17 research outputs found

    Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem

    Full text link
    We consider the university course timetabling problem, which is one of the most studied problems in educational timetabling. In particular, we focus our attention on the formulation known as the curriculum-based course timetabling problem, which has been tackled by many researchers and for which there are many available benchmarks. The contribution of this paper is twofold. First, we propose an effective and robust single-stage simulated annealing method for solving the problem. Secondly, we design and apply an extensive and statistically-principled methodology for the parameter tuning procedure. The outcome of this analysis is a methodology for modeling the relationship between search method parameters and instance features that allows us to set the parameters for unseen instances on the basis of a simple inspection of the instance itself. Using this methodology, our algorithm, despite its apparent simplicity, has been able to achieve high quality results on a set of popular benchmarks. A final contribution of the paper is a novel set of real-world instances, which could be used as a benchmark for future comparison

    Robustness Approaches for the Examination Timetabling Problem under Data Uncertainty

    Full text link
    In the literature the examination timetabling problem (ETTP) is often considered a post-enrollment problem (PE-ETTP). In the real world, universities often schedule their exams before students register using information from previous terms. A direct consequence of this approach is the uncertainty present in the resulting models. In this work we discuss several approaches available in the robust optimization literature. We consider the implications of each approach in respect to the examination timetabling problem and present how the most favorable approaches can be applied to the ETTP. Afterwards we analyze the impact of some possible implementations of the given robustness approaches on two real world instances and several random instances generated by our instance generation framework which we introduce in this work.Comment: original paper: 15 pages, published at the Multidisciplinary International Scheduling Conference 2019 (MISTA 2019

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    An integer programming model for assigning students to elective courses

    Get PDF
    This paper deals with the problem of assigning students to elective courses according to their preferences. This process of assigning students to elective courses according to their preferences often places before academic institutions numerous obstacles, the most typical being a limited number of students who can be assigned to any particular class. Furthermore, due to financial or technical reasons, the maximum number of the elective courses is determined in advance, meaning that the institution decides which courses to conduct. Therefore, the expectation that all the students will be assigned to their first choice of courses is not realistic (perfect satisfaction). This paper presents an integer programming model that maximizes the total student satisfaction in line with a number of different constraints. The measure of student satisfaction is based on a student\u27s order of preference according to the principle: the more a choice is met the higher the satisfaction. Following the basic model, several versions of the models are generated to cover possible real-life situations, while taking into consideration the manner student satisfaction is measured, as well as the preference of academic institution within set technical and financial constraints. The main contribution of the paper is introducing the concept of the minimal student satisfaction level that reduces the number of students dissatised with the courses to which they were assigned

    Fairness in examination timetabling: student preferences and extended formulations

    Get PDF
    Variations of the examination timetabling problem have been investigated by the research community for more than two decades. The common characteristic between all problems is the fact that the definitions and data sets used all originate from actual educational institutions, particularly universities, including specific examination criteria and the students involved. Although much has been achieved and published on the state-of-the-art problem modelling and optimisation, a lack of attention has been focussed on the students involved in the process. This work presents and utilises the results of an extensive survey seeking student preferences with regard to their individual examination timetables, with the aim of producing solutions which satisfy these preferences while still also satisfying all existing benchmark considerations. The study reveals one of the main concerns relates to fairness within the students cohort; i.e. a student considers fairness with respect to the examination timetables of their immediate peers, as highly important. Considerations such as providing an equitable distribution of preparation time between all student cohort examinations, not just a majority, are used to form a measure of fairness. In order to satisfy this requirement, we propose an extension to the state-of-the-art examination timetabling problem models widely used in the scientific literature. Fairness is introduced as a new objective in addition to the standard objectives, creating a multi-objective problem. Several real-world examination data models are extended and the benchmarks for each are used in experimentation to determine the effectiveness of a multi-stage multi-objective approach based on weighted Tchebyceff scalarisation in improving fairness along with the other objectives. The results show that the proposed model and methods allow for the production of high quality timetable solutions while also providing a trade-off between the standard soft constraints and a desired fairness for each student

    A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules

    Full text link
    [EN] In this paper, an optimization tool based on a MILP model to support the teaching assignment process is proposed. It considers not only hierarchical issues among lecturers but also their preferences to teach a particular subject, the non-regular time schedules throughout the academic year, different type of credits, number of groups and other specific characteristics. Besides, it adds restrictions based on the time compatibility among the different subjects, the lecturers' availability, the maximum number of subjects per lecturer, the maximum number of lecturers per subject as well as the maximum and minimum saturation level for each lecturer, all of them in order to increase the teaching quality. Schedules heterogeneity and other features regarding the operation of some universities justify the usefulness of this model since no study that deals with all of them has been found in the literature review. Model validation has been performed with two real data sets collected from one academic year schedule at the Spanish University Universitat Politecnica de Valencia.Solano Cutillas, P.; Pérez Perales, D.; Alemany Díaz, MDM. (2022). A mathematical programming tool for an efficient decision-making on teaching assignment under non-regular time schedules. Operational Research. 22(3):2899-2942. https://doi.org/10.1007/s12351-021-00638-12899294222
    corecore