2,546 research outputs found

    Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies

    Get PDF
    Recently, the marine habitat has been under pollution threat, which impacts many human activities as well as human life. Increasing concerns about pollution levels in the oceans and coastal regions have led to multiple approaches for measuring and mitigating marine pollution, in order to achieve sustainable marine water quality. Satellite remote sensing, covering large and remote areas, is considered useful for detecting and monitoring marine pollution. Recent developments in sensor technologies have transformed remote sensing into an effective means of monitoring marine areas. Different remote sensing platforms and sensors have their own capabilities for mapping and monitoring water pollution of different types, characteristics, and concentrations. This chapter will discuss and elaborate the merits and limitations of these remote sensing techniques for mapping oil pollutants, suspended solid concentrations, algal blooms, and floating plastic waste in marine waters

    A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Get PDF
    Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)

    Site-specific seeding using multi-sensor and data fusion techniques : a review

    No full text
    Site-specific seeding (SSS) is a precision agricultural (PA) practice aiming at optimizing seeding rate and depth, depending on the within field variability in soil fertility and yield potential. Unlike other site-specific applications, SSS was not adopted sufficiently by farmers due to some technological and practical challenges that need to be overcome. Success of site-specific application strongly depends on the accuracy of measurement of key parameters in the system, modeling and delineation of management zone maps, accurate recommendations and finally the right choice of variable rate (VR) technologies and their integrations. The current study reviews available principles and technologies for both map-based and senor-based SSS. It covers the background of crop and soil quality indicators (SQI), various soil and crop sensor technologies and recommendation approaches of map-based and sensor-based SSS applications. It also discusses the potential of socio-economic benefits of SSS against uniform seeding. The current review proposes prospective future technology synthesis for implementation of SSS in practice. A multi-sensor data fusion system, integrating proper sensor combinations, is suggested as an essential approach for putting SSS into practice

    Natural Background Levels in Groundwater

    Get PDF
    The need for establishing a formal limit between the concentration of potentially toxic inorganic compounds in groundwater due to natural processes or to anthropogenic pollution has prompted researchers to develop methods to derive this boundary and define the "Natural Background Level" (NBL). NBLs can be used as screening levels to define the good chemical status of groundwater bodies, as well as to fix the remediation target in polluted sites.The book "Natural Background Levels in Groundwater" brings together a set of case studies across Europe and worldwide where the assessments and identification of this boundary are performed with different methodologies. It provides an overview of the approaches and protocols applied and tested in different states for NBL assessment, ranging from well-known methods, such as component separation or cumulative probability plot methods, to new computer-aided protocols. The main objective of this book is to bring together and discuss different methodological approaches and tools to improve the assessment of groundwater NBLs. The overview, discussion and comparison of different approaches and case histories for NBL calculation can be useful for scientists, water managers and practitioners

    Decadal sea-level changes in the Baltic Sea

    No full text

    Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    Get PDF
    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry

    A Survey of Satellite Biological Sensor Application for Terrestrial and Aquatic Ecosystems

    Get PDF
    The state of the ecosystems can be inferred in two ways, known as bioinference. One way (ground-based) is the use of some organisms to determine the environmental conditions within an ecosystem. The other is the use of multiband airborne or satellite imagery to identify the vegetation cover status, and also to track the biological diversity in marine ecosystems such as coral reef status, resources variation, and pollution. The standard example for the first state is the plankton as they represent a primary tool for ecologists to assess the health state of the marine environment. Their fast responses to the variability of the ecosystem, their nonexploitation as commercial organisms, and their favoring of subtle environmental conditions have suggested them to be bioindicators of climate variability. These organisms can be used to identify many environmental problems including water acidification, eutrophication, and pollution. Remote sensing technique is being widely used today to solve many environmental problems due to the broad view and accuracy of the results and its participation in determining the environmental conditions of different ecosystems. For example, remote sensing applications are used in vegetation and mangrove ecosystem management. Moreover, it is used to assess eutrophication problems by multiband spectrum remote sensing

    WORKSHOP SUPPORT STAFF

    Get PDF
    Please refer to this document as follows
    • …
    corecore