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Abstract

Any sports tournament needs a timetable, specifying which
teams will meet at what time, and where. However, not all
sport timetables are equally fair for the contestants. In this
chapter, we discuss three fairness issues, namely consecutive
home games, the carry-over effect (which relates to the oppo-
nent’s previous game), and the number of rest days each team
has between consecutive games. Since we typically cannot ob-
tain a timetable that scores well on all these issues, we study
how to make a good trade-off. Furthermore, we look at the
trade-off between a timetable that is as fair as possible for the
league overall, versus a timetable that equitably splits its un-
fair aspects over the teams. We verify how a number of official
timetables from major European football competitions score
with respect to fairness criteria. Finally, we generate timeta-
bles for an amateur indoor football competition that reconcile
overall fairness with an equitable distribution of unfairness over
the teams.
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1 Introduction

Every sports competition needs a timetable, stating when and
where each match of the tournament will be played. In professional
sports, the timetable has high economical stakes, because it has an
impact on commercial interests and revenues of clubs, broadcasters,
sponsors, etc. In amateur sports, practical concerns like venue and
team availability are more prominent. However, in all sports, a fair
timetable is paramount, in the sense that it should not a priori give an
advantage or a disadvantage to a particular contestant. Dealing with
fairness, given the many stakeholders and the diversity of their (often
conflicting) requirements, makes sports timetabling a very challenging
optimization problem (Van Bulck et al., 2020). We explain a number
of essential concepts in sports timetabling in Section 2.1.

In this chapter, we focus on so-called round robin tournaments.
These are tournaments where each team meets each other team a fixed
number of times, as opposed to e.g. knock-out tournaments (used in
e.g. Grand Slam tennis tournaments), where contestants do not face
each opponent. The double round robin tournament, where each team
faces each other team twice (typically once in its home venue and
once in the venue of the opponent) is a particularly popular format;
it is omnipresent e.g. in football (Goossens and Spieksma, 2012b).
While this tournament design alone already adds a substantial level
of fairness to any timetable designed for it, there are many other
fairness issues to deal with. In Section 2.2, we discuss breaks, the
carry-over effect, and rest times as our main fairness criteria.

Unfortunately, there ain’t no such thing as a free lunch (Fried-
man, 1975). Indeed, in sports timetabling, even though we prefer a
timetable that is fair in every possible way, we are facing a trade-off
between various fairness criteria. How much of one fairness criterion
do we have to give up in order to make the timetable better with
respect to some other fairness issue? Moreover, even if there was only
one fairness criterion to deal with, the question still remains how to
fairly distribute the undesirable properties of the timetable over the
teams. We explore some basic concepts on these fairness trade-offs in
Section 2.3.

For academics, we detail on methods to minimize the number of
breaks and the carry-over effect in Section 3. We develop a so-called
first-carry-over, then-break approach in order to obtain a set of timeta-
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bles that provide insight in this trade-off. Furthermore, we study how
we can optimize the rest times of a timetable, without overlooking
the distribution of undesirable rest times over the teams. To this ex-
tent, we develop a mathematical formulation as well as a bi-criteria
evolutionary algorithm.

For practitioners, we apply our ideas to two real-life settings in
Section 4. We study the official timetables of ten main professional
European football leagues, in order to understand how the breaks ver-
sus carry-over trade-off is made in practice. Moreover, we create a set
of timetables for an amateur indoor football league, which illustrates
the price of fairness: by how much do the overall rest times decrease
if we wish to balance short rest times over the teams?

2 Preliminaries

2.1 Sports Timetabling

A game (or match) between team i and j, denoted i − j, means
that team i plays at home, i.e., it uses its own venue (stadium) for
that game, against away team j. A round is a set of games, often
played on the same weekend, in which every team plays at most one
game. A timetable essentially assigns a round to each match.

A timetable is said to be time-constrained if it uses the minimum
number of rounds required to schedule all the games. In this chapter,
we assume that time-constrained competitions have an even number
of teams. Hence, each team plays exactly one game in each round
in a time-constrained timetable. In contrast, time-relaxed timetables
utilize (many) more rounds than there are games per team. If a team
doesn’t play in a round, it is said to have a bye in that round. Ta-
ble 1 gives an example of a time-constrained timetable for eight teams
(named A to H); a time-relaxed timetable for the same tournament
is given in Table 2.

Time-constrained timetables are common practice in e.g. profes-
sional football leagues in Europe (Goossens and Spieksma, 2012b).
However, there are a number of reasons why organizers may opt for a
time-relaxed timetable. The main reason is its flexibility to take into
account venue or team availability constraints. Besides, it may simply
be unattractive or even impractical to play multiple games simultane-
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ously. The most extreme case example is an asynchronous timetable
where at most one match takes place in each round (see Suksompong
(2016)). Asynchronous tournaments occur when there is only one
venue, as is the case in the top-tier national football league of Gibral-
tar, or when fans need to be able to watch all games live (e.g. the
2012 Premier League Snooker in England).

When the second half of a double round robin timetable is identical
to the first half, except that the home advantage is flipped, we say
that the timetable is mirrored.

Table 1: A time-constrained single round robin timetable with eight
teams.

r1 r2 r3 r4 r5 r6 r7

A-H C-A A-E G-A A-B D-A A-F
B-G H-B D-B B-F C-G B-C E-B
F-C G-D C-H E-C F-D G-E C-D
D-E E-F F-G H-D E-H H-F G-H

Table 2: A time-relaxed single round robin timetable with eight teams.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

A-H B-G C-A A-E G-A E-C A-B F-D D-A A-F
F-C H-B D-B B-F H-D C-G E-H B-C E-B
D-E G-D C-H G-E C-D

E-F F-G H-F G-H

2.2 Fairness criteria

In this section, we discuss three fairness criteria: breaks, the carry-
over effect, and rest times. In our opinion, these criteria are quite uni-
versal, in the sense that in most sports, league organizers, teams, and
fans would like to see them respected. However, we do not claim that
there are no other universal fairness criteria, and there will certainly
be relevant sport-specific fairness criteria as well.
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2.2.1 Breaks

Determining the venue of games is crucial in terms of the fairness
of a timetable. The sequence of home matches (‘H’) and away matches
(‘A’) played by a single team is called its home-away pattern (HAP).
Given such a HAP, the occurrence of two consecutive home matches,
or two consecutive away matches is called a break. Teams can have
consecutive breaks, causing them to play three or more home (away)
games in a row.

In some cases, away breaks may be beneficial. For instance, to re-
duce travel costs, a team may prefer to have two (or more) consecutive
away games if its stadium is located far from the opponents’ venues,
and the venues of these opponents are close to each other (provided of
course that the teams do not return home after each game). However,
in most competitions, breaks - and successive breaks in particular - are
avoided as much as possible. Indeed, Forrest and Simmons (2005) ob-
serve that scheduling consecutive home games has a negative impact
on attendance. Moreover, given the home advantage, a morale boost
(blow) after two consecutive home (away) games may have an impact
on the outcome of the next game. Hence, breaks are considered unfair.

As an illustration, Table 3a gives the HAPs corresponding to the
timetable presented in Table 1. Note that the HAPs of all teams
except for team A and H contain a break. The timetable depicted
here contains 6 breaks in total.

2.2.2 The carry-over effect

Any timetable implies an order in which each team meets its op-
ponents. Playing against a strong or a weak opponent has impact on
the performance of teams (Briskorn and Knust, 2010). For instance,
a team is more likely to be exhausted or demoralized, or to suffer
injuries or suspensions from playing against a very strong opponent,
which in turn can have a negative impact on this team’s performance
in its next game. In this way, the opponent of this team in the next
game receives an indirect advantage from that strong team. Following
this idea, we say that a team i gives a carry-over effect to a team j, if
some other team t’s game against i is immediately followed by a game
of t against j.

Clearly, carry-over effects cannot be avoided as – except in the
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first round – teams always have a previous opponent. It is however
considered unfair if some team predominantly gives a carry-over effect
to the same team. Indeed, Goossens and Spieksma (2012a) mention
examples from football in Norway and Belgium, where the carry-over
effect was held responsible for determining the league champion and
the relegated team respectively (they could however not find any sta-
tistical evidence in favor of this claim).

The extent to which carry-over effects are balanced is measured
by the so-called carry-over effects value (Russell, 1980). The carry-
over effects value is defined as

∑
i,j c

2
ij , where cij corresponds to the

number of times that team i gives a carry-over effect to team j in
a tournament, i.e., the number of times that team j plays against
the opponent of team i in the previous round. Note that according
to Russell’s definition, carry-over effects from the last round to the
first round are also counted. An illustration of the carry-over effects
(cij) of the timetable in Table 1 is given in Table 3b; in this case, the
carry-over effects value equals 196.

Table 3: Illustration of HAPs and cij values of the timetable in Table 1.

(a) HAPs

r1 r2 r3 r4 r5 r6 r7

A H A H A H A H
B H A A H A H A
C A H H A H A H
D H A H A A H A
E A H A H H A H
F H A H A H A A
G A H A H A H H
H A H A H A H A

(b) cij values

A B C D E F G H

A 0 1 5 0 0 0 0 1
B 0 0 1 5 0 0 0 1
C 0 0 0 1 5 0 0 1
D 0 0 0 0 1 5 0 1
E 0 0 0 0 0 1 5 1
F 5 0 0 0 0 0 1 1
G 1 5 0 0 0 0 0 1
H 1 1 1 1 1 1 1 0

2.2.3 Rest times

Since time-relaxed timetables contain (many) more rounds than
games per team, the rest time between consecutive games of a team
can vary substantially and a team’s timetable may therefore contain
congested periods. From a fairness perspective, congested periods are
problematic as they can lead to player injuries (Bengtsson et al., 2013).
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For example, when Manchester City had to play four games in 11 days
during the Christmas and New Year period in the 2018-2019 Premier
League season, their coach Pep Guardiola said “the Premier League
fixture list is a disaster for player well being”. West Ham’s head of
medical services Gary Lewin added: “I don’t think it is particularly
fair – physically it is not a level playing field for all clubs, as some are
playing every few days, some have a longer break between games and
some have a week off before playing twice in three days”1.

Suksompong (2016) proposes to measure timetable congestion by
the so-called guaranteed rest time (GRT), i.e., the number of rounds
without a game that any team will at least have between two con-
secutive games. However, the problem with the GRT is that it only
considers the worst-case rest time. Hence, in this chapter, we use the
aggregated rest time penalty (ARTP) as a fairness measure. This mea-
sure penalizes a timetable with a value pr each time a team has only
r rounds between two consecutive games. The idea is of course that
this penalty increases as there are fewer rounds in between; on the
other hand, when sufficient rounds are in between such that the team
is fully recovered, no penalty is incurred (Van Bulck et al., 2019). The
ARTP of a timetable is then simply the sum of these penalties.

Table 4: Calculation of the rest time penalties for the timetable in Table 2.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

A p1 p0 p0 p1 p1 p0
B p0 p0 p0 p1 p1 p0
C p0 p0 p1 p0 p1 p0
D p0 p0 p1 p1 p0 p0
E p0 p0 p1 p1 p0 p0
F p0 p0 p0 p2 p0 p0
G p0 p0 p0 p1 p1 p0
H p1 p0 p1 p1 p0 p0

As an illustration, Table 4 gives the calculation of the rest time
penalties for the timetable depicted in Table 2. If we assume p0 = 4,
p1 = 2 and p2 = 1, we have ARTP = 157. Although the GRT of
any timetable with eight teams and 10 rounds is always 0, there are

1CNN Sports, https://edition.cnn.com/2018/01/02/football/pep-guardiola-
english-premier-league-fixture-scheduling/index.html
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several opportunities to optimize the ARTP.

2.3 Fairness trade-offs

Unfortunately, a single timetable that gives the best performance
for each fairness criterion does not exist. Consequently, league or-
ganizers are facing a trade-off between fairness criteria. One way to
organize this trade-off is through Pareto-efficiency. A timetable is
called Pareto-efficient if it is impossible to improve one fairness crite-
rion without deteriorating at least one other fairness criterion. This
concept is named after the Italian economist and engineer Vilfredo
Pareto (1848–1923), who applied it in his income distribution studies.
Hence, it would be wise to pick a timetable from the set of Pareto-
efficient timetables, known as the Pareto-front. The choice for a spe-
cific timetable on the Pareto-front depends on the relative importance
the league organizer attaches to the fairness criteria.

Even if the league organizer manages to strike a balance between
multiple fairness criteria, his struggle is not over. Indeed, the previ-
ously described approach only considers the overall presence of un-
fairness, it does not consider how this unfairness is distributed over
the teams. Even a timetable with very few undesired properties may
be conceived as unfair when only a small number of teams carry the
majority of this burden. We assume that each undesired property of
a timetable can be linked with a penalty, which can in turn be split
over the teams that suffer from it. Hence, we need to reconcile cri-
terion efficiency, i.e. minimizing the total penalty of the timetable,
with distribution equity, namely making sure that the distribution of
the penalties is well balanced over the teams.

We aim to generate equitably-efficient timetables. Practically, a
timetable is equitably-efficient if it is Pareto-efficient, meaning that we
cannot improve a team’s timetable without deteriorating the timetable
of at least one other team, and it complies with the Pigou-Dalton prin-
ciple of fairness, meaning that we cannot shift a penalty from a worse-
off team to a better-off team without increasing the total penalties
(Ogryczak, 1997). Equitable-efficiency can be seen as a refinement of
Pareto-efficiency: any equitably-efficient timetable is Pareto-efficient,
but not all Pareto-efficient timetables are equitably-efficient.
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3 For academics

3.1 Trade-offs between two fairness criteria

In time-constrained timetables for round robin tournaments with
an even number of teams, each team will play on each round, and
consequently, their rest times will be the same. Hence, in these com-
petitions, we focus on minimizing breaks (Section 3.1.1) and balancing
the carry-over effect (Section 3.1.2). We survey what is known in the
literature on these fairness criteria, as well as their trade-off, before
we develop our own approach in Section 3.1.3.

3.1.1 Minimizing the number of breaks

Many of the theoretical results and algorithms in sports timetabling
are based on graph theory. For instance, De Werra (1980) uses the
complete graph K2n on 2n nodes for constructing single round robin
tournaments, with the nodes corresponding with the teams and each
edge with a game between the teams of the nodes it connects. A
time-constrained timetable can then be seen as a one-factorization
of K2n, i.e., a partitioning into edge-disjoint one-factors Fi with i =
1, ..., 2n − 1. A one-factor is a set of edges such that each node in
the graph is incident to exactly one of these edges. Each one-factor
corresponds to a round and represents n matches.

One particular one-factorization results in so-called canonical timeta-
bles, which are highly popular in sport timetabling (Goossens and
Spieksma, 2012b). This one-factorization has its one-factors Fi for
i = 1, ..., 2n− 1 defined as

Fi = {(2n, i)} ∪ {([i+ k]+, [i− k]−) : k = 1, ..., n− 1},

where [x]+ = x if x 6 2n− 1 and [x]+ = x− 2n+ 1 otherwise, while
[x]− = x if x > 1 and [x]− = x+2n−1 otherwise. Figure 1 illustrates
the canonical one-factorization for a single round robin tournament
with 6 teams.

If the league organizer can determine which match is played in
which round, the minimal number of breaks for a single-round robin
tournament with 2n teams is 2n − 2, with 2n − 2 teams having 1
break and 2 teams without breaks (De Werra, 1981). Moreover, De
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Werra (1981) shows that this can always be achieved with a canonical
timetable. For a double-round robin tournament, a timetable with
2n − 4 breaks can easily be constructed from a single-round robin
timetable with a minimal number of breaks; if we want a mirrored
double-round robin timetable, the minimal number of breaks is 3n−6
(De Werra, 1981). However, if there is no need for a timetable that
consists of consecutive single-round robin tournaments, we can limit
the number of breaks to n− 2, even if all teams meet each other team
more than twice (Goossens and Spieksma, 2012b).

�
�

��

�
�

1

4 3

5 2
6

(a) the complete graph K6 (b) round 1

(c) round 2 (d) round 3

(e) round 4 (f) round 5

Figure 1: Illustration of the canonical schedule for a single round robin
tournament with 6 teams (based on Januario et al. (2016)).

If the opponents are fixed for each round, and the league organizer
can only determine the home advantage, finding a timetable with a
minimal number of breaks is known as the break-minimization prob-
lem. This problem has been tackled using e.g. constraint programming

This is an author-version, published as Chapter 10 in “Science Meets Sports:

when statistics are more than numbers” (Cambridge Scholars Publishing).

10



(Régin, 2001), integer programming (Trick, 2000) and semidefinite
programming (Miyashiro and Matsui, 2006).

3.1.2 Balancing the carry-over effect

Since its introduction by Russell (1980), there have been several
attempts to find timetables with minimal carry-over effects value (or
in other words, to balance the carry-over effects as good as possible
over the teams). The lowest carry-over effects value that we may hope
for in a single-round robin tournament with 2n teams is 2n(2n − 1).
This is the case when each team gives a carry-over effect to each other
team (except itself) exactly once. A timetable that achieves this is
called a balanced timetable.

Russell (1980) presents an algorithm that results in a balanced
timetable when the number of teams is a power of 2. Anderson (1999)
found balanced timetables for 20 and 22 teams, and improved sev-
eral of Russell’s results. In fact, despite various approaches (Henz
et al., 2004, Kidd, 2010, Miyashiro and Matsui, 2006, Trick, 2000),
only Guedes and Ribeiro (2011) were able to further improve one of
Anderson’s results (namely, for 12 teams). Trick (2000) proved that
60 is the optimal carry-over effects value for 6 teams; Lambrechts
et al. (2017) later showed that all timetables for 6 teams have this
carry-over effects value. Table 5 summarizes the results.

3.1.3 Breaks versus carry-over effects

The best-known timetables with respect to the carry-over effects
value do not specify the home advantage, and hence make no claims
about the number of breaks. On the other hand, the canonical timeta-
bles, which allow a minimal number of breaks, have been shown to be
the worst timetables with respect to balancing the carry-over effects
(Lambrechts et al., 2017). For example, the timetable in Table 1 is
canonical; its carry-over effects value amounts to 196 (see Table 3b).

The trade-off between the carry-over effect and breaks has been
studied before in the literature. Çavdaroğlu and Atan (2019) start
from the canonical timetable, and apply a round swapping procedure
in order to reduce its carry-over effects value. Günneç and Demir
(2019) start from a timetable with at most one break per team, and
then swap rounds using a tabu-search algorithm in order to obtain a
This is an author-version, published as Chapter 10 in “Science Meets Sports:
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Table 5: Carry-over effects values found in the literature for various league
sizes (proven optimal values are bolded).

2n 2n(2n− 1)/ Russell Anderson Trick Henz Miyashiro Guedes & Kidd
Best found et al. et al. Ribeiro

4 12 / 12 12 - - - - 12 12
6 30 / 60 60 - 60 60 - 60 60
8 56 / 56 56 56 - - - 56 56
10 90 / 108 138 108 122 128 108 108 108
12 132 / 160 196 176 - 188 176 160 176
14 182 / 234 260 234 - - 254 254 234
16 240 / 240 240 - - - 240 240
18 306 / 340 428 340 - - 400 - 340
20 380 / 380 520 380 - - 488 - 380
22 462 / 462 - 462 - - - - 462
24 552 / 598 - 644 - - - - 598

small carry-over effects value. One can see these contributions as first-
break, then carry-over approaches. Motivated by this idea, and taking
into account that carry-over effects are only related to the opponents,
here, we develop a reversed approach: minimizing the carry-over ef-
fects value first, and then optimizing the number of breaks, or in other
words first-carry-over, then-break (FCTB).

We first match the opponent pairs to rounds in order to mini-
mize the carry-over effects value. Let T and R be the set of teams
and rounds respectively, with |T | even, and |R| = |T | − 1 (i.e., time-
constrained single round robin). We say that xijr equals 1 if teams
i and j (i, j ∈ T, i 6= j) play against each other in round r ∈ R, and
0 otherwise. Next, we say that cijr equals 1 if team i ∈ T gives a
carry-over effect to team j ∈ T in round r ∈ R, and 0 otherwise.
As a result, the number of carry-over effects cij that team i gives to
team j is the sum of cijr over r ∈ R. Thus, we obtain the following
formulation (note that the carry-over effects from the last round to
the first round are also considered):

min
∑
i∈T

∑
j∈T

c2i,j (1)

subject to

xi,i,r = 0 ∀i ∈ T, r ∈ R (2)

xi,j,r = xj,i,r ∀i, j ∈ T, r ∈ R (3)
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∑
r∈R

xi,j,r = 1 ∀i, j ∈ T, i 6= j (4)

∑
j∈T

xi,j,r = 1 ∀i ∈ T, r ∈ R (5)

xi,l,r + xj,l,r+1 − 1 6 ci,j,r ∀i, j, l ∈ T, r ∈ R \ {|R|} (6)

xi,l,|R| + xj,l,1 − 1 6 ci,j,|R| ∀i, j, l ∈ T (7)∑
r∈R

ci,j,r = ci,j ∀i, j ∈ T, i 6= j (8)

xi,j,r ∈ {0, 1} ∀i, j ∈ T, r ∈ R (9)

ci,j,r ∈ {0, 1} ∀i, j ∈ T, i 6= j, r ∈ R (10)

ci,j > 0 ∀i, j ∈ T, i 6= j (11)

Constraints (2) state that a team cannot play against itself, and
constraints (3) enforce that if team i meets team j on some round,
that j then also meets i on that round. Constraints (4) regulate
that each pair of teams meets once during the tournament and con-
straints (5) imply that each team plays exactly one game per round.
Constraints (6) and (7) calculate the carry-over effects from team i
to j over the tournament, including the effects passed from the last
round to the first round. The relations between cijk and cij are shown
in constraints (8).

After obtaining the assignment of opponent pairs to rounds with
minimized carry-over effects from the formulation above (however,
without the home advantage), the number of breaks is to be mini-
mized. We use the following two decision variables: hir is 1 if team
i ∈ T plays home in round r ∈ R, and 0 otherwise, and bir equals 1 if
team i ∈ T has a break in round r ∈ R, and 0 otherwise. Note that
xijr is known from the outcome of the before-mentioned formulation.

min
∑
i∈T

∑
r∈R

bi,r (12)

subject to

2− hi,r − hj,r > xi,j,r ∀i, j ∈ T, r ∈ R (13)

hi,r + hj,r > xi,j,r ∀i, j ∈ T, r ∈ R (14)

hi,r + hi,r+1 − 1 6 bi,r+1 ∀i ∈ T, r ∈ R \ {|R|} (15)

1− hi,r − hi,r+1 6 bi,r+1 ∀i ∈ T, r ∈ R \ {|R|} (16)∑
r∈R

hi,r 6 |T |/2 ∀i ∈ T (17)
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∑
r∈R

hi,r > |T |/2− 1 ∀i ∈ T (18)

hi,r, bi,r ∈ {0, 1} ∀i ∈ T, r ∈ R (19)

According to constraints (13) two teams who play against each
other cannot both play home simultaneously; nor can they both have
an away game on that round (constraints (14)). Constraints (15) and
(16) keep track of the home and away breaks respectively. Addition-
ally, the number of home and away games for each team should also
be balanced, as enforced by constraints (17) and (18).

In our FCTB approach, the idea is to first solve formulation (1)-
(11), and then use its outcome as the input for formulation (12)-(19).
The models are solved using IBM Ilog Cplex 12.71 on a MacOS 10.13.6
system with 8 GB RAM and an Intel Core i5 processor. For practical
reasons, we bound the computation time to 2 hours for solving formu-
lation (1)-(11). For up to 8 teams, this suffices for finding an optimal
solution. For more teams, we check whether further improvements
are possible by randomly switching the order of the rounds. As an
alternative approach, we skip formulation (1)-(11), and instead use
the best-known timetables with respect to the carry-over effects value
published by Kidd (2010) as input for formulation (12)-(19). We refer
to this approach as FCTB-best-known.

The results for the canonical timetable, from the literature, and
from both our approaches for 4 to 24 teams are shown in Table 6.
For 4 and 6 teams, FCTB obtains the same results as the canonical
timetables, and both the carry-over effects value and the number of
breaks are optimal. In comparison with the results from Çavdaroğlu
and Atan (2019), the excellent carry-over effects values obtained by
FCTB-best-known comes at the cost of a slightly higher number of
breaks (except for 16 teams). In most cases, we have better solutions
on both carry-over effects values and the number of breaks than the
result from Günneç and Demir (2019). The timetables that are on the
Pareto-front are indicated in bold. Note that the number of breaks
per team is not bounded in our approach, but we enforce a balance
in the number of home and away games played by every team during
the tournament, which is not considered in the literature.
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Table 6: Trade-offs between breaks and carry-over effects value.

Number of teams 4 6 8 10 12 14 16 18 20 22 24

Canonical timetable
breaks 2 4 6 8 10 12 14 16 18 20 22
carry-over 12 60 196 468 924 1612 2580 3876 5548 7644 10212

FCTB
breaks 2 4 8 12 18 24 34 40 - - -
carry-over 12 60 56 138 206 292 400 508 - - -

FCTB-best-known
break 2 4 8 14 22 28 24 48 50 58 64
carry-over 12 60 56 108 1762 234 240 340 380 462 598

Çavdaroğlu & Atan
breaks - - - 12 18 26 32 42 - - -
carry-over - - - 136 192 254 330 406 - - -

Günneç & Demir1 breaks - - - 12 16 24 34 40 - - -
carry-over - - - 144 212 302 396 556 - - -

1 These results are from the setting with unbounded breaks.
2 The best carry-over effects value for 12 teams is 160 (Guedes and Ribeiro, 2011), however, we were not able to
retrieve the corresponding timetable from the literature.

3.2 Trade-offs between efficiency and equity

There are typically no timetables that make every team happy.
Indeed, for each timetable D ∈ D, team 1 6 i 6 n has a non-negative
aversion fi(D) : D → R

+. This aversion is based on one or more
properties of the timetable (e.g. a break) that is undesirable for team
i. We assume that the league organizer has perfect knowledge of the
aversion of each team, and is in control to select a timetable D from
D.

As it is in the league organizer’s interest to please as many teams
as possible, each function fi needs to be minimized. A traditional
approach is to use a minisum objective

∑n
i=1 fi(D), which minimizes

the total (or equivalently, the mean) aversion to the timetable. The
main flaw of this approach is that only the aggregate of the unde-
sirable property is considered (i.e., criterion efficiency), and not the
distribution of the property over the teams (i.e., distribution equity).

In recent years, the literature has come up with various inequity-
averse optimization techniques that incorporate distribution equity
alongside criterion efficiency (see Karsu and Morton (2015) for an
overview). Of particular interest is the concept of equitable-efficiency
(Ogryczak, 1997). To explain this concept, we need some additional
terminology. Aversion vector ~xD = (f1(D), f2(D), . . . , fn(D)) col-
lects the aversion of all teams. We assume that ~xD is sorted in non-
increasing order meaning that f1(D) > f2(D) > · · · > fn(D). As
the league organizer strives for maximal efficiency, less aversion for
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one team is always better: ~xD rationally dominates ~xD′ if the aver-
sion for at least one team is smaller whereas no other team is worse
off. We call ~xD Pareto-efficient in D if and only if there exists no
timetable D′ ∈ D such that ~xD′ rationally dominates ~xD. The im-
age of all non-dominated solutions in the objective space is called the
Pareto-frontier.

In order to fairly distribute the total aversion over the teams,
the concept of equitable-efficiency is built around two fundamental
axioms. The first axiom prescribes anonymous identities, i.e., the
identities of the teams are not important to analyze the equity of
the aversion vector. Although this seems reasonable, the practice of
sports timetabling may be different in the sense that some teams can
be considered more equal than others. The second axiom is known as
the Pigou-Dalton principle of transfers: any transfer from a worse-off
team to a better-off team, ceteris paribus, should always result in a
more preferable aversion vector. For a formal definition of the axioms,
we refer to Ogryczak (2000).

Vector ~xD equitably dominates vector ~xD′ if we can produce ~xD
from ~xD′ after a finite sequence of index permutations and at least
one aversion transfer from a worse-off team to a better-off team (also
called a Robin Hood operation) or a decrease of the aversion of a
particular team. We call ~xD equitably-efficient if and only if there
exists no timetable D′ ∈ D such that ~xD′ equitably dominates ~xD.
As both axioms do not conflict with Pareto-efficiency, an equitably-
efficient timetable is also Pareto-efficient but not the other way around
(Karsu and Morton, 2015).

The remainder of this section is as follows. First, Section 3.2.1
describes a typical time-relaxed sports timetabling problem in which
venue and player availability constraints need to be taken into ac-
count. Next, Section 3.2.2 proposes an integer programming (IP)
model to generate equitably-efficient timetables with regard to teams’
rest periods. This IP model, however, requires a considerable amount
of computational resources. Section 3.2.3 therefore presents a multi-
objective evolutionary algorithm capable of generating a rich set of
equitably-efficient solutions in a single run.
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3.2.1 Availability constraints in time-relaxed timetabling

In the time-Relaxed Availability Constrained double Round-Robin
Tournament problem (RAC-2RRT), the input consists of a set of
rounds R, and a set of teams T where n = |T |. Each team i ∈ T
also provides a venue availability set Hi ⊆ R containing all rounds
during which i’s venue is available, and a player availability set Ai

containing all rounds during which i’s players are available. Since a
team can only play (at home or away) when its players are available,
we assume without loss of generality that Hi ⊆ Ai for each i ∈ T .
This makes that a team can play at home on all rounds in Hi, and
that it can play away on all rounds in Ai. Finally, a parameter τ is
given, defining the total number of rounds after which we assume a
team is fully recovered from its previous game (e.g. 5 days).

RAC-2RRT consists of finding a feasible timetable, that is an as-
signment of games to rounds such that:

(C1) each team plays exactly one home game against every other
team,

(C2) the venue availability Hi with i ∈ T is respected (i.e., no game
i-j is planned on a round r /∈ Hi),

(C3) the player availability Ai with i ∈ T is respected (i.e., no game
i-j or j-i is planned on a round r /∈ Ai),

(C4) each team plays at most one game per round r ∈ R, and

(C5) each team plays at most two games per τ + 1 rounds.

Van Bulck et al. (2019) propose IP formulation (20)-(24) to solve
RAC-2RRT. In this model, the variable zi,j,r is 1 if team i ∈ T and
team j ∈ T \ {i} meet at the venue of i on round r ∈ R. Con-
straints (20) ensure that each team plays exactly one home game
against every other team (C1). Constraints (21) require a team to
play at most one game per round (C4), whereas constraints (22) en-
force that a team plays at most two games per τ + 1 rounds (C5).
Constraints (23) reduce the number of variables in the system by ex-
plicitly stating that two teams can only meet when the venue of the
home team and the players of the away team are simultaneously avail-
able (C2), (C3); in practice these variables are not created. Finally,
constraints (24) are the binary constraints on the z-variables.
This is an author-version, published as Chapter 10 in “Science Meets Sports:
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∑
r∈Hi∩Aj

zi,j,r = 1 ∀i, j ∈ T : i 6= j (20)

∑
j∈T\{i}

(zi,j,r + zj,i,r) 6 1 ∀i ∈ T, r ∈ Ai (21)

∑
j∈T\{i}

r+τ∑
k=r

(zi,j,k + zj,i,k) 6 2 ∀i ∈ T, r ∈ Ai (22)

zi,j,r = 0 ∀i, j ∈ T : i 6= j, r ∈ R \ {Hi ∩Aj} (23)

zi,j,r ∈ {0, 1} ∀i, j ∈ T : i 6= j, r ∈ Hi ∩Aj (24)

The ARTP penalizes the timetable with a positive value pr each
time a team has only r < τ rounds between consecutive games, with
pr 6 pr−1. We measure the aversion of team i by summing over
the rest time penalties related to all games of team i and refer to
this sum with ARTPi. To minimize the ARTP, the minisum model
uses an auxiliary variable yi,r,t which is 1 if team i plays a game on
round r followed by its next game on round t, and 0 otherwise. Con-
straints (25) regulate the value of the yi,r,t variables by considering
the number of rounds between two consecutive games of the same
team. We note that it follows from (C5) that the games are consec-
utive if team i plays on round r and t and |t − r| 6 τ . Hence, we
can strengthen the formulation by dropping the negative summation
term of Equation (25). Constraints (26) model the aversion of team i
by setting fi equal to ARTPi. Finally, constraints (27) state that the
y-variables are binary.

Minisum model

min
∑
i∈T

fi

subject to

(20)− (24)∑
j∈T\{i}

(
zi,j,r + zj,i,r + zi,j,t + zj,i,t

−
t−1∑

k=r+1

(zi,j,k + zj,i,k)
)
− 1 6 yi,r,t ∀i ∈ T, r, t ∈ Ai : r < t, t− r 6 τ (25)

fi =
∑
r∈Ai

r+τ∑
t=r+1

p(t−r−1)yi,r,t ∀i ∈ T (26)

yi,r,t ∈ {0, 1} ∀i ∈ T, r, t ∈ Ai : r < t, t− r 6 τ (27)
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3.2.2 Balancing rest times over teams with IP

Ogryczak (2000) shows that equitable dominance between timeta-
bles D and D′ can be identified by comparing their cumulative ordered
aversion vectors. To this purpose, let ~ΘD =

(
θ1(D), θ2(D), . . . , θn(D)

)
be the cumulative ordered aversion vector where θi(D) =

∑i
j=1 fj(D)

for i ∈ T (recall that fi(D) 6 fi+1(D)). Timetable D equitably dom-
inates D′ if and only if θi(D) 6 θi(D

′) for all i ∈ T with at least
one strict inequality (Ogryczak, 2000). As an example, timetable D
with ~xD = (15, 10, 5) dominates D′ with ~xD′ = (20, 10, 0) as we have
~ΘD = (15, 25, 30) and ~ΘD′ = (20, 30, 30).

An important consequence is that all equitably-efficient timetables
may be generated by enumerating all Pareto-efficient solutions with
respect to minD∈D ~ΘD. To this purpose, Kostreva et al. (2004) pro-
pose constraints (28)-(30). Constraints (28) model auxiliary variables
d+
i,j representing the upside deviation of the aversion of team i from

the value of the unrestricted variable ti. These auxiliary variables are
then used in constraints (29) to model θi(D). For a correctness proof,
we refer to Kostreva et al. (2004) and Ogryczak et al. (2008). Ap-
plying these constraints to our problem leads to the following IP-EQ
model.

IP-EQ model

min ~Θ =
(
θ1, θ2, . . . , θn

)
subject to

(20)− (27)

ti + d+i,j ≥ fi ∀i, j ∈ T (28)

θi = iti +
∑
j∈T

d+i,j ∀i ∈ T (29)

d+i,j ≥ 0 ∀i, j ∈ T (30)

There are several approaches to generate Pareto-efficient solutions
for the IP-EQ model. One approach is to use an aggregation function
which maps ~ΘD into a single objective to be optimized. Kostreva et al.
(2004) characterize aggregation functions that result in an equitably-
efficient solution. One example of such aggregation function is

∑
i∈T wiθi(D)
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with wi =
(
n+ (n− 2i+ 1)λ

)
/n2 and λ a trade-off parameter in the

range ]0, 1] (see Ogryczak (2000)). We will use this aggregation func-
tion in the computational results of Section 4.2, where we solve the
IP-EQ model with Gurobi Optimizer 7.5.2 using 13 threads and 8 GB
of RAM, and a time limit of 3 hours.

Another approach is to treat the objectives hierarchically. Rawl’s
difference principle states that “social and economic inequalities are
to be arranged so that they are to be of greatest benefit to the least-
advantaged members of society” (Rawls and Kelly, 2001) and there-
fore suggests a minimax approach which minimizes θ1(D) first. The
minimax approach, however, only concerns the aversion of the worst-
off team (i.e., θ1(D)) and thereby misses remaining optimization op-
portunities. Ogryczak (1997) proves that equitably-efficient solutions
can be generated by the lexicographic minimax approach which op-
timizes θi(D) in increasing order of i, without allowing to deterio-
rate previously optimized objectives. Utilitarian philosophers, on the
other hand, would advocate the minisum approach which corresponds
to minimization of θn(D). An equitably-efficient solution can be gen-
erated by the lexicographic minisum approach which optimizes θi(D)
in decreasing order of i.

3.2.3 A bi-criteria evolutionary algorithm

The set of Pareto-efficient solutions for ~ΘD defines the entire set of
equitably-efficient solutions. Unfortunately, direct optimization of ~ΘD

implies the use of an aggregation function or requires that the objec-
tives are optimized hierarchically. As it is daunting, if not impossible,
to define the preference of the league organizer prior with regard to the
efficiency-equity trade-off, this section proposes a bi-criteria evolution-
ary algorithm generating a rich set of equitably-efficient compromise
solutions. This approach is not only appealing from a computational
point of view but also allows to visualize the trade-off in the efficiency-
equity image space.

In particular, the bi-criteria evolutionary algorithm takes into ac-
count criterion efficiency via mean aversion µD =

∑
i∈T fi(D)/n and

distribution equity via the mean absolute difference MDD:

MDD =
1

2n2

∑
i,j∈T

|fi(D)− fj(D)|. (31)
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Intuitively, MDD expresses the expected difference in the aversion of
two uniformly chosen teams.

Noteworthy, existing timetabling literature measures equity via
Jain’s fairness index JD = (

∑n
i=1 fi(D))2/(n

∑n
i=1 fi(D)2) (see e.g.

Mühlenthaler and Wanka (2016) and Muklason et al. (2017)) or Gini’s
coefficient GD = MDD/µD. Unfortunately, we cannot use Jain’s in-
dex and Gini’s coefficient as they do not comply with the concept of
equitable-efficiency (see (Ogryczak, 2000)).

In order to minimize the ARTP, Van Bulck et al. (2019) propose
a tabu-search based algorithm. The key component in this algo-
rithm consists of scheduling (or rescheduling) all home games of one
team, which is modeled as a transportation problem. To fairly dis-
tribute rest times over teams, we propose a multi-objective genetic
algorithm, which includes a local search operator based on the algo-
rithm of Van Bulck et al. (2019). Genetic algorithms which involve
a local search operator are known as memetic algorithms; we refer to
Jaszkiewicz et al. (2012) for an introduction on memetic algorithms.
To cope with multiple objectives, our algorithm uses several ideas pro-
posed by Ishibuchi and Murata (1998). The remainder of this section
briefly summarizes the main components of our algorithm. A general
overview of the algorithmic flow is depicted in Figure 2.

Solution representation The algorithm encodes a double round-
robin timetable via a matrix where each cell (i, j) carries round ri,j on
which home team i ∈ T plays against away team j ∈ T \{i}. We allow
the algorithm not to plan a game by leaving the corresponding cell
blank, but this results in a high cost P during the fitness evaluation.

Fitness of individuals For each candidate timetable D, we count
the total number of unscheduled games uD and assign fitness PuD +
µD + λMDD. Ogryczak (2000) proves that any timetable which is
optimal for this fitness function is equitably-efficient when 0 < λ 6 1.
At the beginning of each generation, the algorithm varies the search
direction by uniformly choosing the trade-off parameter λ in the range
]0, 1]. This facilitates finding a diverse set of equitably-efficient solu-
tions (see Ishibuchi and Murata (1998)).
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Figure 2: Illustration of the memetic algorithm with population manage-
ment (MA|PM). Grey ellipses represent the parents selected by
the binary tournament operator.

Recombination and mutation To improve solutions and to avoid
getting trapped in local optima, our genetic algorithm varies candidate
solutions via crossover and mutation. The crossover operator takes as
input two parent solutions and generates a new offspring solution as
follows. First, it draws a random number t between 1 and n−1. Next,
it copies all home game assignments of the first t teams from the first
parent, and all other home game assignments from the second parent.
Since each game features one home team and one away team, this
makes that all games are scheduled. We also consider a variant of
this operator which copies away game assignments. After crossover,
each offspring solution undergoes mutation. The algorithm randomly
decides for each cell (i, j) independently whether cell value ri,j is to
be mutated, in which case ri,j is replaced by a uniformly chosen value
from {Hi ∩Aj} \ {ri,j}.

Repair and local search As new offspring solutions may violate
constraints (C4) and (C5), we fully repair a timetable for all teams in
a randomly chosen order by solving a transportation network which
schedules or reschedules all home games of a chosen team. Van Bulck
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et al. (2019) explain how this transportation network can be adapted
to optimize the ARTP. The fitness function used in our version of
the algorithm, however, varies the value of λ to take into account
distribution equity alongside criterion efficiency. Therefore, the fitness
of a solution may deteriorate after solving the transportation network.
We only accept the new solution if it improves the fitness value.

Population management Genetic algorithms need a parent and
survivor selection scheme to guide the evolution of the population. We
create the initial population by repeatedly solving the IP model pre-
sented in Equations (20)-(24). At the beginning of each iteration, our
algorithm uniformly chooses 0 < λ 6 1 and re-evaluates all individuals
in the current population. Next, a binary tournament operator selects
two parent solutions based on the re-evaluated fitness values. With
a probability of pc the two parents mate in which case two offsprings
are generated by crossover. In the other case, the two offsprings are
identical to the two parents. With a probability of pm, the offspring
solutions undergo mutation. After recombination and mutation, the
local improvement heuristic is applied. Subsequently, the algorithm
calculates for each offspring and each member of the population a dis-
similarity distance expressed in terms of the percentage of different
game to round assignments. If the distance between the offspring and
each member of the population is greater than the diversity parameter
∆, the offspring replaces the worst solution in the current population
(for more details, see Sörensen and Sevaux (2006)).

Apart from the current population, our version of the memetic
algorithm stores an archive set of equitably-efficient solutions. If an
offspring solution is not equitably dominated by any other solution in
the archive, the offspring solution is added to the archive from which
we subsequently remove newly equitably dominated solutions. The
use of this archive set makes that no equitably-efficient solutions are
lost (for more information, see Ishibuchi and Murata (1998)). Ideally,
solutions in the archive set are close to the Pareto-efficient frontier
and cover the entire mean-equity Pareto front.

Computational setting The memetic algorithm is implemented in
in C++, compiled with g++ 4.8.5 using optimization flag -O3, and par-
allelized with OpenMP. The parameters of the algorithm were tuned
with irace (López-Ibáñez et al., 2016) using the hypervolume indica-
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tor. To solve the transportation problems, we use an O(n3) implemen-
tation of the Kuhn-Munkres algorithm. We run the genetic algorithm
with a time-limit of 10 minutes, 12 cores, and 2 GB of RAM on a Cen-
tOS 7.4 GNU/Linux based system with an Intel E5-2680 processor,
running at 2.5 GHz.

4 For practitioners

4.1 Trade-offs between two fairness criteria

Every year, football fans and clubs eagerly await the announce-
ment of the official timetable for the new season by the league orga-
nizers. This timetable is the result of a complex planning process,
and tries to take into account wishes and requirements from the po-
lice, broadcasters, sponsors, etc. Since it is rarely revealed exactly
what these requirements are, the media focus mostly on the fairness
of the timetable.

In this section, we discuss the number of breaks and the carry-over
effect present in the official timetables of 10 main European football
leagues: Belgium, England, France, Germany, Italy, the Netherlands,
Portugal, Russia, Spain, and Ukraine (for other empirical studies on
football timetables, we refer to Goossens and Spieksma (2012b) and
Yi et al. (2019)). We studied all timetables from season 2009−2010 up
to season 2018−2019. Table 7 lists the average carry-over effects value
per team and average number of breaks per team for each season.

Looking at breaks, England has a strikingly high number, with
the Netherlands coming second. It is safe to say that the timetabling
process in these countries leaves a lot of room for improvement. In
most other countries, the number of breaks is low and quite stable,
although Russia has had a few aberrant seasons, and France seems
to have abandoned their timetables with two breaks per team since
season 2014− 2015.

Except for the last season, Spain displays the largest carry-over
effects value among the 10 leagues. The main reason is that it uses
a so-called canonical timetable (see Section 3.1.3). The canonical
timetable has been (and to some extent still is) very popular in sports
timetabling (Goossens and Spieksma, 2012b), however, it is also the
worst possible timetable with respect to balancing carry-over effects
This is an author-version, published as Chapter 10 in “Science Meets Sports:

when statistics are more than numbers” (Cambridge Scholars Publishing).

24



T
a
b
le

7
:

O
v
er

v
ie

w
o
f

th
e

ca
rr

y
-o

v
er

eff
ec

ts
va

lu
e

/
b
re

a
k
s

fo
r

1
0

m
a
in

E
u
ro

p
ea

n
fo

o
tb

a
ll

le
a
g
u
es

fo
r

se
a
so

n
s

2
0
0
9
−

2
0
1
0

ti
ll

2
0
1
8
−

2
0
1
9

.

Y
ea

r
B

el
gi

u
m

E
n

gl
an

d
F

ra
n
ce

G
er

m
an

y
It

al
y

N
et

h
er

la
n

d
s

P
o
rt

u
g
al

R
u

ss
ia

S
p

a
in

U
k
ra

in
e

09
/1

0
23

83
/4

2
24

36
/1

72
45

48
/4

0
35

42
/4

8
29

74
/6

6
19

66
/
1
14

2
3
07

/4
2

83
4
5/

4
0

2
06

5
7/

5
4

90
15

/
50

10
/1

1
24

41
/4

2
28

92
/1

24
47

30
/4

0
51

54
/4

8
33

06
/6

4
17

78
/
1
12

2
2
31

/4
2

84
9
1/

3
2

2
10

4
4/

5
4

90
15

/
44

11
/1

2
25

71
/4

2
25

74
/1

26
47

40
/4

0
44

60
/4

8
31

44
/6

6
19

06
/
1
24

2
2
87

/4
2

95
9
1/

5
0

2
10

4
4/

5
4

90
15

/
60

12
/1

3
26

63
/4

2
20

34
/1

30
46

80
/4

0
42

02
/4

8
31

24
/6

2
19

40
/
1
06

2
3
07

/4
2

84
9
1/

4
0

2
10

4
4/

5
4

90
15

/
54

13
/1

4
22

65
/6

6
27

64
/1

26
45

36
/4

0
36

22
/4

8
35

08
/6

4
19

30
/
1
16

3
9
62

/4
2

14
3
1/

1
12

2
10

4
4/

54
90

1
5/

4
2

14
/1

5
24

23
/4

4
27

64
/1

16
45

36
/4

8
43

42
/4

8
35

08
/6

2
19

30
/
1
16

3
9
62

/4
8

14
3
1/

9
2

2
10

4
4/

5
4

55
17

/
52

15
/1

6
22

01
/4

4
25

94
/1

38
22

58
/8

4
40

50
/4

8
32

32
/6

4
18

06
/
1
10

3
8
42

/4
8

84
9
1/

3
2

2
10

4
4/

5
4

54
77

/
36

16
/1

7
15

45
/5

2
26

96
/1

54
25

10
/7

4
40

46
/4

8
31

24
/6

4
20

76
/
1
10

3
8
54

/4
8

48
5
9/

7
8

2
10

4
4/

5
4

30
75

/
32

17
/1

8
14

77
/4

8
25

40
/1

52
24

16
/6

6
38

74
/4

8
31

60
/7

2
21

42
/
8
8

40
58

/4
8

84
91

/4
4

21
04

4/
5
8

30
75

/
32

18
/1

9
15

13
/4

8
26

42
/1

32
24

98
/7

0
37

34
/4

8
32

68
/6

4
21

32
/
1
34

4
3
30

/4
8

84
9
1/

6
0

2
59

8
/7

2
30

75
/
36

This is an author-version, published as Chapter 10 in “Science Meets Sports:

when statistics are more than numbers” (Cambridge Scholars Publishing).

25



(Lambrechts et al., 2017). The canonical timetable has also been used
in Ukraine (all seasons) and Russia (7 of the 10 seasons).

It should be noted that Table 7 sketches a somewhat distorted
picture, since the number of teams in a league has an impact on the
minimal number of breaks and the minimal carry-over effects value
that can be attained. The leagues indeed do not feature the same
number of teams: England, France, Italy and Spain have 20 teams,
the Netherlands and Germany have 18 teams, and Belgium and Russia
have 16 teams. In Portugal, the number of teams increased from 16
to 18 in season 2014 − 2015, while in Ukraine, the number of teams
dropped from 16 to 14 in that same season, and even to 12 in season
2016− 2017. Hence, in order to allow a proper comparison, Figure 3
shows the average number of breaks per team on its horizontal axis.
While this makes sense for breaks, this is much less the case for the
average carry-over effect per team, since the minimal carry-over effects
value increases non-linearly with the number of teams. Hence, in
order to allow a proper comparison, Figure 3 presents how close the
carry-over effects value is to the maximal carry-over effects value for
a league of that size (corresponding to an indexed value of 1) on its
vertical axis. Since the maximal carry-over effects value is not known
for double round robin tournaments, and since many timetables apply
mirroring, we have focused on the first half of the season only.

The trade-off between balancing carry-over effects and minimizing
the total number of breaks is now apparent in Figure 3. The figure
clearly shows the Netherlands and England on the one hand, who to-
tally neglect the number of breaks, and Spain, Russia and Ukraine on
the other hand, who ignore the carry-over effects value. The Pareto-
front, which corresponds to the best trade-off one can make, is also
indicated in Figure 3. The Pareto-front is based on timetables from
Italy, France and Belgium. That means that for these seasons, no one
does better with respect to breaks and carry-over. Hence, although
they make different choices with respect to the trade-off, these three
countries are ‘getting the most value for their money’. Portugal and
Germany are not far away in most seasons, but leagues like England
could get a much lower number of breaks for the same carry-over ef-
fects value. Likewise, Spain could drastically improve its balance of
carry-over effects, without incurring more breaks. It is interesting to
see that while most leagues have their seasons in the same area of
the plot, the league organizers in Russia make very different choices
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Figure 3: Trade-off between balancing carry-over effects and minimizing
breaks (each entry corresponds to one season in one league).

from one season to the next, i.e., sometimes opting for a very high
carry-over effects value and small number of breaks, and sometimes
vice versa.

4.2 Trade-offs between efficiency and equity

The ‘Liefhebbers Zaalvoetbal Cup’ (LZV Cup) is a non-professional
indoor football league founded in 2002. This league currently involves
548 teams, grouped divisions in 20 regions in Flanders (Belgium). In
a division, each team plays each other team once at home and once
away in a double round-robin tournament. The league aims to attract
teams that consist of friends, is open to all ages, and considers fair
play of utmost importance. The games are played without referees,
since, according to the organizers, “referees are expensive, make mis-
takes, and invite players to explore the borders of sportsmanship”2.
In this context, it makes sense that also their timetables display a

2see www.lzvcup.be [in Dutch]
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high level of fairness.

In this chapter, we consider 3 divisions of the LZV Cup: two of
these divisions have 15 teams, the other has 14 teams3. The season
starts on September 1st and ends on May 31st, which corresponds to
273 rounds. A time-relaxed timetable is required in which no team
has more than two games in a period of τ rounds or less. For the
divisions with 15 teams, τ = 8 whereas in the division with 14 teams
τ = 9. We use pr = (τ − r)2 to denote the penalty incurred for every
pair of consecutive games played by a team within a period of r < τ
rounds. We refer to the total sum of penalties incurred by team i as
the aggregated rest time penalty of i (ARTPi); the sum of the ARTPi

values over all teams results in the ARTP score of the timetable.

In order to evaluate the fairness of a timetable, we use two decision
criteria. First, we use the mean aggregated rest time penalty µD =
ARTP/n to measure the criterion efficiency of timetable D. Second,
we use the mean absolute difference MDD = 1

2n2

∑n
i=1

∑n
j=1 |ARTPi−

ARTPj | to measure the equity of timetable D with regard to the dis-
tribution of the rest time penalties over the teams. Intuitively, MDD

measures the expected difference in the aggregated rest time penalty
of two randomly chosen teams.

The league organizers are confronted with the price of equity: by
how much does the mean aggregated rest time penalty increase when
we additionally consider the distribution of the penalties over the
teams? After generating schedules manually for a number of years, the
league organizers have moved to an integer programming formulation
(based on constraints (20)-(24) described in Section 3.2.1). However,
this approach only gives them one single solution per division, and no
insight on the trade-off between equity and efficiency. In this chapter,
we have developed an IP formulation IP-EQ (Section 3.2.2) and an
evolutionary algorithm (Section 3.2.3) in order to produce alternative
timetables, and to shed light on the price of equity.

Figure 4 shows the Pareto-front with regard to criterion efficiency
(µD) and distribution equity (MDD) for each of the three divisions.
Besides, we draw a straight trade-off line through the solution with

3More details on these divisions can be found in Van Bulck et al. (2019), in
which divisions 1 to 3 are referred to as benchmark instance #2, #3 and #4,
respectively
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the best efficiency score and set the slope such that a 1% increase in
equity yields a 1% increase in efficiency. Mühlenthaler and Wanka
(2016) argue that picking a timetable below this trade-off line might
be an attractive option in real-world applications as the increase in
fairness is larger than the decrease in efficiency.

When analyzing Figure 4, we see that the official timetable is far
above the Pareto frontier: more efficient and equitable timetables ex-
ist. The genetic algorithm is able to produce a rich set of equitably-
efficient solutions which are well separated in the efficiency-equity
(µD-MDD) image space. This is remarkable as the genetic algorithm
produces all its solutions in a single run with 10 minutes of compu-
tation time, whereas the IP-formulations generate only one solution
after 3 hours of computation time.

Figures 4 also shows that the price of fairness can be quite different
between divisions (compare for example a 1% reduction of MDD in
division 1 and 2). This motivates our approach to provide the league
organizer with a rich set of equitably-efficient timetables. From this
set, the league organizer may select a final timetable by e.g. further
analyzing the rest times distribution.

As an example, Figure 5 shows the rest time penalty ARTPi for
each of the 15 teams in division 2 for various timetables, where team
1 is the worst-off team in that timetable with respect to rest times,
and team 15 has the most favorable rest times. The figure compares
the timetable with the lowest maximal ARTPi, the most equitable
timetable, the most efficient timetable, and the timetable that was
actually used in the LZV Cup competition. It would not be hard
for the league organizers to convince the teams of the added value
of our timetabling algorithms. Indeed, when comparing the most
efficient timetable with the official one, we see that every team is
better off. Unfortunately, the most efficient timetable does not take
into account the distribution of the rest times over the teams. The
timetable with the lowest maximal ARTPi illustrates that the rest
times of the worst-off team can be improved considerably, although
this happens at the expense of nearly every other team when compared
with the most efficient timetable. The most equitable timetable may
work as a compromise solution as, except for team 2, mainly the teams
with low ARTPi penalties pay the price to improve the situation for
the worst-off team.
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Figure 4: Pareto frontier for division 1 (top), 2 (middle), and 3 (bottom).
Red circles represent the solutions found by the genetic algo-
rithm, green triangles the solutions found with IP-EQ, and blue
squares the official solutions. The Pareto frontier is indicated by
the full line in purple, whereas the 1% trade-off line is indicated
by the dashed line in gray.
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est maximal ARTP (‘MiniMax’, red), most equitable timetable
(‘MiniMD’, green), most efficient timetable (‘MiniSum’, blue),
and the official timetable (purple). Teams are sorted in non-
decreasing order of ARTPi, which makes that the worst-off
team (i.e., team 1), may be a different team, depending on the
timetable.

5 Conclusion

In round robin competitions, it is often said that teams should not
complain about the timetable, because “at the end of the day you
have to play against everyone”4. This chapter has demonstrated that
there is more to fairness in sports timetabling than that, by discussing
breaks, the carry-over effect, and rest times.

When confronted with multiple fairness issues, it may be difficult
to get the best of both worlds. For instance, a better balance of the
carry-over effects usually goes at the expense of a higher number of
breaks. We developed a new method that generates timetables that
offer a better trade-off than those currently available in the litera-
ture. We also looked at how the big European football competitions
deal with this trade-off, and found that France, Italy and Belgium
are making sensible choices; other leagues leave plenty of room for

4This was for instance said by Juan Mata (Manchester United), after learn-
ing that his team had to open the 2019-2020 season with a challenging game
against Chelsea, see www.manutd.com/en/news/detail/juan-mata-previews-man-
utd-v-chelsea-to-start-new-premier-league-season.
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improvement.

Even a timetable with few unfair properties may be ill received
when only a small number of teams carry the majority of this burden.
In contrast to classic approaches which only minimize the total un-
fairness, we showed how to equitably distribute the unfair properties
over the teams. In particular, we demonstrated the importance of
balancing rest times between consecutive games in a real-life indoor
football competition. We found that the distribution of rest times
over the teams can be improved, although this results in a slightly
shorter average rest time.

In conclusion, we want to stress the importance for league planners
to work with a timetabling method that offers multiple and diverse
timetables that are close to the Pareto front. Only in this way, the
league planners can make a thought-out choice on fairness trade-offs
in sports timetabling.
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