. Data acquisition 

 This study is a subproject of a larger project, “DesTINe – Desenvolvimento de 

Tecnologias de Informação para Neurologia”, which was approved by the Ethics 

Committee of UNICAMP in 2010 (registration number at CEP-UNICAMP 791/2010, 

C.A.A.E. number 0617014600010). All subjects signed a written informed consent 

previous to data acquisition.  

 EEG data from 8 healthy subjects (mean age 24 ± 4 years, 7 men) were acquired 

at a 5000 Hz sampling rate using the BrainAmp amplifier (BrainProducts, Germany) with 

64 Ag/Cl pre-defined electrodes of the BrainCap MR (10/10 system). In this system, the 

electrical contact between scalp and electrode is made through a contacting AgCl gel. The 

ensemble was connected to a computer equipped with the BrainVision Recorder software. 

The cap, amplifiers ensemble and the computer can be seen in Figure 4.1. 

 

Figure 4.1. Experimental apparatus. The signals are extracted using the EEG cap (A) and passed to the 

amplifiers (B). Each amplifier supports 32 channels, accounting for the total of 64 channels. Signals 

undergo through the device in (C) to reach the computer (D).
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 The experiment was designed in alternating rest and task blocks, each block with 

duration of 10 s (Figure 4.2). The task involved either hand motor imagery (two 

acquisitions) or hand movement (two acquisitions), alternating left and right hands with 

the rest blocks. Total duration of each acquisition was of 170 s.  

 

Figure 4.2. Experimental paradigm. RH and LH stand for “right hand” and “left hand”, respectively. 

 Subjects were placed in front of a computer screen, sitting comfortably. A 

chronometer was shown on the screen, so they could keep track of each block’s duration. 

They were instructed when to start and stop tasks, and movement acquisitions made sure 

they properly understood the experimental protocol. To keep track of possible sources of 

artifacts, every time the subject made a noticeable movement, notes were taken. Also, 

movement acquisitions supposedly ensure that subjects properly understood instructions 

given and would, hopefully, execute the protocol correctly. When necessary, acquisitions 

were redone. 

4.2. Data preprocessing 

 Data preprocessing included frequency filtering in specific bands of interest and 

downsampling to 256 Hz in EEGLAB [http://sccn.ucsd.edu/eeglab], a MATLAB suite. 

Also, data were filtered in two bands of interest: μ (7 – 13 Hz) and β (13 – 30 Hz). CAR 

(Common Average Removal) spatial filtering was also used. Downsampling was 

performed because the MATLAB platform was not able to deal with the amount of data 

generated by a 5 kHz sampling rate. Nevertheless, since the maximum frequency that was 

worked with was of 30 Hz, this should not pose a problem.  

 It was hypothesized that, submitted to the same stimuli during each 10 s block, 

graphs representing the cerebral cortex during MI tasks should not suffer great variations. 

Nonetheless, to compensate for sudden and unexpected variations, every three one-

second blocks of EEG data were averaged to produce a smoothed 1 s data sample, from 

which the graph features were extracted (Figure 4.3). Therefore, from the original 4 

blocks of 10 s each, the analysis was made with four new blocks of 8 smoothed “one-
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second” blocks. Considering that the system's response tie was sought to be of 1 s, 32 

adjacency matrices were built, one for each of the 32 s available for analysis (4 blocks x 

8 smoothed seconds).  

 

Figure 4.3. Data smoothing illustration. 

4.3. Brain connectivity 

 In studying the brain, there are three main commonly used terms to define 

different kinds of connectivity: anatomical connectivity, which indicates a physical 

existing connection between brain areas; functional connectivity, in which usually time 

series correlations are used to determine how two brain sites interact; and effective 

connectivity, which indicates how a signal from one region of the brain influences other 

areas. In this work, the concept of functional connectivity was used.  

 To estimate connectivity, different methods to determine the similarity between 

EEG time series were used, namely, the motifs method and Pearson’s correlation. These 

will be discussed below. These similarity measures were combined with graph theory in 

order to build a representative brain network of the tasks under analysis. The use of 

networks (graphs), built based on signals extracted by techniques such as EEG or fMRI, 

to represent the brain, has been very common in recent years, showing the relevance of 

the area for studying the brain [Friston, 2011; Marzetti et al. 2008; Sakkalis, 2011; 

Belmonte et al. 2004; Supekar et al. 2008; Rosário, 2013].

 

https://ww5.aievolution.com/hbm1601/files/content/abstracts/abs_1311/datasmooth.png
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4.4. The motifs method 

 Basically, the motifs method is a qualitative approach that translates the EEG time 

series into new ones (the motifs series), from which similarity coefficients can be 

calculated. This is accomplished by identifying how the time series varies and, then, by 

labeling every possible behavior that could happen. Analyses based on different numbers 

of points will yield distinct pattern possibilities (which constitute the motifs). [Olofsen et 

al., 2008; Rosário et al., 2015]. This is illustrated in Figure 4.4. 

 

 

Figure 4.4. Possibilities for EEG patterns with two and three point motifs. 

 Figure 4.4 shows examples of how points of an EEG time series could be 

translated into motifs. A time window containing the number of points of the desired 

motifs must be determined. This time window is slid over the series, labeling each 

window with one of the possible patterns, therefore translating the EEG time series into 

the new motif series. Note that, in doing so, information on how great is the variation 

between two time points is irrelevant, and just the qualitative general form of the signal 

is taken into account. This procedure ends up having a smoothing effect on the signal, 

and therefore the length of the motifs series is always smaller than that of the original 

time series. For an ‘n’ point motif, the length LM of the motif series, in terms of the original 

series length, L0, is 

𝐿𝑀  =  𝐿0 − (𝑛 − 1). (4.1) 
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 The number n introduced above is also called the motif’s degree. It determines the 

length of the window to cover the time series. Figure 4.5 illustrates this process to a time 

series, using n = 3. 

 

Figure 4.5. Example of motifs translation for an EEG time series with 20 points. n = 3. Every 3 data 

points are identified as one of the possible labels of Figure 4.4. 

 Using the motifs approach, the similarity between two electrodes time series will 

be given by the similarity between their motifs series, which is computed as follows. Let 

J be the variable containing the number of times the same motif has been encountered 

when comparing two series. For distinct values of lag λ, then, J of a specified point i of 

the series can be defined as follows: 

𝐽𝑖
λ  =  {

1, 𝑖𝑓 𝑀♯𝑥𝑖 = 𝑀♯𝑦
𝑖+λ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

. 

(4.2) 

 In doing so, it is possible to find the total number of motif coincidences given a 

certain lag value by simply summing  𝐽𝑖
λ over i.  

A coefficient cxy can then be defined as 

𝑐𝑥𝑦  = 𝑚𝑎𝑥 (∑ 𝐽𝑖
λ0 ,

𝐿𝑀

𝑖=1

∑ 𝐽𝑖
λ1 ,

𝐿𝑀

𝑖=1

… , ∑ 𝐽𝑖
λ𝑁

𝐿𝑀

𝑖=1

). 

. 

(4.3) 

 cxy stands for the greatest number of times the same motif was found in both time 

series, considering every different lag value accounted for. When λ=0, it makes no 
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difference which series is used as reference for the comparison. For other lag values, 

however, this order is important. Therefore, the definition of another coefficient, cyx, is 

justified. For cxy, the motif is firstly identified in series X and afterwards in series Y; and 

vice-versa for cyx.  

 With the cxy and cyx coefficients, another quantity, the synchronization degree (Q), 

can be defined as: 

𝑄𝑥𝑦 =
max {𝑐𝑥𝑦, 𝑐𝑦𝑥}

𝐿𝑀
. 

(4.4) 

 Note that, if λ is zero, then cxy and cyx are equal, since comparisons will be done 

equally for the two cases. This, however, needs not to be true for larger lag values. 

 Another relevant index indicates the synchronization direction (Equation (4.5), q). 

It can be seen as an indicative of which coefficient between cxy or cyx is larger. In the 

context of directed graphs, it can be used to indicate the direction of the edge between 

two nodes. 

𝑞𝑥𝑦 = 𝑠𝑖𝑔𝑛(𝑐𝑥𝑦 − 𝑐𝑦𝑥). (4.5) 

 Sign(x) designates the sign function, which can be defined as: 

𝑠𝑖𝑔𝑛(𝑥) = {

−1, 𝑖𝑓 𝑥 < 0 
0, 𝑖𝑓 𝑥 = 0
1, 𝑖𝑓 𝑥 > 0

. 

 

(4.6) 

 Table 4.1 summarizes the motifs properties and quantities described above. 

Table 4.1. Summary of motifs properties and quantities. 

Property Description 

Motif degree (n) Number of points to be used in the motif. 

Lag (λ) Indicates the delay from which motifs series are compared. 

c coefficient Contains information about how similar two motif series are. 

Q Normalized from 0 to 1, it is analogue to c. 

q Indicates if there is a preferential direction for the synchronization 

between two time series. 
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 We chose to work with the motifs method because, besides its low computational 

cost, it provides a qualitative approach to analyze a very noisy signal. Thus, we believed 

it could provide a more truthful similarity value between the electrodes time series.  In 

our analysis (Chapter 5), we also noticed that it could provide adjacency matrix 

calculations faster than more traditional methods in the field, such as Pearson’s 

Correlation, described in the next section. For an online BCI application, this time 

difference can be extremely significant: while graphs calculation using Pearson’s 

correlation often took about two minutes, it could be done in a matter of few seconds with 

the motifs method.  

4.5. Pearson's Correlation 

 Pearson’s correlation between variables ‘x’ and ‘y’ is defined as [Ross, 2010]: 

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

√𝑣𝑎𝑟(𝑥)𝑣𝑎𝑟(𝑦)
. ; (4.7) 

in which ‘cov(x,y)’ is the covariance of ‘x’ and ‘y’, and ‘var(x)’ denotes the variance of 

the series represented by ‘x’. 

 Pearson’s correlation was mostly used as a form of control, by comparing results 

obtained with the less popular method of the motifs. Note, however, that this type of 

correlation, when applied directly to the EEG electrodes, can induce auto-correlations, 

since the activity that influences the recorded signal on a specific electrode can also affect 

the recorded signal at electrodes positioned on other sites of the scalp. 

4.6. Graphs construction and metrics calculations 

 To build graphs from adjacency matrices, it is first necessary to define whether 

these will be weighted or non-weighted. If they are non-weighted, it is necessary to 

stipulate a threshold value. Electrodes will be considered to be correlated if their 

similarity value (using either the motifs or the Pearson’s correlation method) is above this 

threshold, in which case a value of '1' is attributed to that link; otherwise, the pair of 

electrodes will be considered independent, and a value of '0' is attributed to the link, 

meaning no ‘connection’ between them. This approach, however, proved to be very 

dependent on the threshold value, posing the question of how to determine the best value 

for it. Therefore, the results that will be shown and discussed regard weighted adjacency 

matrices. 
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 To analyze the data, two independent graphs were constructed, one for each 

cerebral hemisphere. Therefore, data from the 64 channels were split to form two separate 

networks. Central electrodes, except for Cz and Fz, were left out of the analysis. Below, 

Figure 4.6 shows which electrodes were used for each graph’s construction. Blue 

electrodes denote nodes from the left hemisphere, and red electrodes are the ones 

constituting the right hemisphere. Purple electrodes belong to both graphs, although they 

do not connect them. Therefore, the left (right) hemisphere is composed of electrodes FP1 

(FP2), AF3 (AF4), AF7 (AF8), Fz (Fz), F1 (F2), F3 (F4), F5 (F6), F7 (F8), FC1 (FC2), 

FC3 (FC4), FC5 (FC6), FT7 (FT8), FT9 (FT10), Cz (Cz), C1 (C2), C3 (C4), C5 (C6), T7 

(T8), CP1 (CP2), CP3 (CP4), CP5 (CP6), TP7 (TP8), TP9 (TP10), P1 (P2), P3 (P4), P5 

(P6), P7 (P8), PO3 (PO4), PO7 (PO8) and O1 (O2). Initial analyses with no hemisphere 

separation were also performed; however, they are not displayed in this work. The 

hemispheres’ split was the approach of choice mainly because, as a first step, this work’s 

interest was aimed at localized properties. This split, however, can imply in loss of 

considerable inter-hemisphere information. 

 Using the motifs methods, for constructing the graphs, each element of the 

adjacency matrix (wij) was considered to be the synchronization degree defined in 

Equation (5.4). Also, only a lag λ=0 was used in the analysis. When Pearson’s correlation 

was used, each element of the adjacency matrix was taken to be the correlation index (if 

non-negative) or zero (if negative). 

 The weighted degree or strength (also the degree centrality, for this case) (𝑠𝑖) of 

the node ‘i’ was calculated by simply summing the value of all the links (𝑎𝑖𝑗) connected 

to that node:  

𝑠𝑖 =  ∑ 𝑤𝑖𝑗𝑗 . (4.8) 

 The calculation for the clustering coefficient of a weighted network is not so well-

established, since it does not follow from a direct generalization from unweighted graphs 

properties [Antoniou et al., 2009]. In this work, it was chosen to use equation (7) as 

defined in [Antoniou et al., 2009] (and reproduced by Equation (4.9), below). 

𝐶𝑖 =  
∑ ∑ 𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖𝑘𝑗

(∑ 𝑤𝑖𝑗𝑗 )
2

− ∑ 𝑤𝑖𝑗
2

𝑗

. (4.9) 
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Figure 4.6. Electrodes used for graphs’ construction. Blue electrodes belong to the left hemisphere 

graph; red electrodes belong to the right hemisphere graph; purple electrodes belong to both graphs.  

 The characteristic path length was calculated from averaging shortest distances 

between all graph nodes. Shortest paths for a weighted graph follows from a direct 

generalization of the binary case [Antoniou et al., 2009], and were calculated according 

to Dijkstra’s algorithm. In using this library, distance between two nodes are larger if the 

weight of the connection between them is lower. The characteristic path length (l) is then 

given by (4.10): 

𝑙 =  
1

𝑁(𝑁−1)
∑ 𝑑𝑖𝑗𝑖≠j . (4.10) 

N stands for the number of nodes in the graph, and dij is the shortest path between nodes 

i and j. dij is associated with elements of the inverse of the adjacency matrix.  

 Betweenness centrality (BC) was calculated as stated by (4.11): 
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𝐶𝑏
𝑖 =  ∑

𝑙𝑗𝑘(𝑖)

𝑙𝑗𝑘

.

𝑗≠𝑖≠𝑘

 
(4.11) 

 

 Eigenvector centrality (EC) was calculated according to its description in section 

3.3.4. 

4.7. Data classification 

 Data classification followed two approaches: a linear least-squares based 

discriminant analysis (LSLDA) and support vector machines (SVM) (both explained in 

Chapter 2). Also, two kernel functions for the SVM were tested, namely, linear and 

polynomial (third degree) ones. Both SVM algorithms were used as predefined MATLAB 

functions. Thus, adjustable kernel parameters were set according to the platform’s default 

settings. 

 As inputs to the classifier, effects of using each cerebral hemisphere separately 

and their combinations were tested. Combinations were done using the difference of a 

metric’s value on a specific node located on the right hemisphere minus its value on the 

correspondent contralateral node; for instance: the clustering coefficient on C4 minus its 

value on C3, and so on. In the following sections, this input approach is denoted as 

“difference”. The idea of this “difference” input is try to couple metrics values from both 

hemispheres, studying how it can affect classification results by comparing to the case 

when only one of the hemispheres was used for data classification. Also, other 

combinations, such as the “sum” or “ratio” of values were tested, not yielding better 

results than the ones for the “difference” scenario.  

 In addition, we investigated the dependence on the classification results with the 

electrodes used for classification. As a first approach, all graph nodes were used for 

classification. On a second approach, all combinations using the minimal number of 

electrodes possible were tested, and offline analysis displays the best one to be used for 

classification purposes. 

 All classification tests were conducted in the leave-one-out fashion. That is, from 

“T” total available samples, “T-1” were used to train the classifier, whilst the remaining 

one was used to test its outcome response. 
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Chapter 5 

Results and Discussion 

 While searching for differences in left and right hands MI networks properties, two 

methods were used to construct the graph’s adjacency matrices: motifs and Pearson’s 

correlation. The latter was mostly used as a form of control, presenting very similar results to 

the motifs’ method. In this chapter, we only present results from the motifs’ method.  

 In the first subsection of this chapter, five metrics for characterizing the graphs under 

each MI task were analyzed: strength (4.8), clustering coefficient (4.9), characteristic path 

length (4.10), betweenness centrality (4.11) and eigenvector centrality. These results are shown 

in scalp topographic maps, as a colormap, with the mu band being shown on the top row and, 

the beta band, on the bottom one. Note that, due to the interpolation used to create such figures, 

non-zero values may appear in sites in-between electrodes, even though, strictly, they do not 

constitute graph nodes. In some cases, results for different subjects were qualitatively very 

similar, and it was chosen not to show them all. Therefore, a group average behavior is 

presented. Individual results for the strength can be found in Appendix B. 

 The second subsection contains classification tests using the methods described in 

Chapters 2 and 4. The effects of using all nodes and specific ones within the graph for predicting 

MI classes were studied and compared.  

 Also, it is important to emphasize that the terms “electrodes” and “nodes” are often used 

here as synonyms (although, strictly, they are not), simply because each graph node was 

constituted by an electrode. In addition, it is necessary to distinguish between “central 

electrodes/nodes” and “central line electrodes/nodes”. The first refers to electrodes labeled by 

the “C” letter, and that lie on either of the scalp hemispheres. The latter regards the electrodes 

positioned on the scalp’s central line: Cz and Fz.  
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5.1. Graphs’ Topology 

5.1.1. Strength (S; also the degree centrality) 

 The strength (𝑠𝑖) for each node i was calculated as described by (4.1). An average over 

all experimental blocks and subjects was made, and results are shown in Figure 5.1.  

 

Figure 5.1. Strength values distribution over the scalp. Left: left hand (LH) MI; right: right hand (RH) MI. 

Top row: mu band; bottom row: beta band. 

 It was hypothesized that the well-established response for MI in the frequency domain 

should also manifest itself in the built graphs. Nodes with the largest strength are usually C3/C4, 

FC5/FC6 and C5/C6. Electrodes FC5/FC6 are positioned on the primary motor cortex (PMC), 
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an area related to movement but not to MI, although some subjects may experience activations 

in these areas depending on their thinking strategy [Velásquez-Martínez et al., 2013]. C3/C4 

and C5/C6 are commonly appearing electrodes in MI studies; they are positioned on the motor 

cortex. In fact, a study has found, by means of the Fourier coefficients, that opposing differences 

related to MI’s ERDs were maximum around the C3/C4 regions [Haufe et al., 2010] (within the 

mu band). The expected response for MI is an ERD in the contralateral hemisphere. This means 

that neurons fire in less synchrony, which should result in less similarity between time series.  

 The top row of Figure 5.1 shows the results for the strength for the mu band. However, 

this property, that in our case, gets larger as more synchronous the time series are – is larger for 

these motor areas (around C3/C4). Nonetheless, note that this metric is calculated considering 

the graph as a whole, and not just these specific regions. Thus, nodes C3/C4, FC5/FC6 and 

C5/C6 having the largest strength values simply means that, on the whole graph perspective, 

their time series are slightly more similar to the series of all other nodes, not necessarily 

reflecting the strictly local expected behavior. Therefore, the strength may not be the best metric 

when it comes to reflect the expected ERDs due to MI. Smallest strength values were usually 

present on occipital and occipitoparietal electrodes, such as O1/O2, P1/P2 and PO3/PO4, and 

central line electrodes (Fz and Cz). This means that these areas are related in a less synchronous 

way to the rest of the cortex regions during the MI tasks.  

 An almost identical pattern was obtained for the beta band (Figure 5.1, bottom row). 

The main difference is that strength values are smaller for this band. Note that both MI tasks 

generate very similar behaviors for how strength values are distributed over the scalp. 

 Again, largest strengths can be found on frontal, central and central-parietal areas, while 

the lowest values lie among electrodes on the scalp central line (Cz and Fz), frontal-parietal, 

parietal-occipital and occipital regions.  

 Looking at both rows in Figure 5.1, the similar behavior between both bands is evident. 

Basically, points of maxima and minima remain at the same electrodes (or regions around 

them), although the beta band presents smaller values. For the beta band, nodes located on 

occipital and parietal-occipital sites showed slightly larger strengths, relative to the rest of the 

graph. 

  In order to quantitatively analyze possible differences, values for all subjects were 

averaged over both acquisitions (Table 5.1).  
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Table 5.1. Strength mean values ± standard deviation for each graph during each MI task for all subjects, 

averaged over both acquisitions. 

   Left hemisphere graph Right hemisphere graph 

Band Subject Left hand MI Right hand MI Left hand MI Right hand MI 

 1 14.1 14.1 13.9 13.9 

 2 14.2 14.2 14.4 14.3 

 3 13.1 13.1 12.8 12.9 

μ 4 14.1 14.1 13.5 13.5 

 5 13.8 13.6 14.0 13.7 

 6 13.8 13.7 13.7 13.3 

 7 13.4 13.4 13.6 13.6 

 8 13.8 13.6 14.1 13.6 

 Mean 13.8±0.4 13.8±0.4 13.8±0.5 13.6±0.4 

 1 11.3 11.2 11.0 10.8 

 2 12.1 12.0 11.8 11.7 

 3 10.7 10.7 10.1 10.1 

β 4 11.4 11.5 11.0 11.0 

 5 10.9 10.8 10.9 10.9 

 6 11.1 11.2 11.2 11.1 

 7 10.5 10.5 11.1 11.2 

 8 11.3 11.5 11.2 11.2 

 Mean 11.2±0.5 11.2±0.5 11.0±0.5 11.0±0.5 

  

 For the same frequency band, it is possible to note that, for the same subject, all values 

are very close to each other, presenting very little variation between RH and LH MI tasks. 

Differences between both graphs are also minor. In fact, the relatively large standard deviation 

value makes it practically impossible to distinguish between MI classes by simply analyzing 

the graph’s mean strength. Also, average values on the right hemisphere are usually slightly 

smaller.  

 Regarding discrimination between MI tasks, these results suggest that using only the 

average strength of a graph may not be the best approach. In fact, it is hard to notice a behavioral 

pattern for all subjects (if such one does exist) from Table 5.1.  
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5.1.2. Clustering Coefficient (CC) 

 Figure 5.2 shows clustering coefficient values distribution over the scalp, for the two 

frequency bands.  

 

Figure 5.2. Clustering coefficient values distribution over the scalp. Left: left hand (LH) MI; right: right hand 

(RH) MI. Top row: mu band; bottom row: beta band. 

 For the mu band, for both hemispheres, MI of the contralateral hand produces slightly 

larger CC values to that hemisphere (with just one exception for the left hemisphere – FT9). 

Largest CC values were present in frontal-related nodes, regardless of the MI task.  
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 Regarding the beta band, CC values are usually larger during the contralateral hand MI 

for both hemispheres. Largest CCs are found in the frontal nodes for the left hemisphere, and 

in the parietal and occipital areas, for the right hemisphere. As with the strength, values are 

lower for the beta band. 

 Electrodes such as C3/C4, C5/C6 and FC5/FC6, that previously presented the largest 

strengths, now lie among the ones with the lowest clustering coefficients. This indicates that 

the regions activated in MI, although possessing connections with more weight (in the sense of 

generating more similar EEG patterns), present slightly less tendency to forming clusters than 

the rest of the graph. CC emphasizes interactions between a node’s nearest-neighbors and, 

therefore, it is a better indicative of local interaction than the strength. Thus, we believe that the 

decrease in the CC values of these motor electrodes are more directly related to the expected 

ERDs caused by MI than the results found for the strength.  

 Comparing clustering coefficient results for both bands (Figure 5.2), we see that 

regardless of the frequency band, similarly to the strength, distributions of values along 

electrodes are very similar to one another: in this case, largest and lowest values are present 

approximately at the same nodes. This suggests that, even though MI is reflected differently 

throughout the brain for different frequency bands, which can be seen from the clear decreases 

in the strength and clustering coefficients when comparing one band to another, there seems to 

be a more general state that dictates the very similar behavior observed for both mu and beta 

bands in distinct regions (electrodes), something that may be related to the manner the brain 

itself is structured. 

 Graphs mean clustering coefficient values were evaluated during each motor imagery 

task (Table 5.2). For the same band, mean values are all very close to each other, and the 

uncertainty range causes them to overlap. Analysis of the mean CC suggests that the contra-

laterality observed for most nodes individually is not reproduced in most subjects as a global 

graph behavior. This and the referred overlapping indicate that the mean CC alone does not 

seem to be a promising feature in assessing MI tasks. 
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Table 5.2. Graphs’ mean clustering coefficient values during each motor imagery task, for all subjects. 

Values are averaged over both acquisitions for each subject. 

   Left hemisphere graph Right hemisphere graph 

Band Subject LH MI RH MI LH MI RH MI 

 1 0.249 0.249 0.247 0.246  

 2 0.254 0.258 0.258 0.259 

 3 0.231 0.230 0.225 0.226 

μ 4 0.251 0.250 0.240 0.239 

 5 0.243 0.240 0.247 0.242  

 6 0.244 0.248 0.248 0.240 

 7 0.238 0.236 0.239 0.239 

 8 0.245 0.256 0.252 0.250 

 Mean 0.244±0.007 0.246±0.009 0.245±0.009 0.243±0.009 

 1 0.198 0.197 0.193 0.189 

 2 0.213  0.213 0.210  0.209 

 3 0.188  0.187 0.178  0.176  

β 4 0.200 0.201 0.192 0.192 

 5 0.191  0.190 0.190  0.190  

 6 0.196 0.197 0.197  0.196 

 7 0.184 0.184 0.194 0.195 

 8 0.199 0.203 0.197 0.198 

 Mean 0.196±0.009 0.197±0.009 0.194±0.009 0.193±0.009 

 

5.1.3. Characteristic Path Length (L) 

 Figure 5.3 shows each node minimum path length (li) for the both bands, calculated 

according to Equations (3.17) and (3.18). Again, a very similar pattern is found for both cerebral 

hemispheres during the studied MI tasks. 

 For the mu band, on the left hemisphere, all frontal related nodes, except for FC1, FC5 

and FT7 present larger li’s values during LH MI periods. Although the difference is very little, 

this can be seen by the lower extent of blue on this hemisphere during this particular task. This 

is also valid for central electrodes Cz, C1 and C3. Parietal-central, temporal-parietal and parietal 

regions exhibit a mixed behavior. All occipital related areas showed larger values during RH 
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MI. On the right hemisphere, patterns between both MI tasks are almost identical; a few 

differences can be observed on nodes such as AF4, AF8 and parietal nodes, regions where 

characteristic path lengths were slightly larger during RH MI.  

 

Figure 5.3. Characteristic path length values distribution over the scalp. Left: left hand (LH) MI; right: right 

hand (RH) MI. Top row: mu band; bottom row: beta band. 

  Still regarding the mu band, on both hemispheres, central line electrodes lie amongst the 

ones with the largest path length values, along with nodes related to the occipital region. Lowest 

values are presented by electrodes C5 and C6.  
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 For the beta band, for both hemispheres and tasks, highest path lengths are displayed by 

electrodes on the occipital related regions. This could be associated to the fact that these 

electrodes previously presented low strength and clustering coefficient values when compared 

to the rest of the graph. In terms of our analysis, this suggests that their connections had less 

weight, meaning that more cost is required to travel between them. Besides, they were in less 

connected regions, regarding clustering formation. Therefore, less possibilities of minimum 

path lengths existed for reaching the rest of the graph from these nodes, which could explain 

the highest observed node characteristic length values for these areas. In an analogous manner, 

the lowest node path length present in motor regions, such as FC3/FC4, FC5/FC6, C1/C2, 

C3/C4 and C5/C6, can be related to how these areas showed higher strengths and clustering 

coefficients. From Figure 5.3, little to no difference can be spotted when comparing the two 

different MI tasks. Regions of minima and maxima are practically the same.  

 Again, regarding comparison between the two frequency bands, the general behavior 

across them is very similar, in the sense that nodes presenting maximum and minimum values 

remain the same. Also, there is a clear distinction between both bands’ values. This time, 

however, differently than what occurred for the strength and the clustering coefficient, values 

are larger in the beta band. Smaller strengths and clustering coefficients may indicate a less 

connected network, and with less tendency to form clusters, resulting in a decrease in the 

number of possibilities of minimum cost paths to travel from one node to another, which could 

reflect on the largest characteristic path length observed for these graphs. This may be related 

to the fact that the ERDs caused by MI are more pronounced in the mu band than in the beta 

band.   

 Table 5.3 presents characteristic path length values for both graphs during hand MI 

tasks. It can be seen that, for both bands, characteristic path length values were slightly larger, 

on average, over the right hemisphere. Individually, this was also true for most subjects, with 

exception of Subjects 2 and 7 (mu band) and Subjects 5 to 8 (beta band). 

 Table 5.4 summarizes average results obtained. All these results suggest that graphs 

global properties may not be the most significant manner to assess MI tasks. Local properties, 

that is, how the values were distributed across each graph node, however, seem to present a 

more feasible possibility, exhibiting a general behavior reproducible over all subjects. In this 

context, two centrality measures were explored (betweenness and eigenvector centrality), 

which will be discussed below. 
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Table 5.3. Graph’s mean characteristic path length values during each motor imagery task, for all 

subjects. Values are averaged over both acquisitions.   

  Left hemisphere graph Right hemisphere graph 

Band Subject Left hand MI Right hand MI Left hand MI Right hand MI 

 1 2.27 2.26 2.29 2.29 

 2 2.28 2.30 2.26 2.30 

 3 2.42 2.42 2.46 2.44 

 4 2.28 2.28 2.38 2.38 

μ 5 2.29 2.34 2.35 2.32 

 6 2.39 2.40 2.41 2.47 

 7 2.37 2.36 2.35 2.34 

 8 2.40 2.34 2.43 2.44 

 Mean 2.34±0.06 2.34±0.06 2.37±0.07 2.37±0.07 

 1 2.78 2.79 2.85 2.80 

 2 2.62 2.65 2.74 2.77 

 3 2.90 2.92 3.09 3.12 

 4 2.72 2.73 2.85 2.83 

β 5 2.82 2.86 2.85 2.83 

 6 2.89 2.86 2.88 2.90 

 7 2.98 2.98 2.80 2.78 

 8 2.87 2.78 2.86 2.86 

 Mean 2.82±0.11 2.82±0.11 2.87±0.10 2.86±0.11 

 

Table 5.4. Summary of average basic metrics values. Results are shown for both graphs and during each MI 

task. < > indicate average value. S = strength; CC = clustering coefficient; L = characteristic path length. 

Band Property 
Left hemisphere  Right hemisphere  

LH RH LH RH 

 <S> 13.8 ± 0.4 13.8 ± 0.4 13.8 ± 0.5 13.6 ± 0.4 

μ <CC> 
0.244 ± 

0.007 
0.246 ± 0.009 0.245 ± 0.009 0.243 ± 0.009 

 <L> 
2.34 ± 

0.06 
2.34 ± 0.06 2.37 ± 0.07 2.37 ± 0.07 

 <S> 11.2 ± 0.5 11.2 ± 0.5 11.0 ± 0.5 11.0 ± 0.5 

β <CC> 
0.196 ± 

0.09 
0.197 ± 0.09 0.194 ±0.09 0.193 ±0.09 

 <L> 2.8 ± 0.1 2.8±0.1 2.9±0.1 2.9±0.1 
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5.1.4. Betweenness Centrality (BC) 

 BC results are shown in Figure 5.10, for both frequency bands. There are well defined 

regions regarding larger or smaller BC values. In some of them, BC increases for electrodes 

located farther from the scalp central line; that is the case for frontal, frontocentral (partially), 

central (partially), parietal (partially) and centroparietal areas. In other regions, an inverse 

pattern can be identified, such as in the frontocentral (partially), central (partially), and parietal 

(mostly) areas. 

 

Figure 5.4. Betweenness centrality values distribution over the scalp. Left: left hand (LH) MI; right: right hand 

(RH) MI. Top row: mu band; bottom row: beta band. 
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 Nodes that are amongst the ones with the lowest BC values are related to the occipital 

(PO3/PO4, PO7/PO8 and O1/O2), frontal-parietal, some frontal regions and intermediate areas 

in between these last two (FP1/FP2, AF3/AF4, AF7/AF8, Fz and F1/F2). Occipital-related 

nodes also displayed low degree centralities. Frontal-related electrodes, however, did not; 

which is an indicative that, although they may be regarded as relatively important nodes from 

the degree point of view, BC results suggest that, regarding an interpretation of information 

flow, they may be as unimportant to MI as the occipital electrodes. Nonetheless, these two 

centrality measures converge to the fact that motor cortex electrodes, such as FC5/FC6, C3/C4 

and C5/C6, are the most central (or important) ones during MI tasks. This is actually what 

would be expected, since traditional frequency analysis of hand MI response is basically 

focused on these regions. 

 Note that the betweenness centrality is a measure related to how many minimum path 

lengths passing through a specific electrode are needed in order to travel between any two nodes 

of a graph. From Figures 5.3 and 5.4, it can be seen that there is a general tendency of nodes 

with larger characteristic path lengths to display smaller BC values. This is not unexpected, 

since a larger path length for a node means that, from a specific node, it is of greater cost to 

travel to any other node of the network. An interpretation of BC states that nodes with greater 

values control the network flow (information, energy, passengers etc.) [Monteiro, 2014]. 

Therefore, in our case, flow of information for motor imagery data would preferentially pass 

through nodes on the motor area (C3/C4, C5/C6 and FC3/FC4), which also would present 

smaller shortest path lengths, when compared to the rest of the graph.  

 In order to better visualize the relationship of BC and a node’s path length, values were 

plotted into a scattering diagram (Figure 5.5). Each data point of the scattering plot corresponds 

to a pair of values (li, BCi) of a node i. Regardless of the task or cerebral hemisphere, there 

seems to exist a general tendency for the BC to decrease its value as a node’s path length 

increases. Three mathematical models were tested for fitting the data: a second degree 

polynomial (SDP; f(x) = ax² + bx + c), a single-term exponential (STE; f(x) = Aebx) and a two-

term exponential (TTE; f(x) = Aebx + Cedx). The best fit was chosen according to the reduced 

chi-squared value. The closer the reduced chi-squared is to one, the better the model fits the 

data (Table 5.5). 
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Figure 5.5. Relationship between BC and node path length (mu band). Both hemispheres and MI tasks are 

shown, in different colors and shapes. There are 30 data points (one for each electrode) regarding each entry of the 

graphic.  

Table 5.5. Reduced chi-squared values for the three models tested (mu band). SDP: f(x) = ax² + bx + c ; 

STE: f(x) = Aebx ; TTE: f(x) = Aebx + Cedx. 

Model 

Reduced chi-squared 

Left hemisphere Right hemisphere 

LH MI RH MI LH MI RH MI 

SDP 0.6931 0.8609 0.6913 0.5352 

STE 0.7179 0.8586 0.6753 0.5196 

TTE 0.7034 0.8553 0.6714 0.5196 

  

 Table 5.5 shows that all three models produced similar chi-squared values. Also, RH 

MI on the left hemisphere resulted in the best fitting.  In addition, reduced chi-squared values 

were larger on a specific hemisphere during the contralateral hand MI, meaning that values for 

path length and BC are in more accordance with the three proposed models during these periods. 

In addition, LH MI shows little variation in fit quality comparing both hemispheres, while RH 

MI presents a more drastic difference, with reduced chi-squared values on the right hemisphere 

falling to almost half of their value on the left hemisphere. This, along with previous results, 

suggest that both cerebral hemispheres are not entirely symmetrical, at least regarding hand MI. 
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 The observed behavior for the BC within the beta band was similar (bottom row, Figure 

6.5). For both MI tasks, the same nodes presented more significate BC values (C3, C4, C6, FC4 

– generally, electrodes from motor related areas), although they were slightly larger during the 

RH MI. Mainly all qualitative aspects occurring for the mu band were also present in the beta 

band. Again, the main difference is seen in the absolute values: they are smaller for the beta 

band for almost all electrodes. 

 A similar pattern was also obtained regarding the relationship between the BC and nodes 

path length values (Figure 5.6). Also for the beta band, it was found that the general tendency 

for BC values was to decrease, while a node’s path length increased.   

 

Figure 5.6. Relationship between BC and node path length (beta band). Both hemispheres and MI tasks are 

shown, in different colors and shapes. There are 30 data points (one for each electrode) regarding each set of data 

points.  

5.1.5. Eigenvector Centrality (EC) 

 Average behavior for EC is shown in Figure 5.7.  

 For the mu band, on the left hemisphere, all frontal-related areas, except for the node 

located at FT7, showed higher EC values during the contralateral hand MI periods. For most 

central-parietal, parietal and occipital areas values are larger during imagery of the ipsilateral 

hand. On the right hemisphere, frontal-related electrodes, except for FC2, also present slightly 

larger ECs during the contralateral hand MI. For more posterior regions from Cz, most nodes 

show higher values during the ipsilateral hand MI.  
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 Still regarding the mu band, on both hemispheres, there is a very similar qualitative 

behavior, just as was found for the other metrics. Again, nodes such as FC5/FC6 and C5/C6 

showed the highest EC values, and centralities for the nodes positioned on the scalp central line 

(Fz and Cz) are amongst the lowest values. Note that, for both hemispheres, regardless of the 

MI task, the EC becomes greater as a node becomes farther apart from the medial fissure. The 

only two exceptions are the temporal-related areas (FTs and TPs electrodes).  

 

Figure 5.7. Eigenvector centrality values distribution over the scalp. Left: left hand (LH) MI; right: right hand 

(RH) MI. Top row: mu band; bottom row: beta band. 
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 Again there exists a very similar pattern between both bands. This time, however, the 

difference in absolute values across them is not as significant as it was for the other metrics.  

5.1.6. General remarks regarding the graphs’ topology 

 From the metrics that were studied regarding graphs’ topology evaluation, five were 

chosen to be displayed here: strength (which also corresponds, in our case, to the degree 

centrality), clustering coefficient, characteristic path length, betweenness centrality and 

eigenvector centrality. Actually, a few more measures were analyzed, such as strength 

distribution, entropy, energy (sum of the squares of the eigenvalues of the graph’s Laplacian) 

and entropy of the discrete Fourier Transform of the Laplacian’s eigenvalues. It was chosen not 

to show them, as they had little to add regarding discrimination between MI tasks – which is, 

in fact, the main goal of this work – and their study proved to be a little more complex, from a 

conceptual point of view. 

 The first three metrics – strength, clustering coefficient and characteristic path length – 

could be evaluated individually or as global graph properties. It was found that global properties 

made the distinction between MI tasks very unclear in some cases (if not virtually impossible), 

since all values were either equal to each other or highly overlapping due to the estimated 

standard deviation, which mainly reflected subject inter-variability and noise. When searching 

for distinguishable patterns between each MI task for each node (local properties), however, it 

was found that these three basic metrics provided similar and reproducible information, in the 

sense that they were able to generate similar patterns for all subjects.  

 On both hemispheres, the overall qualitative behavior was very similar during the two 

studied MI tasks. Note, however, that there was not, necessarily, a symmetry between both 

cerebral hemispheres. Also, simply glancing at the figures makes it very hard to find differences 

between MI conditions. Since overall graph properties were less useful than local metrics when 

trying to assess MI tasks, the study of other two centrality measures took place: betweenness 

and eigenvector centralities.  

 Betweenness centrality distribution over graphs’ nodes presented well defined areas 

containing larger or smaller values. Nodes that presented the largest values were located on 

motor-related areas, such as FC5/FC6, C3/C4 and C5/C6. Lowest BCs were found in some 

frontal-related sites and parietal-occipital and occipital nodes. Also, there were regions 

(parietal) where BC values tended to become smaller as nodes became farther away from the 

medial fissure, and areas (frontal and center-parietal) where BC tended to increase as electrodes 
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became farther away from this fissure. For BC, this means that nodes farther from the medial 

fissure can develop a greater or lower crucial role, in the sense of information flow, depending 

on the anatomic position they are on. However, a reason for why this may be is yet to be found.  

 Eigenvector centrality also showed defined regions for which values were higher or 

lower, although they are less easy to spot. Smallest values can be found for nodes located on 

the occipital area, while highest values lie amongst electrodes FC5/FC6, C3/C4 and C5/C6. 

 Note that three analyzed centrality measures – degree, betweenness and eigenvector – 

provide complementary information. The degree centrality regards the weight of each 

connection: the greater it is for a node, the more high-valued links it has attached to it. The 

betweenness centrality aims to measure how essential a node is in connecting any other two 

nodes of a graph, under the context of geodesic paths. Eigenvector centrality is related to the 

quality of the links, in the sense that nodes with high EC values tend to connect themselves to 

other nodes with, also, high EC values. Thus, nodes with high values of a given centrality do 

not, necessarily, display an equivalently large value for other centrality measure. For the degree 

centrality, for instance, frontal and occipital electrodes presented relatively large values when 

compared to the maximum obtained, which was dramatically reduced for the BC case (Figs. 

5.1, 5.4 and 5.7).  

 For all centrality measures, motor-related electrodes (FC5/FC6, C3/C4 and C5/C6) 

presented the highest values, although it is for the BC that this behavior was most evident. Also, 

for all of them, lowest centrality values can be found on some frontal and occipital-related 

electrodes. This is expected to some extent, since a motor task was analyzed, which could reflect 

the greater involvement of motor cortex areas during hand motor imagery execution.  

 Nodes FC5/FC6, C3/C4 and C5/C6 also displayed the lowest characteristic path length 

values, indicating that their connections to the other nodes are of less cost and, therefore, 

traveling between them is preferable (which is reflected by their high BC).  

 In summary, it was found that, qualitatively, some graph metrics investigated showed a 

contra-laterality behavior regarding MI tasks at specific sites; which could be expected, given 

the nature of the MI response. However, classification of these tasks demands a more robust 

analysis. The results obtained when approaching this problem are shown in the next section.
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5.2. Classification results 

5.2.1. Strength, clustering coefficient and characteristic path length 

 Given their simplicity and recurring role in characterizing networks, the following 

metrics: strength, clustering coefficient and characteristic path length, were tested as inputs to 

the classifiers. Mean classification rates are shown in Table 5.6. Three classification methods 

were tested for each frequency band: a linear least-square based discriminant analysis 

(LSLDA), a linear support vector machine (LSVM) and a polynomial SVM (PSVM). Also, the 

effect of using each hemisphere individually for classification was studied (“Left hemisphere” 

and “Right hemisphere” columns). Finally, “Difference” refers to using the difference of a 

metric’s value on the right hemisphere node minus its value on the correspondent contra-lateral 

node in the left hemisphere, as input to the classifier. Classification results for each subject, 

metric and frequency band can be found in Appendix C.  

 Results shown in Table 5.6 were obtained using all graph nodes for classification.

Table 5.6. Mean classification rates (strength, clustering coefficient and characteristic path length). 

Largest values obtained are highlighted in bold. 

 

Band/Method 

 

Feature 

Classifier input 

Left hemisphere 

(%) 

Right hemisphere 

(%) 

Difference 

(%) 

  Strength 64 ± 8 65 ± 9 67 ± 7 

μ/LSVM Clustering Coefficient 54 ± 7 53 ± 8 54 ± 11 

  Path Length 53 ± 7 52 ± 9 52 ± 9 

  Strength 51 ± 4 49 ± 3 61 ± 6 

μ/PSVM Clustering Coefficient 54 ± 9 53 ± 8 54 ± 11 

  Path Length 53 ± 10 53 ± 8 53 ± 6 

  Strength 64 ± 8 64 ± 6 64 ± 7 

μ/LSLDA Clustering Coefficient 56 ± 9 59 ± 7 61 ± 9 

  Path Length 53 ± 10 54 ± 6 53 ± 9 

  Strength 66 ± 11 66 ± 10 67 ± 8 

β/LSVM Clustering Coefficient 52 ± 9 56 ± 9 53 ± 11 

  Path Length 54 ± 10 54 ± 10 56 ± 14 

  Strength 50 ± 5 52 ± 5 68 ± 8 

β/PSVM Clustering Coefficient 51 ± 10 53 ± 9 52 ± 11 

  Path Length 52 ± 10 54 ± 9 53 ± 13 

  Strength 65 ± 11 64 ± 10 68 ± 8 

β/LSLDA Clustering Coefficient 60 ± 9 61 ± 8 60 ± 8 

  Path Length 53 ± 9 53 ± 10 54 ± 14 
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 Analyzing each hemisphere individually, it can be noted that it makes little difference 

using any one of them for data classification. Highest variation comes from classifying the 

clustering coefficient within the mu band with a LSLDA: mean classification accuracy obtained 

using only the left hemisphere was 56%, while using the right hemisphere accounted for a 

slightly larger accuracy, of 59%. Also, strength classification provided the highest accuracies, 

except for PSVM classification within the mu band. CC and path length classification showed 

similar results. 

 Using the difference between corresponding right and left hemisphere values as input 

caused a huge increase in classification results in some cases. For instance, strength 

classification within the beta band using the LSVM method increased of 16 – 18%. This shows 

that combining metric values from corresponding nodes can drastically alter classification 

outcome in some cases. For most lines of the table, however, using the difference achieves 

similar classification rates to the ones obtained for each hemisphere individually. In summary, 

using the metric difference between corresponding nodes, strength classification provided the 

highest accuracies for all cases, while CC and path length showed similar (lower) results – the 

same qualitative result obtained using metrics for one hemisphere. 

 Overall, with a few exceptions, accuracies for the β-band are slightly larger. In fact, 

highest accuracies (68%) were obtained within this band, using PSVM and LSLDA methods, 

both for the strength as input. In this case, the linear method would be preferable, since it has 

considerably less computational cost. The LSVM resulted in a very similar accuracy (67%).  

 Nonetheless, note that most classification rates are associated with a relatively large 

standard deviation, which reflects the great inter-subject variability of the method under study. 

Some subjects were able to achieve 75% accuracy, while others were barely able to overcome 

50% rates (which is practically a by-chance classification).  

 Results from Section 5.2.1 suggested that more significant differences may be found by 

searching for specific sites of the graph, rather than analyzing the global pattern. Therefore, 

since the LSLDA method provided the best results of Table 5.6 using the difference as the 

classifier input, this approach was used to test the effect of using specific electrode pairs for 

classification (Table 5.7). It is important to emphasize that Table 5.7 presents maximum 

classification accuracies obtained when searching for the optimum sets of nodes that best 

classify the data, for each metric. All possible combinations of up to three node pairs were 

tested, and results show the maximum rates obtained with a given number of pairs. This can be 
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regarded as some type of limit, ideal accuracy rate. Also, values displayed are averaged across 

all subjects and acquisitions. 

Table 5.7. Average maximum accuracies obtained when using optimal electrodes sets for classification. 

Highlighted values indicate the best results for each metric used as input. 

 

Band/Number of electrodes 

pairs 

 

Strength (%) 

 

CC (%) 

 

Path Length 

(%) 

μ/One 62 ± 4 64 ± 5 60 ± 4 

μ/Two 73 ± 2 70 ± 4 73 ± 3 

μ/Three 76 ± 2 72 ± 6 77 ± 3 

β/One 64 ± 5  61 ± 7 62 ± 6 

β/Two 74 ± 5 72 ± 6 74 ± 5 

β/Three 78 ± 5 77 ± 6 78 ± 5 

  

 For the three metrics, accuracy increases with the number of optimum electrode pairs 

used for data classification. However, as seen from Table 5.7, classification rates when using 

only one optimum set are comparable to the situation where all graph nodes are used, providing 

rates within the range 60-68% (Table 5.6). This suggests that there must exist a turning point 

where classification rate stops increasing with the number of optimum electrode sets used. Also, 

some nodes may possess irrelevant information for classification, which could actually cause 

classification rates to decrease significantly, as suggested from Tables 5.6 and 5.7.  

 For most cases, results for the beta band are slightly larger. Also, note that standard 

deviation values are significantly smaller than the ones found by the previous approach (Table 

5.6), reflecting a more robust classification mean.  Besides, different metric attained more 

similar values in Table 5.7.  

 Using three pairs of electrodes, the best result obtained was 92% (clustering coefficient, 

beta band, three pairs of electrodes, subject 1), and the worst was 64% (clustering coefficient, 

beta band, one pair of electrodes, subject 5).  

 The method of choosing only optimum node sets for every subject for classification 

rises, along with a significant increase in classification accuracy, a huge limitation: these 

optimum pairs vary across subjects, and even for the same subject, between different 

acquisitions made just minutes apart.  
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5.2.2. Centrality measures 

 The same procedure was done with the centrality measures (degree, betweenness and 

eigenvector). From the conclusions draw from Table 5.6, only the difference was used as input, 

in the same manner as it was previously done. Results are shown in Table 5.9. 

Table 5.9. Mean classification accuracies ± standard deviation for the centrality measures. DC (degree 

centrality), BC (betweenness centrality), EC (eigenvector centrality). 

Band/Method 
Centrality measure 

DC (%) BC (%) EC (%) 

μ/LSLDA 64 ± 7 55 ± 6 63 ± 8 

μ/LSVM 61 ± 6 51 ± 7 58 ± 7 

μ/PSVM 67 ± 7 52 ± 7 57 ± 7 

β/LSLDA 68 ± 8 54 ± 7 67 ± 7 

β/LSVM 67 ± 8 56 ± 8 62 ± 6 

β/PSVM 68 ± 8 54 ± 4 60 ± 5 

  

 The BC presented the lowest accuracy rates, with a maximum of 56%, barely above 

pure chance (50%). DC showed the largest accuracies, with a maximum value of 68%, and EC 

displayed values in between the other two centrality measures. Note, however, that in some 

cases, differences in classification accuracies rates are within the standard deviation ranges. 

This can impose a difficulty in establishing which metric would be the best to choose.  

  Again, as with Table 5.6, results for the β-band are slightly better, and best classification 

approaches were the LSLDA and PSVM methods. Within the μ-band, however, the PSVM 

classifier performed better (for the DC measure).  

 It can be seen that different metrics perform better with different classifying approaches 

for different frequency bands. Within the μ-band, DC provided better results when using a 

PSVM classifier, whilst for the other two measures, LSLDA would be the preferred method. 

Within the β-band, the PSVM resulted in higher accuracies for the BC, while the LSLDA was 

better for DC and EC.  

 Combinations of the three centrality measures were also tested, in order to check for 

possible improvements in classification results (Table 5.10). The combination that yielded 

better results consisted of degree and eigenvector centrality, which is expected, since these two 

provided the largest classification rates previously (Table 5.9). 
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Table 5.10. Mean classification accuracies ± standard deviation for centrality measures combinations. Bold 

values highlight the largest one obtained. 

Band/Method DC+BC (%) EC+BC (%) 
DC+EC 

(%) 

All 

(%) 

μ/LSLDA 55 ± 7 54 ± 7 56 ± 8 55 ± 8 

μ/LSVM 55 ± 5 52 ± 6 67 ± 6 55 ± 5 

μ/PSVM 52 ± 5 52 ± 8 61 ± 5 53 ± 5 

β/LSLDA 52 ± 7 52 ± 6 52 ± 6 51 ± 6 

β/LSVM 61 ± 6 56 ± 6 67 ± 6 61 ± 6 

β/PSVM 56 ± 4 54 ± 3 68 ± 7 57 ± 4 

  

 Overall, combining centrality measures did not cause improvement. In some cases, it 

even worsened the results. For instance: from Table 5.9, the best classification rate obtained for 

the β/LSLDA band/method was 68%. This rate (for the same band and classifier) decreased to 

a maximum of 52% in Table 5.10. Thus, even though the three types of centralities provide 

complementary information, it can be seen that it does not mean that combining all this 

information will necessarily improve classification rates.  

 To explore really relevant classification information, as was done in Section 5.2.1, the 

effect of using specific pairs of electrodes and using them as input to the classifier was studied 

(Table 5.11). Also as done previously, the classifier used was the LSLDA since, when 

classifying these inputs separately, it was the one that gave maximum classification rates at the 

least computational cost. 

Table 5.11. Average maximum classification results obtained using individual pairs of electrodes for 

classification (centrality measures). DC (degree centrality); BC (betweenness centrality); EC (eigenvector 

centrality). 

Band/Number of 

electrodes sets 
DC (%) BC (%) EC (%) 

Mu/One 62 ± 4 55 ± 1 63 ± 4 

Mu/Two 73 ± 2 69 ± 2 73 ± 4 

Mu/Three 76 ± 2 73 ± 2 77 ± 2 

Beta/One 64 ± 5 56 ± 2 64 ± 3 

Beta/Two 74 ± 5 70 ± 3 73 ± 3 

Beta/Three 78 ± 5 74 ± 3 76 ± 4 
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 The type of centrality that provided best distinction between MI tasks was the degree 

centrality, reaching a maximum classification rate of 78%. Again, results for the beta band were 

slightly larger for almost all cases. 

 Similarly to what happened to the classification results for the strength, clustering 

coefficient and characteristic path length, classification accuracy increases with the number of 

optimum electrodes used for classification. Even the metric that performed worst (BC), 

provided accuracies comparable to the other two metrics (74%) with this approach.  

5.2.3. Optimum pairs of electrodes for data classification 

 The most recurring optimum electrodes for classification are shown in Figures 5.17 and 

5.18, in the form of histograms. All metrics were taken into consideration; that is, nodes that 

composed at least one optimum set of classification for at least one of the metrics were counted 

to produce these results. Note that there are two acquisitions for each subject and, therefore, the 

maximum number of times a pair of nodes can be present per metric is 2 x 8 = 16 times, for 

each number of pairs used for classification (that is, tests with one, two or three optimum pairs). 

Then, considering all possibilities of numbers of optimum pairs to use, this number raises up to 

16 × 3 = 48 times. When considering the five studied metrics, the maximum number of times a 

pair of nodes can be present per band is 5 x 48 = 240 times. This value was used to normalize 

the counting number in the histograms of Figures 5.8 and 5.9. Also, only one of the pair 

constituents is shown in the horizontal axis. A detailed discrimination containing all optimum 

sets of electrodes pairs per subject, metric and band can be consulted in Appendix D. 
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Figure 5.8. Normalized counting frequency of optimum electrodes for classification (mu band). Greatest 

number of occurrence of a pair was 32, for FC1/FC2 and C1/C2 pairs. 

 For the mu band, the most recurrent pair occurred at a maximum number of times of 32 

(C1/C2 and FC1/FC2). Note, however, that this is relatively small, representing only about 13% 

of the achievable total of 240. The C5/C6 pair was the least recurrent, being present only at 

about 5% of times. Even though this pair is in the motor area, it presented less relevant 

information for classification than, for instance, the O1/O2 pair, located on the occipital cortex. 

Best pairs for classification were F5/F6, FC1/FC2, FT7/FT8, C1/C2, T7/T8, TP9/TP10 and 

PO7/PO8. Note that this distribution basically collects information from areas scattered all over 

the scalp: from frontal to occipital areas and from nearest and furthest regions from the scalp’s 

central line. 

 For the beta band (Figure 5.18), the most recurrent pair was situated in the parietal 

cortex: P5/P6, and it occurred 38 times (about 16%). The least recurrent pair was T7/T8, with 

a relative frequency of about 6%. Best pairs for classification were AF3/AF4, AF7/AF8, F5/F6, 

FT9/FT10, C3/C4, P3/P5 and P5/P6.  
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Figure 5.9. Normalized counting frequency of the optimum electrodes for classification (beta band). Greatest 

number of occurrence of a pair was 38, for the P/P6 pair. 

 Although the three centrality measures suggested that electrodes on motor areas (“FC” 

and “C” labeled nodes) were most central during the studied MI tasks, they do not necessarily 

are the best approach for data classification. For instance, the C5/C6 pair in the mu band and is 

amongst the least recurrent ones. This suggests that data classification is much more complex 

than a simple visual inspection, and that results over 70% (up to 80% to 90% in some cases; 

see Appendix C) can be obtained given the right electrode pairs combination and, classification 

algorithm. 

5.2.4. General remarks regarding data classification 

 Within each band (mu and beta), three methods were tested for data classification: a 

linear least-squares based discriminant analysis (LSLDA), a linear support vector machine 

(LSVM) and a polynomial support vector machine (PSVM). For all measures, general findings 

can be drawn.  

 First of all, classification accuracy can be improved by working with optimal sets of 

electrodes for each subject. When doing so, classification accuracy increased by almost 20% in 

some cases. Nonetheless, this brings along several limitations; mainly, that these sets vary 

between subjects and between acquisitions for the same subject (Tables 5.7 and 5.11).  

Therefore, comprehending why such sets exist and how to determine them could play a major 

role in increasing the classifiers success rate. Note that these optimum pairs need not be in 
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motor related areas. It is important to emphasize that these sets were found through an offline 

analysis, and this approach would limit the performance of an online BCI, if these limitations 

were not to be resolved. 

 By using just information from one optimum classification set it is possible to reproduce 

accuracy rates that are comparable (or even better, in some cases) to the ones when information 

from all nodes is used. We believe this is due to the fact that a considerable fraction of the 

electrodes does not contain relevant information regarding discrimination between MI tasks. In 

fact, the analysis of graph topology (Section 5.1) revealed that more significant differences 

were found when the graph was analyzed locally in specific regions, instead of being considered 

as a whole.  

 For all tests (different combinations of band, metrics, nodes and classifier), some 

subjects achieved higher accuracies than others. MI is a very complex and highly demanding 

task, thus, it is not expected that all users will produce distinguishable patterns in the same 

manner. When using three optimum classification pairs, for instance, some subjects achieved 

classification rates of 90%, while others provided results near 70% (see Appendix C). We 

believe that results could have been enhanced had subjects been submitted to MI training prior 

to data acquisition.  

 To the best of our knowledge, there are few works in the literature who attempted a 

similar approach to this particular classification problem, and none was able to produce better 

accuracy rates. Thus, our approach seems promising, although further studies are still necessary 

to overcome the limitations discussed above. 
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Chapter 6 

Conclusions and future perspectives 

 In this work, we used metrics from graph theory in order to characterize the functional 

brain networks associated with motor imagery tasks of right and left hands, executed separately. 

We also attempted to use these metrics as input for a classifier in a BCI system.  

 To build the graphs, we used the motif method, since we believed a qualitative approach 

would be interesting to estimate similarities between the recorded EEG time series, given the 

highly noisy nature of the EEG signal. Besides, the motif method proved to be of very low 

computational cost. Nonetheless, more traditional analyses using Pearson’s correlation were 

also done, for comparison with the results obtained with the motif method. For all cases tested, 

the qualitative behavior described in Chapter 5 was very similar in both approaches, with just 

slight differences in absolute values.  

 A first approach to build the graphs consisted of thresholding the connectivity matrix 

with different threshold values, each corresponding to a percentage of the maximum matrix 

element (from 10% to 90%). Results, however, varied a lot depending on the choice of 

threshold. Thus, due to the lack of a rigorous criterion to choose a threshold value for the 

connectivity matrix, and to avoid the risk of losing information, we chose to work with weighted 

graphs 

 Several graphs metrics not shown in this dissertation were tested: the graph’s entropy, 

the Laplacian’s energy, the entropy of the Fourier transform of the Laplacian’s eigenvalues, 

and the degree distribution. A few parameters originating from the graph’s minimum spanning 

tree were also analyzed. They did not provide much complementary information to what has 

been presented and, therefore, were not included in this dissertation. We chose to present what 

we considered to be the simplest and most recurring metrics regarding graphs studies, analyzing 

their feasibility for data classification: degree (also degree centrality), clustering coefficient, 

characteristic path length, betweenness centrality and eigenvector centrality.  

 In preprocessing steps, data were frequency filtered in the EEG specific bands, as 

described in Table 2.1. Motor imagery studies report mainly response in mu and beta bands 

and, therefore, these were the bands we worked with in this study. Additional bands were also 

tested, but no interesting result arose from them. 
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 CAR filtering aimed to enhance the EEG SNR by removing artifacts arising at all 

channels at the same time. This can also reduce the correlation effect generated on different 

electrodes due to measuring signals arising from a same pool of neurons. In addition, we used 

a smoothing operation (Figure 4.2) to compensate for sudden and unexpected signal variations. 

This significantly increased classification results. Without it, most rates achieved when using 

all graph nodes barely surpassed 50 %.  

 The three centrality measures revealed that the most important nodes involved in the 

studied tasks lied on the motor area; namely, C3, C4, C5, C6, FC3 and FC4. This makes sense, 

given that these were motor tasks. Three distinct metrics were used because they provide 

complementary information. For instance: values for degree centrality were not very different 

between nodes, while for betweenness centrality, motor nodes presented higher values 

compared to other nodes. These three measures state that: the aforementioned nodes (C3, C4, 

C5, C6, FC3, FC4) on motor areas are the ones whose connections have the largest weights 

(degree centrality), the ones which are most important for information flow (betweenness 

centrality) and the ones that, also, tend to connect themselves to other central nodes (eigenvector 

centrality). Therefore, this confirms that motor areas are central during motor tasks.  

 Regarding data classification, we showed that relevant information is not present in all 

electrodes. In fact, the system’s performance can be optimized if it is known which are the best 

sets of nodes to be used. Results showed that using just one optimum pair produces similar rates 

than when all graph nodes are used. Besides, increasing number of electrodes to up to three 

pairs was accompanied by an increase in classification rate. Therefore, since using all electrodes 

did not provide the best rates, there must exist a turning point for which increasing the number 

of electrode pairs stops enhancing the classification rates.  

 Using these optimum sets, maximum average (over subjects) classification rate was of 

78%, with some subjects achieving rates as high as 92% in some cases. This shows that 

differences between MI tasks, although hard to be spotted from the figures of Section 5.1, can 

exist in specific projections of attributes combinations. Thus, exploring combinations of metrics 

and values across frequency bands seems like a natural approach as a next step, along with the 

use of computational methods that can provide insights of optimum feature extraction 

techniques. This could also add to better understand the main limitation with our methodology; 

namely, the fact that the optimum electrode sets vary across subjects and acquisitions, making 

its definition complicated for an online application.  
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 Between and within-subject variability is, indeed, a well-known variable when working 

with human data. In fact, we also found slight variations regarding which classifier algorithm 

and features performed best for each user. Besides, a BCI system and its user are in constant 

adaptation to one another. Finally, subjects tested here were not used to MI tasks. A study 

conducting MI training sessions between acquisitions could investigate if training could 

enhance the MI response and, therefore, the classification results.  

 From our results, some important questions arise: 

 Can other metrics provide better classification? 

 Can signal enhancing techniques (such as the surface Laplacian) improve classification 

results, if applied to the optimum classification electrodes? 

 Is the difference between metric values on corresponding electrodes (in both 

hemispheres) really the best approach to provide features for the classifier? 

 Is working with weighted and undirected graphs the best approach? 

 Can new combinations of the studied metrics improve classification results? 

 Can the use of longer data segments for classification enhance results? 

 Can other classification algorithms provide better classification rates? 

 Why are there optimum sets of electrodes for classification? What makes them be so? 

 Up until to what point does using additional optimum electrode pairs for classification 

increase the accuracy rate? 

 Can combinations of graph metrics with the more traditional frequency analysis 

improve classification results? 

 Still using the motifs methods, considering different lag times can alter classification 

output?  

 The use of the human brain to directly control external devices raises a high degree of 

fascination and interest, and it allows application in many fields. So far, BCIs seem the way to 

do so. Any contribution that could enhance these systems performance, or even the ones that 

establish negative approaches should be taken into consideration. Our approach investigated a 

still novel topic allying BCI and graphs. Although the classification results obtained were not 

outstanding, important questions that could aid overcoming the method’s limitations were risen. 

Also, to the best of our knowledge, no work in the literature has obtained better classification 

results using graph features alone for MI-BCIs. We established that there are optimum sets of 

electrodes for each subject that should be searched for classification, since they provide better 
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accuracies than using all nodes. Limitations still need to be investigated, as well as strategies to 

overcome them. We believe that more refined processing steps for finding the optimum 

electrode sets may increase our results above the 80% classification rate.  

 BCIs still have many obstacles to overcome in order to become well established 

communication systems. Advances in our understanding of the brain and engineering still 

need to be done. The general BCI concept is outstanding, but practical issues surely impose 

various limitations. The extent to which these systems can be applied, however, motivates 

their research, as challenging as it can be. 
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Appendix A  

Some membrane electrophysiological aspects 

 

A.1. Membrane resting potential derivation 
 Since the protein channels allow charge to pass through them in the form of an electric 

current and the lipid bilayer acts as an electrical insulator between intra and extracellular 

membrane sites, an electrical modeling of the cellular membrane as an electric circuit is in 

order. The resistive component represents the protein channels, and the capacitive component, 

the lipid bilayer. This is sketched in Figure A.1. In this figure, all possible types of ion channels 

that could compose the membrane structure are summarized into one resistance component 

(“Rm”, the membrane resistance), and in the membrane’s capacity, “Cm”. “Im” is the current 

flowing through the membrane, which is divided into two parts: the ionic current (“Ii”) and the 

capacitive current (“Ic”). “Vm” is the membrane potential and “Er” represents the equilibrium 

potential, occurring when the ion’s membrane potential balances the ion’s concentration 

gradient. 

 

Figure A.1. Membrane equivalent circuit representation. Extracted from [Johnston and Wu, 1995]. 

 Fick’s law of diffusion states that the diffusion flux (Jdiff), in molecules/s.cm², is related 

to the diffusion coefficient and the rate to which the particle concentration ([C]) varies in a 

length dimension (x), by:

 

𝐽diff = −D
∂[C]

∂x
. (A.1) 
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 The negative sign of (A.1) indicates that the flow goes from higher to lower 

concentration. One can see that the process of diffusion, therefore, occurs down the 

concentration gradient and it is as larger as greater this gradient’s value is. 

 Ohm’s law for drift establishes that charged particles in a system interact with its 

inherent electrical field, and experience a drift flux (Jdrift), in molecules/s.cm², that is 

proportional to the magnitude of the electrical field and the medium’s electrical conductivity 

(σ): 

                                  𝐽drift = σE. (A.2) 

 Since the electrical filed is related to the electrical potential (V) by 𝐸 = −
∂V

∂x
, and, 

rewriting σ in terms of the mobility coefficient and the particle concentration, then equation 

(A.2) takes the form 

                      𝐽drift =  −µ[C]
∂V

∂x
. (A.3) 

 As in (A.1), the drift current for positive charges takes place down its concentration 

gradient, and it is proportional to the gradient magnitude (this time expressed as an electrical 

potential gradient). 

 The relationship between drifting and diffusion is based on Einstein’s assumptions in 

his 1905 work on Brownian motion [Einstein, 1956]. Assuming a random walk process for the 

small particles, the relationship between D and µ is taken to be [Johnston and Wu, 1996] 

𝐷 =  
kT

q
µ. (A.4) 

 In (A.4), ‘k’ is the Boltzmann’s constant, T is the temperature in Kelvin and ‘q’ stands 

for the molecule charge. In cells, ions movement is often influenced by both drift and diffusion 

processes. Since the resistance presented by the biological medium to these phenomena is the 

same, they become additive [Johnston and Wu, 1996]. Let ‘J’ be the total ion fluency that 

accounts for both drifting and diffusion, then 

𝐽 =  𝐽drift +  𝐽diff. (A.5) 
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 Taking (A.2) and (A.3) into (A.5) yields 

𝐽 =  −µ[C]
∂V

∂x
−  D

∂[C]

∂x
. 

 

(A.6) 

 

 From Thermodynamics and Electromagnetism, recalling that the constant of ideal gases 

(R) is 𝑅 = k𝑁𝐴, with NA being Avogadro’s constant; and that Faraday’s constant (F) is 𝐹 =

e𝑁𝐴, with ‘e’ denoting the electron’s elementary charge, then it is possible to rewrite equation 

(A.4) as  

𝐷 =  
RT

𝑁𝐴Ze
µ. (A.7) 

 In (A.7), ‘Z’ stands for the ion valence. Substituting the elementary charge, ‘e’: 

𝐷 =  
RT𝑁𝐴

𝑁𝐴ZF
µ =  

RT

ZF
µ. (A.8) 

 Taking µ in terms of D: 

µ =  
ZF

RT
D. (A.9) 

 Taking (A.9) into (A.6) yields 

𝐽 =  −
𝑍𝐹

𝑅𝑇
𝐷[C]

∂V

∂x
−  𝐷

∂[C]

∂x
.   (A.10) 

 Equation (A.10) expresses the total molar flux through the cell membrane. The electric 

current (IM) associated with it is nothing more than the molar flux multiplied by NAq, since this 

last term contains information about the total number of ions passing through the membrane 

and its charge. But 𝑁𝐴𝑞 =  𝑁𝐴𝑍𝑒 = ZF, then: 

𝐼𝑀 =  ZFJ. (A.11) 

 Taking (A.10) into (A.11): 

𝐼𝑀 =  −ZF (
𝑍𝐹

𝑅𝑇
𝐷[C]

∂V

∂x
+  𝐷

∂[C]

∂x
). (A.12) 

 Assuming a constant electrical field through the cell membrane, it is possible to make 

the approximation  
∂V

∂x
 ~ 

𝑉

𝐿
, in which ‘L’ stands for the membrane length. In doing so, equation 

(A.12) becomes 
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𝐼𝑀 =  −ZF (
𝑍𝐹

𝑅𝑇
𝐷[C]

V

L
+  𝐷

∂[C]

∂x
). (A.13) 

 Rearranging its terms: 

∂[C]

∂x
= −

𝐼𝑀

𝐷𝑍𝐹
−

𝑍𝐹

𝑅𝑇

V

L
[C] . (A.14) 

 Defining a new variable  𝑤 =  −
𝐼𝑀

𝐷𝑍𝐹
−

𝑍𝐹

𝑅𝑇

V

L
[C], then 𝑑𝑤 =  −

𝑍𝐹

𝑅𝑇

V

L
d[C], and equation 

(A.14) takes the following form: 

−
𝑅𝑇𝐿

𝑍𝐹𝑉

∂w

∂x
= 𝑤. (A.15) 

 (A.15) is a first order ordinary differential equation that can be solved through variables 

separation and simple integration. The following steps are simply calculus and algebraic 

operations. 

∫
∂w

w

𝑜𝑢𝑡

𝑖𝑛

=  ∫ −
𝑍𝐹𝑉

𝑅𝑇𝐿

𝑜𝑢𝑡

𝑖𝑛

∂x. (A.16) 

‘in’ and ‘out’ indicate that the integration should be carried over considering the physical 

dimensions of the cell that delimits the intra and extracellular environment.  

ln(𝑤) |𝑖𝑛
𝑜𝑢𝑡 =  −

𝑍𝐹𝑉

𝑅𝑇𝐿
𝐿 = − 

𝑍𝐹

𝑅𝑇
V . (A.17) 

 

ln (
𝑤𝑜𝑢𝑡

𝑤𝑖𝑛
) =  − 

𝑍𝐹

𝑅𝑇
V . (A.18) 

 

𝑤𝑜𝑢𝑡

𝑤𝑖𝑛
=  𝑒− 

𝑍𝐹
𝑅𝑇

V. (A.19) 

 Recalling the definition of the variable ‘w’: 

−
𝐼𝑀

𝐷𝑍𝐹
−

𝑍𝐹

𝑅𝑇

V

L
[𝐶]𝑜𝑢𝑡 =  −𝑒− 

𝑍𝐹
𝑅𝑇

V (
𝐼𝑀

𝐷𝑍𝐹
+

𝑍𝐹

𝑅𝑇

V

L
[𝐶]𝑖𝑛). (A.20) 

 

𝐼𝑀

𝐷𝑍𝐹
(−1 + 𝑒− 

𝑍𝐹
𝑅𝑇

V) =  
𝑍𝐹

𝑅𝑇

V

L
([𝐶]𝑜𝑢𝑡 − 𝑒− 

𝑍𝐹
𝑅𝑇

V[𝐶]𝑖𝑛). (A.21) 



 A . 1 .  M e m b r a n e  r e s t i n g  p o t e n t i a l  d e r i v a t i o n  | 127 

 

 

 

𝐼𝑀 =  
𝑍²𝐹²𝐷𝑉

𝑅𝑇𝐿

([𝐶]𝑜𝑢𝑡 − 𝑒− 
𝑍𝐹
𝑅𝑇

V[𝐶]𝑖𝑛)

(−1 + 𝑒− 
𝑍𝐹
𝑅𝑇

V)
. (A.22) 

 The quantity ‘D/L’ can be defined as the membrane permeability ‘P’. It indicates how 

easily an ion can diffuse through its protein channel. With this, equation (A.22) takes the form 

𝐼𝑀 =  
𝑍²𝐹²𝑃𝑉

𝑅𝑇

([𝐶]𝑜𝑢𝑡 − 𝑒− 
𝑍𝐹
𝑅𝑇

V[𝐶]𝑖𝑛)

(−1 + 𝑒− 
𝑍𝐹
𝑅𝑇

V)
. (A.23) 

 Equation (A.23) expresses the current through the membrane due to ion ‘C’. 

Considering contributions from more ions, the total current passing through the membrane 

should be the sum of each ion’s own individual current.  

 At rest, the net membrane current is zero, since the quantities of charge flowing inward 

and outward are equal. Then, setting IM to zero in (A.23): 

 𝑃[𝐶]𝑜𝑢𝑡 − 𝑒− 
𝑍𝐹
𝑅𝑇

V𝑃[𝐶]𝑖𝑛 =  0. (A.24) 

 

𝑒− 
𝑍𝐹
𝑅𝑇

V =  
 𝑃[𝐶]𝑜𝑢𝑡

𝑃[𝐶]𝑖𝑛
. (A.25) 

 

𝑍𝐹

𝑅𝑇
V = −ln (

 𝑃[𝐶]𝑜𝑢𝑡

𝑃[𝐶]𝑖𝑛
). (A.26) 

 

 Equation (A.27) indicates the resting potential of a certain ion ‘C’. When considering 

more types of ions, the expression can be generalized to  

V =
𝑅𝑇

𝑍𝐹
ln (

∑ 𝑃𝑖𝑖 [𝑖]𝑖𝑛

∑ 𝑃𝑖𝑖 [𝑖]𝑜𝑢𝑡
). (A.28) 

 

V = −
𝑅𝑇

𝑍𝐹
ln (

 𝑃[𝐶]𝑜𝑢𝑡

𝑃[𝐶]𝑖𝑛
). (A.27) 
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 Knowing the permeability values of the ions during a certain event (such as an action 

potential), one could estimate the membrane potential using (A.28). This equation is known as 

the Goldman-Hodgkin-Katz (GHK) equation. 

A.2. Hodgkin and Huxley’s model for the action potential 

 The membrane potential can be regarded simply as the potential gradient between the 

intra and extracellular media. In Hodgkin and Huxley’s model for the giant squid axon’s 

membrane, the so called gating particles are responsible for controlling the opening and closing 

of ionic channels, thus altering the membrane’s permeability value to that ion. A specific 

channel can be associated with more than just one type of gate particle, and the combination of 

the two states – opened and closed – of each one of them, then, dictates the membrane’s 

permeability to that ion. The membrane equivalent circuit can be regarded as the one shown in 

Figure A.2. RNa and RK indicates the resistances values associated with the sodium and 

potassium ion channels, respectively. Also, INa and IK represent the currents that flow through 

each one of them. RL and IL are the leaking resistance and current, respectively. The leaking 

current origins from the passive transportation of ions through gate-free channels [Ermentrout 

and Terman, 2010]. Just as before, Ex is the resting potential for each ion ‘x’, and CM stands for 

the membrane’s capacitance.  

 

 

Figure A.2. Membrane equivalent circuit representation for Hodgkin and Huxley’s model for the action 

potential. Extracted from [Hodgkin and Huxley, 1952]. 
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 In studying the mathematical membrane properties, it is usual to work with the channel’s 

conductance (g), instead of its resistance (R), defined as: 

𝑔 =  
1

𝑅
. (A.29) 

 According to Kirchoff’s law for electrical circuits, the sum of the electrical current 

within a closed loop must equal zero. Then: 

𝐼𝐶 + 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐿 =  0, (A.30) 

to which IC is the current flowing through the circuit’s capacitive component. (A.30) can be 

rewritten in terms of the ions conductance and the membrane capacity as: 

𝐶𝑀

𝑑𝑉

𝑑𝑡
+ 𝑔𝑁𝑎(𝑉 − 𝐸𝑁𝑎) + 𝑔𝐾(𝑉 −  𝐸𝐾) + 𝑔𝑙(𝑉 −  𝐸𝑙) = 0. (A.31) 

 In Hodgkin and Huxley’s model, while gl is considered to be constant, the sodium (gNa) 

and potassium (gK) conductance are potential-dependent, and their values would be controlled 

by the gating particles, since their states can alter the channel’s permeability. Thus, denoting 

by gi
max the maximum conductance value the channel for ion ‘i’ can assume, then:  

𝑔𝑁𝑎 = 𝑓𝑁𝑎(𝑉, 𝑡)𝑔𝑁𝑎
𝑚á𝑥. (A.32) 

𝑔𝐾 = 𝑓𝐾(𝑉, 𝑡)𝑔𝐾
𝑚á𝑥 . (A.33) 

The fi(V,t) are merely functions dependent on the time and the membrane’s potential. In this 

form, it becomes clear that the conductance values vary according to a given potential over 

time.  

 Ionic channels can be characterized according to two distinct states: open (O) or closed 

(C). The transition between these states occur due to conformational changes in the proteins 

caused by variations in the electrical field (and, subsequently, in the electrical potential) 

generated by the ions distributed around the cell’s membrane. The rate to which this process 

develop is, then, dependent on the membrane potential. Figure A.3 illustrates these processes, 

in which ‘a’ and ‘b’ denote transition rates from state O to C, and C to O, respectively.  
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Figure A.3. Transition scheme between states O and C. 

 Assuming that ionic channels can only assume one between these two states, then, if a 

certain channel has probability ‘p’ of being in the O state, then, the probability of it being in the 

C state is ‘1-p’. Let NO and NC be the number of channels existing, respectively, in states O and 

C. Then, the rate according to which there is a change in the number of channels within a given 

state is: 

𝑑𝑁𝑂

𝑑𝑡
= 𝑏𝑁𝐶 − 𝑎𝑁𝑂 . (A.34) 

𝑑𝑁𝐹

𝑑𝑡
= 𝑎𝑁𝐴 − 𝑏𝑁𝐹 . (A.35) 

 Similar equations to (A.34) and (A.35) can be written in terms of a new quantity N = 

NO + NC by noting that the number of channels in a given state depends upon the fraction 

channels in the other state, the probability of their transition and the rate to which they do so. 

Mathematically: 

𝑁𝑂

𝑁
= 𝑏(1 − 𝑝). (A.36) 

𝑁𝐶

𝑁
= 𝑎𝑝. (A.37) 

 The equations stated above dictate relations between fractions of open and closed 

channels, their transitional rates and the probability ‘p’. Note that, macroscopically, ‘p’ also 

represents the fraction of number of channels in the O state. Also, since ‘a’ and ‘b’ are potential 

dependent, alterations in the membrane potential cause the transition rates value to change 

accordingly. This means that the value of ‘p’ also varies over time, since it is subject to 

boundary conditions explicit in Equations (A.36) and (A.37). This variation is not 

instantaneous, and it can be expressed as: 

𝑑𝑝

𝑑𝑡
=

𝑁𝐴

𝑁
−

𝑁𝐹

𝑁
. (A.38) 

 Putting (A.36) and (A.37) into (A.38) yields: 
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𝑑𝑝

𝑑𝑡
= 𝑏(1 − 𝑝) − 𝑎𝑝. (A.39) 

 When a stationary state is reached (that is, when transitions between states O and F are 

equal): 

     
𝑑𝑝

𝑑𝑡
= 0 => 𝑏(1 − 𝑝𝑠𝑠) − 𝑎𝑝𝑠𝑠 = 0. (A.40) 

 The index ‘ss’ is used here to indicate ‘steady state’. Then: 

     𝑏 = 𝑝𝑠𝑠(𝑎 + 𝑏); (A.41) 

and 

     𝑝𝑠𝑠 =
𝑏

𝑎+𝑏
. (A.42) 

 Some algebraic steps applied to Equation (A.39) allows it to be rewritten in terms of the 

new quantity defined by (A.42). (A.39) can be also written as: 

𝑑𝑝

𝑑𝑡
= 𝑏 − 𝑝(𝑎 + 𝑏). (A.43) 

 Combining (A.42) and (A.43): 

𝑑𝑝

𝑑𝑡
= (𝑎 + 𝑏)𝑝𝑒𝑒 − (𝑎 + 𝑏)𝑝. (A.44) 

 Or: 

𝑑𝑝

𝑑𝑡
= (𝑎 + 𝑏)(𝑝𝑒𝑒 −  𝑝). (A.45) 

 (A.45) is a first-order linear differential equation that can be solved by separation of 

variables: 

∫
𝑑𝑝

𝑝𝑒𝑒 − 𝑝
= ∫(𝑎 + 𝑏)𝑑𝑡 ; (A.46) 

− ln(𝑝𝑒𝑒 − 𝑝) = (𝑎 + 𝑏)𝑡 + 𝐾. (A.47) 

 ‘K’ is a real constant. Proceeding with the calculations: 
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ln(𝑝𝑒𝑒 − 𝑝) = −[(𝑎 + 𝑏)𝑡 + 𝐾]; (A.48) 

𝑝𝑒𝑒 − 𝑝 = 𝑒−(𝑎+𝑏)𝑡−𝐾; (A.49) 

p = 𝑝𝑒𝑒 + 𝑒−𝐾𝑒−(𝑎+𝑏)𝑡; (A.50) 

𝑝(𝑡) = 𝑝𝑒𝑒 + 𝐻𝑒−(𝑎+𝑏)𝑡. 
 

(A.51) 

 In (A.51), ‘H’ denotes a new real constant. This equation expresses the variation of the 

probability ‘p’ over time. ‘H’ can be determined by means of some boundary conditions. Setting 

𝑝(0) = 𝑝0, then: 

𝑝0 = 𝑝𝑒𝑒 + 𝐻 => 𝐻 = 𝑝0 −  𝑝𝑒𝑒 . (A.52) 

 Using this value of ‘H’ in (A.51): 

𝑝(𝑡) = 𝑝𝑒𝑒 + (𝑝0 − 𝑝𝑒𝑒)𝑒−(𝑎+𝑏)𝑡; (A.53) 

𝑝(𝑡) = 𝑝0 + (𝑝0 − 𝑝𝑒𝑒)(1 − 𝑒−(𝑎+𝑏)𝑡). (A.54) 

 (A.54) describes how the probability of a channel being open over time varies. It is 

defined in terms of the transition rates ‘a’ and ‘b’, the initial value ‘p0’ and the steady state value 

‘pss’. 

 In Hodgkin and Huxley’s model for the action potential, sodium and potassium channels 

are dictated by more than just one gating particle. Assuming these particles to be independent 

from one another, the new probability ‘P(t)’ of the channel being open would be given by 

𝑃(𝑡) = [𝑝(𝑡)]𝑥, (A.55) 

in which ‘x’ is the number of needed gating particles of type ‘p’. Note that ‘p’ is defined in 

(A.54) for the general case. Through empirical results, Hodgkin and Huxley described 

potassium channels as being mediated by four n-type gating particles, while sodium channels 

would be dictated by three m-type particles and one h-type particle [Hodgkin and Huxley, 1952]. 

M and n particles are activated by membrane depolarizations, while h is deactivated by this 

process [Johnston and Wu, 1995]. Mathematically, it is possible to write conductance values 
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for each type of channel as function of the probabilities associated with these gating particles. 

The resulting expressions take forms similar to (A.32) and (A.33), just by replacing 𝑓𝑁𝑎(𝑉, 𝑡) 

by m³h, and 𝑓𝐾(𝑉, 𝑡) by n4: 

𝑔𝑁𝑎 = 𝑛4𝑔𝑁𝑎
𝑚á𝑥; (A.56) 

𝑔𝐾 = 𝑚3ℎ𝑔𝐾
𝑚á𝑥. (A.57) 

 Note that the proposed gating particles should behave like the ‘p’ variable. Thus, it is 

possible to write equations as (A.43) to any one of them: 

𝑑𝑥

𝑑𝑡
= 𝑏𝑥 − 𝑥(𝑎𝑥 + 𝑏𝑥). (A.58) 

The variable ‘x’ can represent either m, n or h.  

 Each ‘a’ and ‘b’ value associated with its respective gating particle was obtained 

empirically by Hodgkin and Huxley, and are reproduced below: 

 

𝑏𝑛(𝑉) = 0,01
10 − 𝑉

𝑒
10−𝑉

10 − 1
 

𝑏𝑚(𝑉) = 0,1
25−𝑉

𝑒
25−𝑉

10 −1

; 

𝑏ℎ(𝑉) = 0,07𝑒
−𝑉
20  

𝑎𝑛(𝑉) = 0,125𝑒
−𝑉
80  

𝑎𝑚(𝑉) = 4𝑒
−𝑉

18  ; 

𝑎ℎ(𝑉) =
1

1+𝑒
30−𝑉

10

. 

(A.59) 

 Note that expressions for the rates associated with the h particle are different than the 

ones found for the other particles, a consequence of the difference in these particle’s nature 

[Johnston and Wu, 1995], as previously referred.  

 Putting it all together, the equation for the action potential generation under Hodgkin 

and Huxley’s model actually involve the solution of a set of differential equations: 

𝐶𝑀

𝑑𝑉

𝑑𝑡
+ 𝑔𝑁𝑎

𝑚á𝑥𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) + 𝑔𝐾
𝑚á𝑥𝑛4(𝑉 −  𝐸𝐾) + 𝑔𝑙(𝑉 − 𝐸𝑙) = 𝐼𝑚 

𝑑𝑛

𝑑𝑡
= 𝑏𝑛(1 − 𝑛) − 𝑎𝑛𝑛     𝑏𝑛(𝑉) = 0,01

10−𝑉

𝑒
10−𝑉

10 −1

  𝑎𝑛(𝑉) = 0,125𝑒
−𝑉

80  

(A.60) 
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𝑑𝑚

𝑑𝑡
= 𝑏𝑚(1 − 𝑚) − 𝑎𝑚𝑚 𝑏𝑚(𝑉) = 0,1

25−𝑉

𝑒
25−𝑉

10 −1

    𝑎𝑚(𝑉) = 4𝑒
−𝑉

18  

  𝑑ℎ

𝑑𝑡
= 𝑏ℎ(1 − ℎ) − 𝑎ℎℎ  𝑏ℎ(𝑉) = 0,07𝑒

−𝑉

20           𝑎ℎ(𝑉) =
1

1+𝑒
30−𝑉

10

.     

 

 Figure A.4 displays a form obtained for the action potential when solving (A.60) using 

Euler’s method [Howell, 2004] for numerical differential equations solving. The firing of this 

potential is an ‘all-or-nothing’ event; that is, it will occur only if the sum of the potentials 

received by a neuron exceeds some threshold value. The most important aspects of this 

phenomenon are marked in red in Figure A.4, and basically consist of the following steps: 

 At ‘1’, an incoming stimulation increases the sodium channel’s conductance, making 

them more permeable to this ion, and depolarizing the cell membrane; thus, increasing 

its potential to more positive values. If this depolarization is sufficiently high, the firing 

of the action potential occurs; 

 Sodium channels continue to open up, increasingly depolarizing the cell’s membrane, 

up to a maximum value (region ‘2’, in Figure A.4); 

 During ‘3’, potassium channels start to open up. Note that potassium and sodium 

channels are dictated by different gating particles, allowing them to present distinct 

properties. Thus, potassium channels take a longer time to open up than those associated 

with sodium, allowing membrane depolarization. The change in their conductance can 

be seen in Figure A.5; 

 At ‘4’, following influx of potassium ions due to the opening of their channels, the 

membrane repolarizes. Also, at this phase, h gating particles start to exercise its 

inactivation role to the sodium channel. This is the stage in which the membrane begins 

to return to its equilibrium state; 

 At ‘5’, the cell reaches a polarization stage in which its potential is beneath its resting 

value. The membrane is said to be hyperpolarized; 

 Finally, during ‘6’, the membrane returns to its equilibrium state, aided by the sodium-

potassium bomb.  

 Analysis of conductance values for the potassium and sodium ions during the action 

potential event can provide complementary information about it (Figure A.5). Note that 

sodium channels open up faster, being responsible for the cell membrane’s 

depolarization. When sodium’s conductance reaches its maximum value, almost all 

potassium channels are, also, open; leading to the beginning of the membrane’s 



 A . 2 .  H o d g k i n  a n d  H u x l e y ’ s  m o d e l  f o r  t h e  a c t i o n  p o t e n t i a l  | 135 

 

 

repolarization. Sodium channels also close faster than potassium ones, which can be 

seen by the rate both curves decrease. 

  

 Figure A.4. Action potential form illustration. This figure was generated by solving the set of 

differential equations in (A.60) using Euler’s method. Some parameters were set as to match values used 

by Hodgkin and Huxley in their original paper [Hodgkin and Huxley, 1952]: Im = 10 µA/cm²; Cm = 0.01 

µA/cm²; Euler’s method initial value for potential: -60 mV (membrane’s resting potential value); 

temporal step of 0.01 ms.  

 

Figure A.5. Sodium and potassium conductance variation during the action potential firing. These curves 

were obtained using (A.56) and (A.57), and by solving expressions for the respective gating particles.  



 A . 2 .  H o d g k i n  a n d  H u x l e y ’ s  m o d e l  f o r  t h e  a c t i o n  p o t e n t i a l  | 136 

 

 

 Note that the above description only covers the generation of the action potential. Its 

propagation through neuron’s axon involve modulations of its own. Some models, such as the 

so-called core conductor model [Johnston and Wu, 1995], treat axons as simple cylindrical 

conductors. Several other considerations can be made, which can substantially simplify the 

problem. Also, EEG signals are usually assumed to not be direct measures of the action 

potential per se; they are, on the other hand, considered to be mainly due to extracellular 

electrical fields, as descripted in Chapter 2. They, however, could not occur if not by previous 

action potentials.  
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Appendix B 

Strength individual results 

 This appendix presents scalp distributions for the strength (S) values, for every subject. 

This metric was chosen because it was the one whose qualitative behavior could be best 

observed and reproduced along subjects (although subject 3 showed considerable variation). 

 

Figure B.1. Strength values distribution over the scalp (subject 1).
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Figure B.2. Strength values distribution over the scalp (subject 2). 
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Figure B.3. Strength values distribution over the scalp (subject 3). 
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Figure B.4. Strength values distribution over the scalp (subject 4). 
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Figure B.5. Strength values distribution over the scalp (subject 5). 
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Figure B.6. Strength values distribution over the scalp (subject 6). 
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Figure B.7. Strength values distribution over the scalp (subject 7). 
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Figure B.8. Strength values distribution over the scalp (subject 8). 
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Appendix C 

Individual classification results 

 This appendix presents the complete set of classification results for each subject 

individually.  

C.1. Using all graphs nodes  

 In this section, tables presented below contain results when all graphs nodes are 

considered for classification. Tables C.1, C.2 and C.3 present classification rates for the 

strength, clustering coefficient and characteristic path length, respectively. Note that the three 

classification methods are used: LSLDA, LSVM and PSVM. Also, the effect of using just one 

hemisphere for classification or the use of both in the same fashion as descripted in Chapter 4 

is explored. These results are averaged over both acquisitions for each subject. “RH” and “LH” 

stand for “right hemisphere” and “left hemisphere”, respectively, meaning that only this specific 

hemisphere had been used for data classification. “Diff” refers to using the difference of a 

metric’s value on a node on the RH minus its value on its contralateral part over the LH. Note 

that results are also shown for each band within the same table.  
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Table C.1. Individual classification results (strength, all nodes). The three classification approaches and the 

effect of using each hemisphere separately are shown.  

 Strength – individual classification results 

 LSLDA LSVM PSVM 

Band Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 70 72 72  1 66 69 71  1 50 48 66 

 2 65 63 59 2 64 63 61 2 48 51 59 

 3 62 58 57 3 63 53 64 3 52 48 63 

μ 4 66 68 70 4 68 77 66 4 48 47 61 

 5 70 58 59 5 71 61 70 5 56 48 63 

 6 62 61 64 6 68 68 66 6 50 53 61 

 7 57 64 70 7 50 65 74 7 53 48 63 

 8 59 66 63 8 59 63 61 8 50 52 56 

 

Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

 RH LH Diff RH LH Diff RH LH Diff 

  1 77 66 81  1 82 73 80  1 49 46 79 

 2 73 67 67 2 74 70 66 2 49 49 71 

 3 65 67 65 3 58 64 66 3 51 48 66 

β 4 62 49 66 4 63 55 65 4 48 49 63 

 5 70 76 76 5 70 72 73 5 57 49 70 

 6 55 59 57 6 59 54 58 6 50 50 58 

 7 63 66 69 7 65 70 68 7 49 48 73 

 8 48 72 66 8 55 71 62 8 61 58 65 
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Table C.2. Individual classification results (clustering coefficient, all nodes). The three classification 

approaches and the effect of using each hemisphere separately are shown. 

 Clustering coefficients – individual classification results 

 LSLDA LSVM PSVM 

Band Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 58 58 66  1 39 55 46  1 41 58 45 

 2 59 55 54 2 53 56 55 2 55 57 55 

 3 55 50 52 3 55 51 48 3 55 50 50 

μ 4 55 63 59 4 52 55 51 4 54 52 51 

 5 55 52 52 5 54 59 50 5 57 55 49 

 6 53 55 63 6 61 52 64 6 63 49 63 

 7 62 59 71 7 54 45 57 7 53 44 59 

 8 65 57 70 8 54 59 57 8 52 59 59 

 

Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 73 70 73  1 68 58 62  1 65 56 62 

 2 64 63 59 2 54 53 53 2 53 53 52 

 3 63 51 59 3 59 57 52 3 58 57 51 

β 4 56 59 61 4 41 48 53 4 40 49 53 

 5 63 57 56 5 57 43 50 5 55 42 51 

 6 54 55 61 6 50 49 53 6 47 46 53 

 7 52 59 56 7 52 50 38 7 49 52 38 

 8 63 66 58 8 58 51 60 8 57 50 59 
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Table C.3. Individual classification results (characteristic path length, all nodes). The three classification 

approaches and the effect of using each hemisphere separately are shown. 

 Characteristic path length – individual classification results 

 LSLDA LSVM PSVM 

Band Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 54 55 50  1 54 56 45  1 54 55 45 

 2 54 53 52 2 53 54 55 2 47 53 52 

 3 55 39 46 3 54 40 50 3 52 41 50 

μ 4 52 60 55 4 53 59 53 4 52 63 54 

 5 54 53 43 5 57 51 42 5 56 52 50 

 6 57 50 58 6 57 48 56 6 55 48 57 

 7 58 54 62 7 49 49 58 7 55 52 59 

 8 52 57 58 8 50 62 55 8 52 62 56 

 

Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 54 46 55  1 57 45 56  1 54 45 53 

 2 56 56 40 2 58 60 40 2 59 55 45 

 3 61 60 40 3 61 59 38 3 62 60 37 

β 4 52 54 53 4 50 51 65 4 53 51 50 

 5 42 58 65 5 45 60 67 5 43 57 70 

 6 51 55 59 6 46 56 58 6 49 54 58 

 7 56 38 58 7 59 38 61 7 59 36 55 

 8 52 61 60 8 52 62 60 8 53 59 60 

 

 

 

 



C . 1 .  U s i n g  a l l  g r a p h s  n o d e s  | 149 

 

 

Tables C.4 and C.5 show individual classification results for betweenness and eigenvector 

centralities. Degree centrality is not shown, since it is the same as the strength, already shown 

in Table C.1.  

Table C.4. Individual classification results (betweenness centrality, all nodes). The three classification 

approaches and the effect of using each hemisphere separately are shown 

 Betweenness centrality – individual classification results 

 LSLDA LSVM PSVM 

Band Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 56 50 63  1 57 48 55  1 56 52 44 

 2 58 48 48 2 52 52 48 2 48 59 48 

 3 41 53 49 3 45 52 40 3 51 56 52 

μ 4 59 49 54 4 62 52 53 4 55 48 49 

 5 51 46 53 5 52 49 47 5 56 48 50 

 6 57 57 63 6 58 53 60 6 52 59 51 

 7 62 51 51 7 58 45 54 7 57 49 62 

 8 58 58 59 8 55 59 55 8 54 52 59 

 

Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 59 56 53  1 57 57 55  1 51 54 55 

 2 44 55 51 2 45 65 55 2 52 56 51 

 3 66 49 52 3 61 49 52 3 53 52 51 

β 4 52 64 64 4 52 53 60 4 59 49 51 

 5 49 61 56 5 52 58 57 5 50 59 55 

 6 52 56 55 6 48 49 60 6 55 55 55 

 7 58 63 49 7 60 61 52 7 49 52 52 

 8 43 57 51 8 45 56 59 8 45 50 58 

. 
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Table C.5. Individual classification results (eigenvector centrality, all nodes). The three classification 

approaches and the effect of using each hemisphere separately are shown. 

 Eigenvector centrality – individual classification results 

 LSLDA LSVM PSVM 

Band Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 70 69 70  1 57 48 55  1 63 66 63 

 2 66 67 63 2 52 52 48 2 54 59 59 

 3 64 55 58 3 63 66 63 3 64 55 56 

μ 4 69 72 72 4 55 57 59 4 52 59 48 

 5 75 58 57 5 64 55 57 5 59 53 52 

 6 62 60 63 6 52 59 48 6 60 59 60 

 7 48 65 68 7 59 53 52 7 57 59 62 

 8 59 60 51 8 57 62 63 8 59 60 60 

 

Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) Subject 

Classification rate 

(%) 

RH LH Diff RH LH Diff RH LH Diff 

  1 78 71 77  1 74 68 73  1 74 68 73 

 2 70 70 71 2 56 63 58 2 56 63 59 

 3 64 66 63 3 50 63 66 3 50 63 66 

β 4 64 45 63 4 59 47 55 4 59 47 55 

 5 67 78 74 5 63 66 61 5 63 66 63 

 6 55 62 57 6 53 54 54 6 53 54 53 

 7 59 70 72 7 59 64 56 7 59 64 56 

 8 45 73 63 8 56 59 58 8 56 59 57 

C.2. Using specific node pairs 

 By a “node pair”, it is meant that the metric’s value on a node on the right hemisphere 

minus its value on its contralateral part on the left hemisphere is used as input to the classifier. 

At this point, only the LSLDA method was tested, for reasons already stated within this 

dissertation (lower computational cost and better performance for most cases).  
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Table C.6. Individual classification results (strength, specific nodes). Classification method: difference as input 

to the LSLDA classifier. 

Strength – individual classification results with specific nodes 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 63 65 61 61 57 65 62 63 

μ 2 rate 74 71 74 70 73 72 76 70 

 3 (%) 82 71 75 78 75 77 77 77 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 74 59 64 63 64 60 63 65 

β 2 rate 84 74 71 72 74 71 72 73 

 3 (%) 85 78 77 73 79 73 78 77 

Table C.7. Individual classification results (clustering coefficient, specific nodes). Classification method: 

difference as input to the LSLDA classifier. 

Clustering coefficient – individual classification results with specific nodes 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 60 63 60 52 56 70 53 64 

μ 2 rate 72 70 69 68 67 75 76 70 

 3 (%) 76 70 70 70 68 78 78 77 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 68 59 57 59 60 62 56 63 

β 2 rate 82 69 71 67 74 70 66 70 

 3 (%) 89 72 76 70 77 73 72 73 

Table C.8. Individual classification results (characteristic path length, specific nodes). Classification method: 

difference as input to the LSLDA classifier. 

Characteristic path length – individual classification results with specific nodes 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 59 59 59 63 57 63 59 61 

μ 2 rate 76 73 72 72 70 73 74 75 

 3 (%) 80 74 74 77 75 77 77 79 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 70 59 59 66 63 56 61 66 

β 2 rate 80 73 70 73 76 69 73 76 
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 3 (%) 83 77 77 75 81 72 77 80 

Table C.9. Individual classification results (betweenness centrality, specific nodes). Classification method: 

difference as input to the LSLDA classifier 

Betweenness centrality – individual classification results with specific nodes 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 57 53 55 55 55 55 54 53 

μ 2 rate 70 66 67 70 69 72 70 71 

 3 (%) 74 72 70 73 73 76 72 73 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 55 52 55 57 54 56 55 59 

β 2 rate 72 70 70 72 68 70 69 73 

 3 (%) 74 76 73 76 73 75 73 77 

Table C.10. Individual classification results (eigenvector centrality, specific nodes). Classification method: 

difference as input to the LSLDA classifier.   

Eigenvector centrality – individual classification results with specific nodes 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 63 63 62 65 60 63 61 63 

μ 2 rate 77 73 73 71 69 72 73 73 

 3 (%) 82 77 76 77 77 76 78 77 

Band Pairs number Subject 1 2 3 4 5 6 7 8 

 1 Classification 67 59 65 66 66 59 63 65 

β 2 rate 79 76 72 70 74 68 72 71 

 3 (%) 81 80 79 73 77 71 75 73 
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Appendix D 

Optimum electrodes for classification 

 Optimum electrode pairs for data classification are shown for each subject and 

individually across both acquisitions. Sometimes, the same subject in the same acquisition 

presented multiple pairs (or combinations of) that yielded the same optimum classification rate. 

In these cases, pairs are separated by commas. Combinations are indicated by the sign “+”: for 

instance, if the pairs C3/C4 and PO7/PO8 were used, then in the tables they are shown as “C3 

+ PO7”. Only electrodes from one side (left) are shown, since the pair is always composed of 

the electrode and its contralateral part.  Also, results for both bands are shown as separated 

sections – D.1 (mu band) and D.2 (beta band). 
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D.1. Mu band 

D.1.1. Strength 

Table D.1. Optimum electrodes for classification per subject and acquisition (strength, mu band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) PO7 FT7 + F7, F7+ P7, P1 + P5 T7 + P1 + FT9 

1 (2) P3 FC1+ P1 F1 + P1 + F5 

2 (1) FP1, F7 C1 + FT9/ CP5 + C1 + FT9 

2 (2) FP1, F1, F3, Cz P5/+ C1 CP5 + C1 + F2 

3 (1) P5 P7 + TP7 FP1 + T7 + TP7, P7 + CP5 + TP7 

3 (2) CP3, F5 C3 + FC1 C3 + T7 + FC1, C3 + FC1 + FC5 

4 (1) C3, TP6 FC1 + PO7, F1 + PO7  F7 + FC5 + PO7, T7 + FC5 + P5 

4 (2) O1, T7 FC1 + PO7 CP3 + FT7 + PO7 

5 (1) P3 T7 + TP9 T7 + P7 + TP9 

5 (2) P3, C1 F3 + AF7 
F3 + P3 + AF7, P3 + F7 + Fz, F5 + 

AF7 + FT9, F5 + AF7 + Fz 

6 (1) T7 P3 + TP9 P3 + TP9 + P5, P3 + FT7 + TP7 

6 (2) 
FC1, FC5, TP9, 

C1, C5, FT7, Fz 

CP5 + AF3, F7 + AF, FC1 + 

AF7, C1 + AF7, AF7 + Fz 
FC5 + CP5 + AF7, P5 + AF7 + FT7 

7 (1) Fz F1 + F5 CP1 + F1 + F5 

7 (2) P7 P3 + FT9 

F3 + P3 + FT9, P3 + O1 + FT9, P3 + 

AF3 + FT9, P3 + CP3 + FT9, P3 + 

C5 + FT9, P3 + C5 + Cz 

8 (1) C1 T7 + Cz O1 + PO3 + Cz 

8 (2) TP9 P7 + FT P7 + AF7 + Cz 
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D.1.2. Clustering coefficient 

Table D.2. Optimum electrodes for classification per subject and acquisition (clustering coefficient, mu 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) PO7 AF3 + FP1 CP1 + C1 + FC3 

1 (2) F7, T7, FT7, TP7 F7 + FC3 F7 + C1 + PO7 

2 (1) F3 O1 + P7 O1 + P7 + CP5 

2 (2) P5 C1 + C3, C1 + T7 C1 + C3 + C5 

3 (1) FC3 F5 + FC5 
F3 + F5 + TP9, AF3 + F7 + C1, P3 + TP9 + 

F5, FC5 + TP9 + CP3, TP9 + F1 + F5 

3 (2) 
P7, CP1, CP3, 

CP5, P5 
P7 + CP1 

FP1 + P7 + CP1, P7 + CP1 + FT9, FC1 + 

FC5 + CP1 

4 (1) 
CP1, CP3, P1, 

Cz 
F7 + FT7 

C3 + F7 + FT7, P3 + F7 + FT7, P1 + P3 + 

C1, O1 + P1 + CP1, O1 + F7 + FT9, O1 + 

P1 + F1, O1 + C1 + F1, O1 + P1 + C1, O1 

+ P1 + Cz, F7 + CP1 + AF7, F7 + CP5 + 

FT7, T7 

 + CP3 + FT7, F7 + FT7 + PO3 

4 (2) FC3, F5 P3 + O1, FP1 + TP9 C3 + F5 + FT9, C3 + F5 + CP1 

5 (1) P3, T7, CP5 O1 + TP7 F5 + FC5 + AF7, F5 + TP9 + AF7 

5 (2) FP1, C5, AF7 FC5 + Cz 
O1 + C1 + F5, FC5 + C1 + PO7, CP3 + 

PO4 + FT9 

6 (1) FC3, AF7 P3 + C1 P3 + C1 + Cz 

6 (2) P1, P5 

F3 + F7, F3 + FC5, FP1 + F1, 

FC3 + FC5, F7 + FT9, TP9 + 

F1, C1 + F1, C5 + F1, AF7 + 

F1, FT9 + F1, Fz + F1 

FP1 + FC1 + AF3, F3 + FC5 + T7, F3 + 

FC1 + AF3, C3 + FC5 + P1, O1 + FC5 + 

TP7, O1 + C1 + AF3, F7 + T7 + C5, T7 + 

FC5 + PO3, FC1 + FC5 + C1, FC5 + PO3 + 

TP7, C1 + AF3 + PO3 

7 (1) 
FC1, FC3, C1, 

AF3, F5, FT7 
P3 + P5 FP1 + P3 + PO7, P3 + P5 + TP7 

7 (2) 
P1, P5, PO3, 

PO7,  FT7, FT9 
FC1 + AF3 

F7 + FC1 + AF3, FC1 + AF3 + F1, FC1 + 

AF3 + FT7 

8 (1) 
T7, FC5, TP9, 

FT7, FT9 
P3 + F5 CP1 + F5 + Fz 

8 (2) 
F3, CP5, AF3, 

FC3, CP3 
FC1 + Cz C1 + C3 + CP5, C3 + C5 + Cz 
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D.1.3. Characteristic path length 

Table D.3. Optimum electrodes for classification per subject and acquisition (characteristic path length, mu 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) Fz TP9 + P1 T7 + P1 + FT9 

1 (2) C3, CP1, FC5 FC1 + P1 
FP1 + P1 + FT7 

 

2 (1) 
FP1, F7, T7, F5, 

AF7, FT9 
T7 + FT9 FP1 + FC1 + C1 

2 (2) F1, Fz CP1 + FC5 

C3 + F7 + TP9, F7 + CP1 + FC5, F7 

+ FC1 + FC5, F1 + P5 + AF 

 

3 (1) P5, P7 P7 + TP7 

FP1 + FC5 + TP7, FP1 + PO3 + 

TP7, FP1 + P5 + TP7, P7 + FC5 + 

TP7, P1 + P7 + TP7, P7 + PO3 + 

TP7  

3 (2) AF7 C3 + FC1 C3 + FC1 + CP1 

4 (1) F7 PO7 + Fz F7 + FC5 + PO7, F1 + F7 + PO7 

4 (2) O1 PO7 + CP3, FT7 + TP7 CP3 + FT7 + PO7 

5 (1) 
F3, FC1, FC3, 

FC5, CP3, FT9 
T7 + TP9 FC3 + T7 + TP9 

5 (2) 
FP1, T7, AF3, 

AF7, TP7, FT9 
F5 + AF7 AF7 + C1 + F5 

6 (1) C5, TP7 P7 + AF3 P3 + P5 + TP9 

6 (2) F1, F5 FC5 + AF7, AF3 + C5 
FC5 + CP5 + AF7, AF3 + CP3 + P5, 

FC3 + AF7 + FT7 

7 (1) 
P5, P7, PO7, C1, 

FC3 
F1 + FC5, P5 + Cz AF7 + F1 + P5 

7 (2) 
P5, P7, FT9, TP9, 

C3 
O1 + Cz  

FP1 + FT9 + P3, P3 + C5 + FT9. O1 

+ CP5 + Cz, O1 + F5 + Cz, O1 + 

FT7 + Cz 

8 (1) C1, TP7, FT9 
CP5 + Fz, AF7 + Fz, AF3 + 

Cz, PO7 + Fz 

P3 + PO7 + Fz, T7 + CP5 + Fz, AF3 

+ CP5 + Cz 

8 (2) P7 O1 + P7 P7 + TP7 + FT9 
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D.1.4. Betweenness centrality 

Table D.4. Optimum electrodes for classification per subject and acquisition (betweenness centrality, mu 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) C5 T7 + CP5 T7 + CP5 + FT7 

1 (2) 
FP1, CP5, TP9, AF3, 

P5, PO7, Fz 
F1 + P1, P1 + P5 F3 + FC3 + P1 

2 (1) 
FP1, T7, F1, P1, AF3, 

F5, Cz 

C3 + FT7, P1 + TP9, F5 + 

FT7 
FT7 + FP1 + F5 

2 (2) C5, PO7 C3 + FT7 C3 + P1 + FT7 

3 (1) F3, F7, Fz, TP7 FC5 + PO7 F1 + FC5 + PO7, CP5 + PO7 + Cz 

3 (2) F5 CP5 + Fz 
F3 + TP9 + Cz, CP3 + CP5 + Fz, 

CP3 + FT9 + Fz 

4 (1) F7 
F7 + FP1, F7 + P1, F7 + 

AF3 
F7 + FC3 + O1 

4 (2) FC3, CP3 
FC1 + FT7, CP1 + PO7, 

FC5 + Cz 
FC1 + FT7 + Cz 

5 (1) FT7 P7 + TP7 P5 + P7 + TP7 

5 (2) F7, C3, P3, AF7, FT9 
F7 + C1, CP3 + C1, Fz + 

CP3 
C1 + CP3 + Fz 

6 (1) F1 C5 + O1 C3 + O1 + Fz 

6 (2) PO3 CP1 + FC3, FC3 + FC5 FC3 + C1 + CP1 

7 (1) 
F5, C3, O1, P5, AF7, 

PO7 
F7 + C1 F5 + FT7 + O1, AF3 + F5 + CP3 

7 (2) PO3 
FC1 + C3, P7 + CP5, CP5 

+ Cz 

F3 + FC3 + CP5, FT9 + FC1 + C3, 

P7 + CP5 + Cz, CP5 + P5 + Cz 

8 (1) F3, CP1, P5, PO7, Fz 
F5 + F7, F7 + PO7, F5 + 

FC3 
F7 + TP9 + P1, F5 + FC3 + Cz 

8 (2) 
P3, O1, TP9, PO3, 

P5, PO7 
FC1 + TP7 FC1 + TP7 + Fz 
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D.1.5. Eigenvector centrality 

Table D.5. Optimum electrodes for classification per subject and acquisition (eigenvector centrality, one 

pair, mu band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) FC5, TP9, PO7, FT9 FP1 + P1, P1 + AF3 T7 + TP9 + F1, T7 + P1 + FT9 

1 (2) FT9 FC1 + P1 F1 + F5 + P1 

2 (1) F5 FC1 + PO7 
FC1 + F1 + PO7, FC1 + C1 + PO7, 

FC1 + CP3 + PO7 

2 (2) TP9 T7 + TP7, CP5 + FT9 CP1 + TP9 + F1 

3 (1) P5 P7 + TP7 F7 + P7 + TP7 

3 (2) T7 C3 + CP1 C3 + T7 + FC1 

4 (1) FT9 FC5 + PO3 FP1 + FC5 + T7, T7 + FC5 + PO3, 

4 (2) P5 PO3 + PO7 
FC1 + TP9 + PO7, FC1 + AF7 + 

PO7, FC1 + FT7 + PO7 

5 (1) P3, O1 F3 + P7, T7 + TP9 T7 + TP9 + FC3 

5 (2) O1 F5 + AF7 P3 + F5 + AF7 

6 (1) FP1 AF3 + Fz  P3 + CP1 + FT7 

6 (2) PO3 AF7 + Fz P3 + AF7 + FT7, T7 + AF7 + P1 

7 (1) P3, PO7 F1 + PO3, F1 + P5 C3 + F1 + F5, CP1 + F1 + F5 

7 (2) P5 P3 + FT9 C3 + FT7 + FT9, C5 + Cz + P3 

8 (1) Cz P3 + FT7 P3 + CP5 + FT7, CP5 + FC3 + Fz 

8 (2) TP9 P7 + PO3 O1 + PO3 + P7 
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D.2. Beta band 

D.2.1. Strength 

Table D.6. Optimum electrodes for classification per subject and acquisition (strength, beta band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) FT9 F3 + Fz F3 + F7 + Fz 

1 (2) CP5 CP5 + AF7 C3 + P5 + AF7, FC3 + P5 + AF7 

2 (1) CP5 C1 + FT9, C5 + FT9 C1 + FT9 + Cz 

2 (2) C5 C3 + TP9 F1 + F7 + TP9 

3 (1) F3, C5, P5, TP7 
O1 + AF7, F7 + AF7, 

CP5 + AF7 
O1 + F1 + AF7 

3 (2) T7 C3 + AF3, AF3 + P5 C3 + AF3 + P5 

4 (1) PO7 F1 + FC3 
FC3 + FC5 + F1, F1 + FC3 + PO3, 

F1 + FC3 + F5, FC3 + AF7 + FT9 

4 (2) F3, TP9 FC1 + CP1, CP1 + CP3 

O1 + F5 + Fz, P7 + FC1 + CP1, FC1 

+ CP1 + C5, FC1 + TP7 + Cz, P1 + 

P5 + TP7 

5 (1) CP3 
C3 + Fz, F5 + CP5, Fz + 

Cz 
C3 + CP3 + Fz 

5 (2) FP1, O1, CP3 CP1 + CP3 FP1 + FC3 + PO3 

6 (1) F1, T7 AF3 + CP3 P3 + AF3 + C5 

6 (2) C3 P3 + FC1 P3 + FT7 + Cz 

7 (1) FT9 F1 + PO3 FP1 + P3 + PO3 

7 (2) AF3 P5 + Cz P3 + O1 + CP1 

8 (1) P7 FP1 + C3, FP1 + O1 FP1 + P3 + PO7, FC5 + PO7 + Cz 

8 (2) 
FP1, P7, F1, FC5, 

FT7, TP7 
F7 + TP9, F7 + FT9 FC5 + CP5 + C5 
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D.2.2. Clustering coefficient 

Table D.7. Optimum electrodes for classification per subject and acquisition (clustering coefficient, beta 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) 
P7 + F1 + AF3, P5, 

PO7, FT9, Fz 
F3 + F5, FC1 + FT7 FC3 + F5 + P5 

1 (2) O1, PO3, P5, PO7 FP1 + F1 
FP1 + P3 + FC1, FP1 + C5 + FC1, 

FP1 + FC1 + PO3 

2 (1) 
O1, F5, F7, T7, FC5, 

PO7, FT9 
C1 + AF7 O1 + C1 + AF7 

2 (2) P3, O1, P5, P7 P7 + PO3 P7 + AF7 + PO7 

3 (1) FP1, C1 TP7 + Cz F3 + F5 + C5, P5 + TP7 + Cz 

3 (2) AF7 PO7 + FT9 P3 + CP1 + TP9, F7 + PO7 + FT9 

4 (1) 
F3, C3, P3, CP3, 

CP5, C1, C5, Fz 
AF3 + AF7 FC1 + AF7 + Fz 

4 (2) FT9 T7 + PO7 
O1 + C1 + C5, C1 + PO3 + C5, C1 

+ P5 + C5 

5 (1) 

FP1, F3, C3, P3, O1, 

P7, CP1, CP5, FC5, 

TP9, P1, AF3, FC3, 

CP3, PO3, C5, P5, 

AF7, TP7, PO7 

CP1 + PO7 
F3 + CP1 + PO7, F1 + F7 + C5, CP1 

+ FT7 + PO7, CP1 + PO7 + Fz 

5 (2) AF7 FP1 + FC1 FP1 + FC1 + F5 

6 (1) TP9 TP7 + FT9 
C3 + F5 + Fz, F7 + C5 + FT9, CP3 

+ F5 + Fz 

6 (2) 
P3, FC1, FC5, AF3, 

F5, PO7, FT9, Fz 
CP1 + CP3 F7 + CP1 + FT7, CP1 + CP3 + AF3 

7 (1) 
C3, TP9, F1, C5, 

TP7, FT9, Fz 
P5 + PO7 

F7 + FC1 + FC3, F7 + FC3 + TP7, 

CP1 + P5 + PO7, P1 + C5 + PO7, 

P1 + AF7 + PO7 

7 (2) O1, AF3, PO3 F3 + AF3, FC3 + FC5 C3 + F1 + AF3 

8 (1) F1, Fz FP1 + AF7, T7 + FT9 FC1 + C5 + F5 

8 (2) 
FP1, F5, F7, AF7, 

FT7, FT9 

F3 + F5, P3 + F5, FC3 + 

F5 
P1 + P7 + FC1 
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D.2.3. Characteristic path length 

Table D.8. Optimum electrodes for classification per subject and acquisition (characteristic path length, 

beta band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) FT9 FC3 + Fz 
P1 + FC3 + Fz, FC3 + P5 + Fz, FC3 

+ AF7 + Fz 

1 (2) 
F3, C3, P3, CP5, C5, 

FC3, F5, P5 
FC3 + AF7 C3 + AF3 + AF7, FC3 + AF3 + AF7 

2 (1) C5 CP1 + FT9 FC3 + FC5 + FT9 

2 (2) FP1 F1 + TP9 TP7 + TP9 + Cz 

3 (1) AF3 
CP1 + PO3, CP3 + PO3, 

F5 + PO3 
CP5 + PO3 + AF7, CP3 + PO3 + Cz 

3 (2) CP1 CP3 + P5 C3 + CP3 + P5 

4 (1) F1, PO3, P5 FC3 + C5 CP5 + FC3 + C5, FC3 + TP7 + FT9 

4 (2) C5 P7 + TP7, F5 + TP7 
F5 + F7 + FT7, P7 + F7 + FT7, FC1 

+ F7 + FT7 

5 (1) C3 
F1 + C3, F7 + Fz, F3 + 

CP3, FT7 + Fz 
F3 + CP3 + FT7, F3 + CP3 + Cz 

5 (2) FP1, CP3, TP7, FT9 
O1 + CP1, P7 + CP1, FC3 

+ C5 
P3 + PO3 + CP1 

6 (1) FC5, TP9, AF3, FT7 F5 + AF3 O1 + AF3 + F5, AF3 + PO3 + F5 

6 (2) P5 
C3 + PO3, C3 + O1, P3 + 

P5, T7 + P7 
P3 + FC5 + FT7, P3 + TP7 + FT7 

7 (1) P5 FP1 + PO3 F1 + PO3 + AF7 

7 (2) P3, AF3, PO3 O1 + PO3 P3 + AF3 + C5 

8 (1) F7 FC5 + PO7 T7 + FC5 + PO7 

8 (2) 
C1, C3, C5, P1, P3, 

CP1, FC3, CP3, Fz 

FP1 + FT9, F7 + FT9, F7 

+ CP3, C5 + FT9 
TP9 + P1 + AF7 
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D.2.4. Betweenness centrality 

Table D.9. Optimum electrodes for classification per subject and acquisition (betweenness centrality, beta 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) C3 F3 + TP7, O1 + FC3 O1 + FC3 + Fz 

1 (2) 

C3, F7, TP9, P1, F5, 

P5, AF7, FT7, TP7, 

PO7 

AF3 + CP5 
F7 + CP5 + AF3, C1 + CP5 + AF3, 

Fz + CP5 + AF3, AF3 + AF7 + FC3 

2 (1) FC1, CP5, P1, F5 F3 + P7, F7 + P7, T7 + P7 T7 + P7 + Cz 

2 (2) 
F3, F5, F7, TP7, TP9, 

Cz  
C3 + Fz, CP1 + PO7 C3 + PO7 + Fz 

3 (1) P5 FP1 + FT9 FC1 + FT7 + FT9 

3 (2) P5 AF3 + CP5, F5 + FT7 AF3 + F1 + C1 

4 (1) O1 
AF3 + F3, F3 + Cz, C1 + 

CP1 

F3 + P5 + TP7, F3 + AF3 + Cz, CP1 

+ C1 + TP7 

4 (2) C3 CP1 + CP3 F3 + CP1 + CP3 

5 (1) CP5, P5 P7 + Cz, C1 + Cz P7 + C1 + Cz 

5 (2) 
F5, FC1, FC5, C5, 

PO7, Cz 
FC5 + CP3, FT9 + Cz F5 + FC5 + PO3 

6 (1) 

F5, F7, C1, C3, P1, P3, 

P7, O1, CP5, TP9, 

AF3 

P3 + P5, F5 + P5 F5 + P3 + P5, F5 + CP5 + P5 

6 (2) P7, Fz F5 + FC1 F5 + FC1 + C3 

7 (1) F5 C5 + P3 P3 + C5 + FT7 

7 (2) PO3 
F1 + P1, F1 + CP3, F1 + 

PO7 
AF3 + F1 + P7 

8 (1) 
O1, FC5, CP5, F1, 

P1, C5, P5, AF7 
P5 + FT9 

AF7 + F7 + P7, FT9 + F7 + P7, AF7 

+ P5 + P7 

8 (2) FT7 FC1 + FC5 AF3 + FC1 + FC5 
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D.2.5. Eigenvector centrality 

Table D.10. Optimum electrodes for classification per subject and acquisition (eigenvector centrality, beta 

band). 

Subject 

(acquisition) 

Number of pairs to use for classification 

One Pair Two Pairs Three Pairs 

1 (1) F3 F3 + Fz C3 + P1 + O1 

1 (2) P3, F5, P5 AF7 + TP9 F1 + F3 + FC5, FC5 + AF7 + TP7 

2 (1) 
F7, FC3, C3, FT7, 

FT9 
C1 + FT9 FT9 + C1 + Cz 

2 (2) P5 C3 + TP9 
C3 + T7 + TP9, C3 + FC5 + TP9, 

C3 + FC5 + C5, T7 + TP9 + PO7 

3 (1) F3, C5 FC1 + PO3, AF7 + C5 AF7 + F5 + CP1 

3 (2) FC5 AF3 + C3, CP3 + Cz AF3 + C3 + P5 

4 (1) PO7 FC3 + P3 FC3 + C3 + O1 

4 (2) PO7 FC1 + Cz, P5 + TP7 C1 + TP7 + Cz, P5 + TP7 + Fz 

5 (1) P1 FC1 + Fz FT9 + P7 + Fz 

5 (2) P5 CP1 + P1 FP1 + FC3 + CP1 

6 (1) T7, Fz AF3 + C3, AF7 + F5 AF3 + C3 + P3 

6 (2) C1, TP7 FC5 + Cz FT7 + P3 + Fz 

7 (1) TP7 P3 + PO3, T7 + TP9 F5 + CP3 + T7 

7 (2) P3 C3 + T7 

F3 + CP1 + AF7, F3 + PO3 + AF7, 

C5 + CP1 + P3, P3 + O1 + Cz, AF7 

+ CP1 + O1 

8 (1) AF7 
FP1 + C1, FP1 + Cz, F3 + 

CP5 
P3 + CP5 + TP7 

8 (2) CP1 FC5 + C5 F5 + FC5 + C5 
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Attachment A  

Informed Consent Form 

 

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO 

Voluntários saudáveis 

DesTINe: Desenvolvimento de Tecnologia de Informação para Neurologia 

 

Pesquisadores responsáveis: Prof. Dr. Li Li Min e Profa. Dra. Gabriela Castellano 

 

Você está sendo convidado a participar da pesquisa “Desenvolvimento de Tecnologia de 

Informação para Neurologia”, que tem como objetivo geral avaliar o uso de sistemas de 

computadores em pacientes com lesão do cérebro para a reabilitação. Espera-se com esta 

pesquisa desenvolver novos sistemas de computadores e equipamentos que auxiliem pessoas 

com algum tipo de lesão cerebral ou paralisia para que tenham a possibilidade de se mover ou 

se comunicar novamente com esses equipamentos. Para isso, serão feitos experimentos também 

com voluntários saudáveis, como é o seu caso.  

 

Você poderá ser submetido a três tipos de exames: ressonância magnética (RM), 

eletroencefalografia (EEG) e tomografia de luz próximo da faixa de infravermelho (NIRS), para 

avaliar as estruturas cerebrais e seu funcionamento. Você poderá ser convidado mais de uma 

vez para realizar esses exames para aumentar a precisão dos resultados. Além disso, você 

poderá ser solicitado para testar alguns equipamentos em desenvolvimento, neste caso seriam 

realizados os exames de EEG e/ou NIRS com o intuito de captar sinais cerebrais para comandar 

os equipamentos, por exemplo, comandar uma cadeira de rodas à distância, sem estar sentado 

nela e sem fazer esforço físico. Todos esses exames são não invasivos, e nenhum deles utiliza 

radiação ionizante. 

 

No exame de RM, você entrará na máquina de RM e lá permanecerá, deitado e imóvel, por 

volta de 30 a 60 minutos. Durante esse tempo a máquina medirá sinais provenientes do seu 

cérebro e fará imagens do mesmo. O exame não causa nenhuma dor e também não possui 

nenhum efeito nocivo para o corpo humano –  em particular, nesta pesquisa não será feito 

nenhum exame de RM usando contraste. No entanto, você poderá sentir desconforto devido ao 

grande barulho que a máquina faz (para isso me serão fornecidos tampões de ouvido), e ao fato 

de que você deverá permanecer o mais imóvel possível dentro da máquina, para que os sinais 

possam ser medidos de forma correta. Além disso, devido a que o campo magnético usado na 
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máquina de RM é alto (como um forte ímã), caso você possua algum metal dentro do seu corpo 

(como pinos, marcapassos, próteses metálicas, balas de revólver), não poderá, de nenhuma 

maneira, realizar o exame, e NÃO DEVE DEIXAR DE AVISAR o pesquisador responsável 

(que estiver realizando os exames). Por esse motivo também, antes de entrar na sala da RM, 

você deverá remover do corpo qualquer objeto metálico, como anéis, brincos, pulseiras e 

óculos, etc. Também é importante que você remova objetos magnetizados como cartões de 

crédito, pois eles podem ser apagados ou danificados pelo campo magnético.  

 

No caso dos exames de EEG e NIRS, uma touca com vários sensores será colocada sobre sua 

cabeça, para a medida dos seus sinais cerebrais. Esses exames também não possuem nenhum 

efeito nocivo para o corpo humano, mas você poderá sentir dor e desconforto devido ao contato 

apertado e prolongado dos sensores sobre o couro cabeludo, devido a que a touca deve ser 

colocada bem apertada para poder medir bem o sinal. Para evitar ou minimizar esse desconforto, 

é importante que você avise a pessoa que estiver colocando a touca em você, sobre qualquer 

desconforto que sentir no momento da colocação da mesma. Você também poderá, se quiser, 

interromper a aquisição em qualquer momento que deseje e os sensores serão retirados, sem 

que isso acarrete nenhum prejuízo para sua pessoa. 

 

A sua participação nesta pesquisa não implicará em nenhum benefício pessoal, não é obrigatória 

e não trará riscos previsíveis. Os riscos possíveis são mínimos, relacionados aos procedimentos 

clínicos não invasivos, descritos acima. Você não receberá nenhum pagamento por sua 

participação nesta pesquisa, mas caso venha a ter despesas de transporte ou alimentação para 

poder realizar estes exames, elas serão ressarcidas.  

 

Caso queira, você poderá desistir da sua participação a qualquer momento, sem que isso lhe 

cause prejuízo. Você será acompanhado e assistido pelo pesquisador responsável e a sua equipe 

durante esses procedimentos, podendo fazer perguntas sobre qualquer dúvida que apareça 

durante todo o estudo. Os dados coletados estarão sob o resguardo científico e o sigilo 

profissional, e contribuirão para o alcance dos objetivos deste trabalho e para posteriores 

publicações dos dados. 

 

Para quaisquer dúvidas, você pode contactar os pesquisadores responsáveis deste projeto: o Dr. 

Li Li Min, no ambulatório de Neurologia (tel: 19 3521 7754, email: limin@fcm.unicamp.br, 

endereço: Departamento de Neurologia, Faculdade de Ciências Médicas, UNICAMP, Rua 

Tessália Vieira de Camargo, 126, CEP 13083-887, Campinas, SP), ou a Dra. Gabriela 

Castellano (tel: 19 3521 5519, email: gabriela@ifi.unicamp.br, endereço: Departamento de 

Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, UNICAMP, Rua Sérgio 

Buarque de Holanda, 777, CEP 13083-859, Campinas, SP).  
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Para denúncias ou reclamações referentes aos aspectos éticos você pode contactar o Comitê de 

Ética em Pesquisa da UNICAMP (tel: 3521-8936, email: cep@fcm.unicamp.br, endereço: Rua 

Tessália Vieira de Camargo, 126, CEP 13083-887, Campinas, SP).  

Você receberá uma cópia deste termo de consentimento esclarecido. 

 

 

Eu li, entendi, e aceito participar voluntariamente desta pesquisa. 

 

_____________________________________________________________ _______ 

Nome legível do participante        Idade    

 

_____________________________________________________________ 

Assinatura do participante 

 

_____________________________________________________________ 

Assinatura do responsável 

 

_____________________________________________________________ 

Assinatura do pesquisador 

 

 

Campinas,  ______/______/20____ 

 

 

 

 

 

 


