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Abstract: Remotely sensed data can reinforce the abilities of water resources researchers and decision
makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used
to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved
organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on
board various satellites and other platforms, such as airplanes, are currently used to measure the
amount of radiation at different wavelengths reflected from the water’s surface. In this review paper,
various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne
and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper
investigates the commonly used approaches and sensors employed in evaluating and quantifying the
eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved
organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS),
water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO),
biochemical oxygen demand (BOD) and chemical oxygen demand (COD).

Keywords: remote sensing; spaceborne sensors; airborne sensors; water quality indicators

1. Introduction

Over 40% of the world’s population lives in coastal regions and lake or river shores [1], and this
proportion is increasing. The coastal area of rivers and other waterbodies are among the most sensitive
environments. Any changes in these fragile ecosystems due to anthropogenic activities can endanger
the habitats of fish and other aquatic organisms. Similarly, the need for sustainable urban water
supplies requires that the quality of existing available water resources as well as their watersheds need
to be under continuous monitoring. Besides, the level of treatment required for human consumption,
agriculture, animal husbandry and industry necessitates an understanding of the quality of source
waters. In this way, at the beginning of the twentieth century, the importance of water quality has to
be considered more than ever, and the concentration of chemicals in sewage and industrial discharges
in waterbodies needs to be taken under more precise control [2,3].

Water quality indicators including physical, chemical, and biological properties are traditionally
determined by collecting samples from the field and then analysing the samples in the laboratory.
Although this in-situ measurement offers high accuracy, it is a labour intensive and time consuming
process, and hence it is not feasible to provide a simultaneous water quality database on a regional
scale [4,5]. Moreover, conventional point sampling methods are not easily able to identify the spatial or
temporal variations in water quality which is vital for comprehensive assessment and management of
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waterbodies. Therefore, these difficulties of successive and integrated sampling become a significant
obstacle to the monitoring and management of water quality.

With advances in space science and the increasing use of computer applications and increased
computing powers over recent decades, remote sensing techniques have become useful tools to
achieve this goal. Remote sensing techniques make it possible to monitor and identify large scale
regions and waterbodies that suffer from qualitative problems in a more effective and efficient manner.
The collection of remotely sensed data occurs in digital form and therefore is easily readable in
computer processing. Remote sensing techniques have been in use since the 1970’s and continue to be
widely used in water quality assessment in the contemporary world [6–21].

Different sensors mounted on satellites and other platforms, such as aeroplanes, measure the
amount of radiation at various wavelengths reflected from the water’s surface. These reflections can
be used directly or indirectly to detect different water quality indicators, such as total suspended
solids (TSS), chlorophyll-a concentration, turbidity, salinity, total phosphorus (TP), Secchi disk depth
(SDD), Temperature, pH, Dissolved Organic Carbon (DOC),etc. The spectral characteristics of water
and pollutants, which are functions of the hydrological, biological and chemical characteristics of
water, etc. [19], are essential factors in the monitoring and assessment of water quality. The study
thus introduces the widely employed spaceborne and airborne sensors in water quality investigations
and discusses the utility of remotely sensed techniques in the qualitative assessment of waterbodies.
Various properties (spectral, spatial and temporal, etc.) of spaceborne and airborne sensors are
tabulated to be used as a sensor selection guide. Finally, based on the literature survey, the study
presents a compilation of the various sensors useful in the study of some measurable water quality
parameters, and investigates in more detail eleven water quality parameters based on the employed
approaches to measuring their concentrations.

2. An Overview of Water Quality Assessment and Remote Sensing

In-situ data collections are only able to represent point estimations of the quality of water
conditions in time and space, and obtaining spatial and temporal variations of quality indices in
large waterbodies is almost impossible [18]. Briefly listed below are the most important limitations
associated with conventional methods:

1. In-situ sampling and measurements of water quality parameters are labor intensive, time
consuming, and costly.

2. Investigation of the spatial and temporal variations and water quality trends in large waterbodies
is almost impossible.

3. Monitoring, forecasting, and management of entire waterbodies might be inaccessible, for
example due to the topographic situation.

4. Accuracy and precision of collected in-situ data can be questionable due to both field-sampling
error and laboratory error.

To overcome these limitations, the use of remote sensing in water quality assessment can be a
useful tool. For more than four decades, remote sensing has illustrated strong capabilities to monitor
and evaluate the quality of inland waters. Many researchers frequently use the visible and near
infrared bands of the solar spectrum (mostly from blue to near infrared region) in their investigations
to obtain robust correlations between water column reflection (in some cases emission) and physical
and biogeochemical constituents, such as transparency, chlorophyll concentration (phytoplankton),
and the organic matters and mineral suspended sediments in different waterbodies [9,10,18,22–30].
Although the capabilities of remote sensing to assess water quality are undeniable, this technique
alone is not sufficiently precise and must be used in conjunction with traditional sampling methods
and field surveying. In other words, to obtain a better insight, an integrated use of remote sensing,
in-situ measurements and computer water quality modelling may lead to an increased knowledge of
the water quality of water systems. Collaboration between different governmental, federal and private
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agencies and data sharing is also helpful to increase the data required for regional studies. Kallio [31]
has mentioned four advantages of applying remote sensing in compliance with other water quality
monitoring programs as below:

1. Gives a synoptic view of the entire waterbody for more effective monitoring of the spatial and
temporal variation.

2. Makes it possible to have a synchronized view of the water quality in a group of lakes over a
vast region.

3. Provides a comprehensive historical record of water quality in an area and represents trends
over time.

4. Prioritizes sampling locations and field surveying times.

Optically active constituents of water that interact with light and change the energy spectrum of
reflected solar radiation from waterbodies can be measured using remote sensing [18]. The components,
already enumerated in the first section, constitute the majority of important water quality parameters
in surface waters. Other parameters include acidity, chemicals, and pathogens, which do not change
the spectral properties of reflected light and have no directly-detectable signals, but which may
be interpretable and inferable from those detectable water quality parameters with which strong
correlations can be found [18,31].

3. Spaceborne and Airborne Sensors for Water Quality Studies

Observing sensors are divided into two main categories based on the platforms on which they are
situated. Airborne sensors are those that are mounted on a platform within the Earth’s atmosphere
(i.e., a boat, a balloon, a helicopter, or an aircraft), and spaceborne sensors are carried by a spacecraft or
satellite to locations outside of the Earth’s atmosphere. Understanding the properties of these sensors
is necessary to choose an appropriate sensor for the objectives of the study. Therefore, various remote
sensing satellites (Table 1) and airborne systems (Table 2) commonly used in water quality assessments,
along with their spectral properties including spatial resolution, spectral bands, and revisit interval are
presented. This tabulated information is helpful when designing water quality assessment studies, and
can be used for the selection of appropriate sensors among many other available sensors in the market.

Other categories of sensors that have broad applications in oceanographic remote-sensing are
microwave radiometers (MWR) and synthetic aperture radar (SAR). Passive microwave radiometers
measure energy emitted at sub-millimeter-to-centimeter wavelengths (at frequencies of 1–1000 GHz)
known as microwaves. By understanding the physical processes associated with energy emission at
these wavelengths, oceanographers can calculate two important water quality parameters, sea surface
temperature (SST) and sea surface salinity (SSS). They have also been used for measuring atmospheric
and terrestrial radiation, meteorological studies, such as zenith-pointing surface instruments that view
the Earth's atmosphere in a region above the stationary instrument. Table 3 shows the characteristics
of the more commonly used microwave radiometers in oceanography and water quality studies.

Synthetic aperture radar is a form of radar that used to create two or three-dimensional images
of objects [32–34], and can be mounted on either an aircraft or spacecraft. Although SARs are widely
used for water pollution detection like oil pollution, ocean topography, wind speed at the sea surface,
and regional ice monitoring, they are not very often applied in water quality studies and measuring
water quality parameters. In cases where the data from these sensors are combined with other sensors
in water quality studies, the results have demonstrated that SARs are only marginally helpful in
improving the estimation of water quality parameters; for example in Zhang [35] study.
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Table 1. List of the more commonly used spaceborne sensors in water quality assessments.

Category Satellite—Sensor Launch Date Spectral Nands (nm) Spatial
Resolution (m)

Swath
Width (km)

Revisit
Interval (Day)

High Resolution

Digital Globe WorldView-1 18 September 2007 Pan 0.5 17.7 1.7

Digital Globe WorldView-2 8 October 2009 8 (400–1040)-1 Pan (450–800) 1.85–0.46 16.4 1.1

NOAA WorldView-3 13 August 2014 8 (400–1040)-1 Pan( 450–800)-8 SWIR (1195–2365) 1.24–3.7–0.31 13.1 1–4.5

Digital Globe Quickbird 18 October 2001 4 (430–918)-1 Pan (450–900) 2.62–0.65 18 2.5

GeoEye Geoeye-1 6 September 2010 4 (450–920)-1 Pan (450–800) 1.65–0.41 15.2 <3

GeoEye IKONOS 24 September 1999 4 (445–853)-1 Pan (526–929) 3.2–0.82 11.3 ~3

SPOT-5 HRG 4 May 2002 3 (500–890)-1 Pan (480–710)-1 SWIR (1580–1750) 2.5 and 5–10–20 60 2–3

CARTOSAT 5 May 2005 Pan (500–850) 2.5 30 5

ALOS AVNIR-2 24 January 2006 4 (420–890)-1 Pan (520–770) 2.5–10 70 2

Moderate Resolution

Landsat-8 OLI/TIRS 11 February 2013 5 (430–880)-1 Pan (500–680)-2 SWIR (1570–2290)-1 cirrus cloud detection
(1360–1380)-2 TIRS (10,600–12,510) 30–15–100 170 16

Landsat-7 ETM+ 15 April 1999 6 (450–1750)-1 Pan (520–900)-1 (2090–2350)-1 (1040–1250) 30–15–60 183 16

Landsat-5 TM 1 March 1984 5 (450–1750)-1 (2080–2350)-1 (1040–1250) 30–120 185 16

Landsat-5 MSS 1 March 1984 4 (450–1750)-1 Pan (1040–1250) 80 185 18

EO-1 Hyperion 21 November 2000 242 (350–2570) 30 7.5 16

EO-1 ALI 21 November 2000 9(433–2350)-1 Pan (480–690) 10–30 185 16

Terra ASTER 18 December 1999 3 VNIR (520–860)-6 SWIR (1600–2430)-5 TIR (8125–11,650) 15–30–90 60 16

PROBA CHRIS 22 October 2001 19 in the VNIR range (400–1050) 18–36 14 7

HICO 10 September 2009 128 (350–1080) 100 45–50 10

Regional-Global
Resolution

Terra MODIS 18 December 1999 2 (620–876)-5 (459–2155)-29 (405–877 and thermal) 250–500–1000 2330 1–2

Envisat-1 MERIS 1 March 2002 15 (390–1040) 300–1200 1150 daily

OrbView-2 SeaWiFS 1 August 1997 8 (402–885) 1130 2806 16

NIMBUS-7 CZCS 24 October 1978 6 (433–12,500) 825 1556 6

ERS-1 ATSR-1 17 June 1991 1 SWIR (1600), 1 MWIR (3700), 2 TIR (10,850–12,000), Nadir-viewing
Microwave Sounder with channels at 23.8 and 35.6 GHz

1000 (MW sounder:
20 km) 500 3–6

ERS-2 ATSR-2 22 April 1995 3 VIS-NIR (555–865), 1 SWIR (1600), 1 MWIR (3700), 2 TIR (10,850–12,000) 1000 500 3–6

ENVISAT AATSR 1 March 2002 3 VIS-NIR (555–865), 1 SWIR (1600), 1 MWIR (3700), TIR (10,850–12,000) 1000 500 3–6

Suomi NPP VIIRS 28 October 2011 5 I-bands (640–1145), 16 M-bands (412–12,013), DNB (500–900) 375–750 3060 1–2 times a day

NOAA-16 AVHRR 21 September 2000 6 (650–1230) 1100–4000 3000 9
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Table 2. Specification of the more commonly used airborne sensors in water quality assessments.

Types of
Sensors Full Name Manufacturer Type Scan

System Number of Bands Spectral Range (µm) Resolution (m) Imaging Swath

AVIRIS Airborne Visible Infrared
Imaging Spectrometer

NASA Jet
Propulsion Lab. Hyperspectral Whiskbroom 224 0.40–2.50 17 12 km and

614 pixels per scanline

HYDICE Hyperspectral Digital Imagery
Collection Experiment Naval Research Lab. Hyperspectral Pushbroom 210 0.40–2.50 0.8 to 4 270 m at the

lowest altitude

HyMap in the U.S. known as PROBE-1 Earth Search
Sciences Inc. Hyperspectral Whiskbroom 128 0.40–2.50 3 to 10 512 pixels

APEX Airborne Prism Experiment VITO (Belgium) Hyperspectral Pushbroom Up to 300 VIS/NIR (114),
SWIR (199)

VIS/NIR (0.38–0.97),
SWIR1 (0.97–2.50) 2 to 5 2.5–5 km

CASI-1500 Compact Airborne
Spectrographic Imager

ITRES Research
Limited Hyperspectral Pushbroom Up to 228 0.40–1.00 0.5 to 3 512 pixels per scanline

EPS-H Environmental
Protection System

Geophysical and
Environmental
Research Imaging
Spectrometer

Hyperspectral Whiskbroom
VIS/NIR (76),
SWIR1 (32), SWIR2 (32),
TIR (12)

VIS/NIR (0.43–1.05),
SWIR1 (1.50–1.80),
SWIR2 (2.00–2.50),
TIR (8–12.50)

Dependent upon
flight (minimum 1 m) 89◦

DAIS
7915

Digital Airborne
Imaging Spectrometer GER Corporation Hyperspectral Whiskbroom

VIS/NIR (32), SWIR1 (8),
SWIR2 (32), MIR (1),
TIR (12)

VIS/NIR (0.43–1.05),
SWIR1 (1.50–1.80),
SWIR2 (2.00–2.50),
MIR (3.00–5.00),
TIR (8.70–12.30)

3 to 20 depending
on altitude 512 pixels per scanline

AISA Airborne Imaging
Spectrometer Spectral Imaging Hyperspectral Pushbroom Up to 288 0.43–0.90 1 364 pixels per scanline

MIVIS Multispectral Infrared and
Visible Imaging Spectrometer

Daedalus Enterprise
Inc., USA Multispectral Whiskbroom 102 VIS/NIR (28), MIR

(64),TIR (10)

VIS (0.43–0.83),
NIR (1.15–1.55),
MIR (2.0–2.5)
TIR (8.2–12.7)

3 to 8 depending
on altitude

5.6 km at
4000 m altitude

Daedalus Daedalus Multispectral
Scanner (MSS)

Daedalus Enterprise
Inc., USA Multispectral Pushbroom 12 VIS/NIR (8),

SWIR (2), TIR (2) 0.42–14.00 25 714 pixels per scanline

HySpex
ODIN-1024 HySpex hyperspectral cameras Norsk Elektro

Optikk (NEO) Hyperspectral Pushbroom
VIS/NIR1 (128),
VIS/NIR2 (160),
SWIR1 (160), SWIR2 (256)

0.40–2.50 0.5 m at
2000 m altitude 500 m
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Table 3. Characteristics of the more commonly used microwave radiometers in oceanography and water quality studies.

Satellite Sensor Full Name Launch Failure Frequency (GHz) Spatial Resolution (km) Swath
Width (km) Purpose

Nimbus-5 ESMR Electrically Scanning
Microwave Radiometer December 1972 May 1977 19.4 25 for all Channels 3000 SST

Nimbus-7 SMMR Scanning Multichannel
Microwave Radiometer October 1978 May 2015 6.6, 10.7, 18.0, 21.0, and 37.0 25 for all Channels 800 SST

SEASAT SMMR Scanning Multichannel
Microwave Radiometer June 1978 October 1978 6.6, 10.7, 18.0, 21.0, and 37.1 22 at 37.1 GHz to 100 at 6.6 GHz 600 SST

Priroda-MIR IKAR-P Ikarus Panoramic
microwave radiometer April 1996 March 2001 5.0, 13.3 75 for all Channels 750 SST

POEM-1 MIMR Multifrequency Imaging
Microwave Radiometer June 1998 _ 6.8, 10.7, 18.7, 23.8, 36.5, and 90.0 4.8 × 3.1 at 90 GHz to 60 × 40 at 6.8 GHz 1400 SST

EOS PM-1 MIMR Multifrequency Imaging
Microwave Radiometer May 2002 Present 6.8, 10.7, 18.7, 23.8, 36.5, and 90.0 4.8 × 3.1 at 90 GHz to 60 × 40 at 6.8 GHz 1400 SST

TRMM TMI TRMM Microwave Imager November 1997 April 2015 10.7, 19.4, 21.3, 37.0, and 85.5 8 × 6 at 85.5 GHz to 72 × 43 at 10.7 GHz 760 SST

ADEOS-2 AMSR Advanced Microwave
Scanning Radiometer December 2002 October 2003 6.9, 10.7, 18.7, 23.8, 36.5, 50.2, 53.8, 89.0 6 × 3 at 89 GHz to 70 × 40 at 6.9 GHz 1600 SST

AQUA AMSR-E Advanced Microwave
Scanning Radiometer for EOS May 2002 October 2011 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 6 × 4 at 89.0 GHz to 75 × 43 at 6.9 GHz 1450 SST

GCOM-W1 AMSR-2 Advanced Microwave
Scanning Radiometer—2 May 2012 Present 6.9, 7.3, 10.7, 18.7, 23.8, 36.5, and 89.0 5 × 3 at 89.0 GHz to 62 × 35 at 6.9 GHz 1450 SST

GPM GMI GPM Microwave Imager July 2013 Present 10.7, 18.7, 23.8, 36.5, 89.0, 166.0, and 183.3 7.2 × 4.4 at 183.3 GHz to 32 × 19 at 10.7 GHz 850 SST

Coriolis WindSat WindSat January 2003 Present 6.8, 10.7, 18.7, 23.8, and 37.0 13 × 8 at 6.8 GHz to 71 × 39 at 37.0 GHz 1000 SST

SAC-D Aquarius Aquarius May 2011 June 2015 1.413 100 for all Channels 390 SSS-SST

SMOS MIRAS
Microwave Imaging
Radiometer using Aperture
Synthesis

November 2009 October 2013 1.413 50 for all Channels 1000 SSS

Airborne ESTAR Electronically Scanning
Thinned-Array Radiometer

Deployed
in 1990 _ 1.413 100 for all Channels 600 SSS

Airborne PALS Passive Active L- and
S-band Sensor

Deployed
in 1999 2009 1.413 0.350–1 16 SSS-SST

Airborne 2D-STAR
Two-Dimensional
Electronically Scanning
Thinned-Array Radiometer

Deployed
in 2003 Present 1.413 0.800 for all Channels 10 SSS

Airborne SLFMR Scanning Low Frequency
Microwave Radiometer

Deployed in
August 1999 _ 1.413 0.5–1 Twice the

altitude SSS

Airborne STARRS
Airborne Salinity,
Temperature, and
Roughness Remote Scanner

Deployed in
June 2001

_
L-Band: 1.413

1 for all Channels 5.2 SSS-SSTC-Band: 5.2, 5.6, 5.9, 6.2, 6.6 and 7.1

IR radiometer: 8–14 and 9.6–11.5 micron
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4. Water Quality Investigations through Remote Sensing Techniques

Water quality study is the process of determining the chemical, physical and biological
characteristics of waterbodies and identifying the possible contamination sources that degrade the
quality of water [20]. Degradation of the quality of water resources may result from waste discharges,
pesticides, heavy metals, nutrients, microorganisms, and sediments. Different water quality standards
have been developed to aid in checking the extent of water pollution, and consequently to maintain
these quality standards. The most commonly measured qualitative parameters of water are detailed in
Table 4.

Table 4. The most commonly measured qualitative parameters of water by means of remote sensing.

Water Quality Parameter Abbreviation Units Optical Activity References

chlorophyll-a CHL-a mg/L Active [10,36–38]
Secchi Disk Depth SDD m Active [39–42]
Temperature T ◦C Active [43–46]
Colored Dissolved Organic Matters CDOM mg/L Active [10,47–49]
Total Organic Carbon TOC mg/L Active [50–52]
Dissolved Organic Carbon DOC mg/L Inactive [53–55]
Total Suspended Matters TSM mg/L Active [56–59]
Turbidity TUR NTU Active [60–62]
Sea Surface Salinity SSS PSU Active [63–66]
Total Phosphorus TP mg/L Inactive [29,36,67–69]
Ortho-Phosphate PO4 mg/L Inactive [70]
Chemical Oxygen Demand (COD) COD mg/L Inactive [71–74]
Biochemical Oxygen Demand BOD mg/L Inactive [62,75–77]
Electrical Conductivity EC µs/cm Active [78–80]
Ammonia Nitrogen NH3-N mg/L Inactive [73,81,82]

The terminology and rationale for Case 1 and Case 2 water classifications were established by
Morel and Prieur [16] and Gordon and Morel [83] in their seminal work on the bio-optical basis for
ocean color variations. The definition for Case 1 and Case 2 waters was updated by Mobley et al. [84]
as follows:

I Case 1 waters are those waters whose optical properties are determined primarily
by phytoplankton and related colored dissolved organic matter (CDOM) and detritus
degradation products.

II Case 2 waters are everything else, namely waters whose optical properties are significantly
influenced by other constituents such as mineral particles, CDOM, or microbubbles, whose
concentrations do not covary with the phytoplankton concentration.

Remote sensing techniques make it possible to have spatial and temporal view of surface water
quality parameters and more effectively and efficiently monitor the waterbodies, and quantify water
quality issues. Most of the studies have focused on optically active variables, such as chlorophyll-a
(chl-a), total suspended solids (TSS), and turbidity. There are several other important water quality
variables such as pH, total nitrogen (TN), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), and
dissolved phosphorus (DP), which existing literature omit. The main reason is due to their weak
optical characteristics and low signal noise ratio. However, these parameters are an important part of
water quality indices and are a challenging aspect of research in the field of water quality assessment
using remote sensing, which should stimulate and motivate scientists in further efforts. In continuing,
the study precisely surveys the more commonly employed approaches in estimating the concentration
of the eleven water quality parameters. These water quality indicators include chlorophyll-a (chl-a),
colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended
sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved
oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
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4.1. Chlorophyll-a

Algal blooms, which are often driven by eutrophication phenomena in freshwater, are directly
related to chl-a concentration since it is essential for photosynthesis [36]. Chl-a is used in oxygenic
photosynthesis and is found in plants, algae and cyanobacteria. Chl-a is the major indicator of trophic
state because it acts as a link between nutrient concentration, particularly phosphorus, and algal
production. Chl-a while mainly reflecting green, absorbs most energy from wavelengths of violet-blue
and orange-red light, whose reflectance causes chlorophyll to appear green. Obviously, the addition of
chl-b besides chl-a extends the spectrum absorption. Low light conditions tends to favor the production,
a rather greater ratio, of chl-b to chl-a molecules, thus increasing photosynthetic yield [85]. Figure 1
shows the absorption spectrum of both chl-a and chl-b pigments. Many researchers have demonstrated
that increasing chl-a concentration causes a decrease in the spectral response at short wavelengths,
particularly in the blue band [86–91]. A large number of studies have focused on chl-a concentration
measurement using remote sensing, some of which are cited in this review paper.
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Narrow bands of imagery are required for the measurement of chl-a concentration and its spatial
and temporal variations within a waterbody [92]. A review of the literature on the application
of empirical approaches using multispectral sensors shows ambiguous results. While estimating
chlorophyll using remote sensing techniques is possible and a lot of authors claim to achieve satisfying
results using broadband sensors, several studies exist showed that the broad wavelength spectral
data available on current satellites (i.e., Landsat, SPOT) do not permit discrimination of chlorophyll in
waters with high suspended sediments [86]. This is especially due to the dominance of the spectral
signal from the suspended sediments, more so in highly turbid and eutrophic waters [93,94].

Since the late 1970’s, many researchers developed bio-optical algorithms that initially were
designed for oceans to determine water quality parameters. In these waterbodies, phytoplankton and
its breakdown products are the sole determinants of optical properties of the water. In Case 1 waters,
by employing an empirical model and interpreting the received radiance at different wavelengths, the
concentrations of chl-a can be adequately estimated with satellite images [83]. In Case 1 waters, spectral
bands in the blue to green region are appropriate to identify chl-a concentrations with acceptable
precisions. However, in Case 2 waters due to the complexity of the constituents in water, the detection
of chl-a is a sophisticated task and requires advanced approaches and techniques. In Case 2 waters
(inland and coastal waters), the optical properties are determined, additionally to phytoplankton, by a
composite of dissolved organic matter from a terrestrial origin, dead particulate organic matter and
inorganic particulate matter. Therefore, determination of chl-a concentration is much more complex
and less accurate as these constituents are not statistically correlated. Additionally, the simple fact
that Gelbstoff absorption often masks the blue-green region in Case 2 waters implies chl-a algorithms
developed for Case 1 waters are not applicable to Case 2 waters [95].
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Various visual spectral bands and their ratios are widely used to quantify chl-a. Spectral band
ratios can reduce irradiance, atmospheric and air-water surface influences in the remotely sensed
signal [86,96]. The prominent scattering-absorption features of chl-a include strong absorption between
450–475 nm (blue) and at 670 nm (red), and reflectance reaches to peak at 550 nm (green) and near
700 nm (NIR). The reflectance peak near 700 nm and its ratio to the reflectance at 670 nm have
been used to develop a variety of algorithms to retrieve chl-a in turbid waters [23]. Gitelson [97]
studied the behavior of the reflectance peak near 700 nm and concluded that the 700 nm reflectance
peak was important for the remote sensing of inland and coastal waters, especially for measuring
chlorophyll concentration. Han [98] pointed out that the spectral regions at 630–645 nm, 660–670 nm,
680–687 nm and 700–735 nm were found to be potential regions where the first derivatives can be used
to estimate chlorophyll concentration. Dekker et al. [99] mentioned that the scattering and absorption
characteristics of chl-a can be studied when more than one band is used. Hoogenboom et al. [100]
noted that a ratio using an Advanced Visible–Infrared Imaging Spectrometer (AVIRIS) band located
near 713 nm along with the band at 667 nm was the most sensitive for chlorophyll retrieval in inland
waters. A similar ratio (R674/R705) has been demonstrated to be optimal for inland lakes and
rivers [101]. Table 5 shows some of the more commonly used techniques for the measurement of
chl-a concentration.

Table 5. Remotely measurements of chl-a using various spectral bands and their ratios.

Band Combination Sensor Reference

Ratio between green (0.50–0.60 µm) and red (0.60–0.70 µm)

Landsat 5-TM [3,12,26,42,102–106]
Landsat 5-MSS [24]
Landsat 7-ETM+ [107]
SPOT [108]
IRS-LISS-III [71]

Ratio between near infrared (NIR) and red

Landsat 5-TM [109]
HICO [110–112]
PROBA-CHRIS [113]
MODIS [22,114,115]
MERIS [115–117]
AISA [115,118]

Ratio between green and blue (B2/B1)

Landsat 5-TM [58]
Landsat 7-ETM+ [119]
MERIS [120]
PROBA-CHRIS [121]
EO-1 Hyperion [122]

Ratio between blue (0.40–0.50 µm) and red (0.60–0.70 µm)
Landsat 5-TM [26]
Landsat 7-ETM+ [98]

Using a single band

Blue (0.40–0.50 µm) Landsat 5-TM [11,88,123,124]

Red (0.60–0.70 µm)
PROBA-CHRIS [125]
Landsat 5-TM [86]
CASI [126]

Green (0.50–0.60 µm)
Landsat 5-TM [127]
Daedalus Airborne Thematic Mapper (ATM) [87]

Other significant literature that applied other approaches to the measurement of chl-a are
considered hereafter. Alparslan, Coskun and Alganci [61] measured the concentration of chl-a
using all bands of Landsat-5 TM. Ekercin [128] used Band 1 (445–530 nm), Band 2 (520–610 nm),
Band 3 (640–720 nm), and Band 4 (770–880 nm) of IKONOS data to estimate chl-a concentration
in Istanbul, Turkey. Also, Nas, Karabork, Ekercin and Berktay [67] used the visible near-infrared
(VNIR) and the shortwave infrared (SWIR) (first four bands 0.52–1.70 µm) of Terra/ASTER and
developed a multiple regression between chl-a concentration and spectral reflectance in the Beysehir
Lake, Turkey. Shafique, Fulk, Autrey and Flotemersch [29], using Compact Airborne Spectrographic
Imager (CASI) studied the chl-a concentration in the Great Miami River and 80 miles of the Ohio
River. They concluded that linear models using the ratio of wavelengths 705/675 nm could
describe chl-a concentration. Bhatti, Rundquist, Schalles and Ramirez [40], using Airborne Imaging
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Spectroradiometer for Applications (AISA) sensor in the Apalachicola Bay in Florida, USA, found
that two bands reflectance ratio R70 Other significant literature that applied other approaches to the
measurement of chl-a are considered in following. Alparslan, Coskun and Alganci [61] measured
the concentration of chl-a using all bands of Landsat-5 TM. Ekercin [128] used Band 1 (445–530 nm),
Band 2 (520–610 nm), Band 3 (640–720 nm), and Band 4 (770–880 nm) of IKONOS data to estimate
chl-a concentration in Istanbul, Turkey. Also, Nas, Karabork, Ekercin and Berktay [67] used the
visible near-infrared (VNIR) and the shortwave infrared (SWIR) (first four bands 0.52–1.70 µm) of
Terra/ASTER and developed a multiple regression between chl-a concentration and spectral reflectance
in the Beysehir Lake, Turkey. Shafique, Fulk, Autrey and Flotemersch [29], using Compact Airborne
Spectrographic Imager (CASI) studied the chl-a concentration in the Great Miami River and 80 miles
of the Ohio River. They concluded that linear models using the ratio of wavelengths 705/675 nm can
describe chl-a concentration. Bhatti, Rundquist, Schalles and Ramirez [40], using Airborne Imaging
Spectroradiometer for Applications (AISA) sensor in the Apalachicola Bay in Florida, USA, found a
significant correlation between the two bands reflectance ratio R700/R670 and chl-a concentration.
Also, the three band model R750 * (R670−1 − R700−1) was found to be a predictor of chl-a concentration
in Case 2 waters. In addition, the logarithmic ratio of ALOS/AVNIR-2 (Band 3/Band 1) was related
with chl-a concentration in his study area. Lim and Choi [36] using Landsat-8/OLI showed that chl-a
presented a good correlation with both OLI bands and band ratio, with calculated R values for Bands
2, 3, 4 and band ratio (Band 5/Band 3) as −0.66, −0.70, −0.64, and −0.64, respectively, at a significance
level of p < 0.01. ZHANG and HAN [129] found that OLI bands 1 to 4 and their combinations had
good correlation with chl-a concentration. Kim et al. [130] using Landsat-8/OLI employed Band 2,
Band 5, and a ratio of Band 2/Band 4 to measure chl-a concentration. Mannheim et al. [131] found that
the reflectance curve and the baseline from 672 to 742 nm (CHRIS spectral Bands 8–12) shows the best
correlation results and the maximal sensitivity to variations of chl-a concentration. Choe et al. [132] used
Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), and RapidEye for the estimation of
chl-a concentration in turbid waters using Two-band and Three-band models based on band ratio such
as Red and NIR band.

Furthermore, Qi et al. [133] developed an approach based on Empirical Orthogonal Function (EOF)
analysis to estimate chl-a concentration in surface waters of Taihu Lake, the third largest freshwater
lake in China. The EOF approach analyzed the spectral variance of normalized Rayleigh-corrected
reflectance (Rrc) data at 469, 555, 645, and 859 nm, and subsequently related that variance to chl-a
using 28 concurrent MODIS and field measurements. Feng et al. [134] developed a new empirical
chl-a algorithm for the largest freshwater lake of China (Poyang Lake) using a normalized green-red
difference index (NGRDI) and atmospherically-corrected Medium Resolution Imaging Spectrometer
(MERIS) data.

Reviewing the literature showed that most algorithms to determine the chl-a concentration need a
wavelength near 675 nm and another near 700 nm. For example, the positioning of the spectral bands
of Landsat/ETM+ is illustrated in Figure 2. This figure reveals that the bands are not very broad and
also not suitably positioned for the detection of chl-a. Other multispectral sensors such as ASTER,
IRS-LISS III and SPOT-HRV have similar spectral positioning in the Red/NIR region and therefore one
can conclude that neither of these sensors is very appropriate for the detection of chl-a.

As mentioned, several satellite and airborne imageries can be used for chl-a estimation.
Nonetheless, it revealed that the Landsat TM seems to be more appropriate and widely used for
chl-a assessment. Temporal coverage and spatial resolution of TM and its easy accessibility can be the
main reasons for the selection of this sensor.
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4.2. Colored Dissolved Organic Matters (CDOM)

Colored Dissolved Organic Matters, also called gelbstoff and gilvin, consists of naturally occurring,
water-soluble, biogenic, heterogeneous organic substances that are yellow to brown in color [135],
which exist in both fresh and saline waters. These compounds are brown and can color the water
yellowish brown in high concentrations. Therefore, they are referred to as yellow matter or colored
dissolved organic matter (CDOM), and usually with chl-a and TSS dominate the water color.

CDOM absorbance spectrum can be several times and overlaps the chlorophyll absorption and
can account for over 50% of the total absorption at 443 nm, which is the wavelength that chlorophyll
concentrations are usually measured [136]. The increase in the CDOM concentration mainly affects the
reflectance values in the blue and green region of the spectrum (especially below ~500 nm) and its
absorbance increases exponentially with decreasing wavelength. This effect can complicate the use of
chl-a retrieval algorithms and phytoplankton production models that are based on remotely sensed
ocean color [137]. Nonetheless, it is reported by Strömbeck and Pierson [138] that at high CDOM
concentrations, absorbance of red light spectrum can be significant.

Remote sensing of CDOM is important in studying aquatic ecology and carbon dynamics [18,139].
Existence of CDOM in rivers, lakes, and oceans affects the water color as seen by many satellite remote
sensing instruments, such as MODIS and SeaWiFS [140]. CDOM also affects the underwater light
field and water’s inherent optical properties (IOP). This characteristic determines the water reflectance
received by remote sensors. Therefore, inversion of remote sensing data provides an efficient method
to estimate CDOM concentration within a large spatial and temporal scale [141,142]. In ocean color
studies, CDOM absorption properties, for example, its absorption coefficients at 440 nm, are usually
used as a representative of CDOM concentration [143]. In the algorithms derived from sensors like
CZCS, chl-a concentrations were empirically inverted, and accordingly, CDOM can be measured
with the assumption that it co-varies with chlorophyll [16,83,144]. Hyperspectral measurements with
newly developed remote sensing reflectance models [145] have also been used to estimate CDOM
as one of ocean color components, such as EO-1 Hyperion with MIM (Matrix Inversion Method) [8].
Kutser et al. [146] also used band ratio of EO-1/ALI Band 2 and Band 3 to estimate CDOM content in
lakes of Southern Finland.

Recent approaches of CDOM estimation combine hyperspectral remote sensing data with
semi-analytical models, new factors like the bottom effects, and computational techniques to enhance
the accuracy of CDOM inversion [49]. Traditionally, in most water quality monitoring programs,
CDOM absorption is referred to as color and PCU color (Platinum-Cobalt Units) and is used to
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characterize it. In recent studies, CDOM absorption is directly reported as light absorption coefficients
at given wavelengths, and these absorption coefficients and PCU colors are closely correlated [136].
Semi-analytical models have been developed and applied to SeaWiFS (Sea-viewing Wide Field-of-view
Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer), in which CDOM’s absorption
coefficients are directly and independently inverted from remote sensing reflectance (Rrs) [49].
The semi-analytical models are based on the radiative transfer equations as well as the simplification
of radiance and underwater light field [142]. Remote sensing of CDOM in riverine waters and coastal
waters is a challenge and subject to large errors compared to oceanic waters because spectral signals
of CDOM usually interfere with chlorophyll and suspended sediments [54,147]. In these complex
environments, hyperspectral remote sensing present an advantage due to their spectral responses to
water inherent optical properties (IOP) and their broad spectrum of narrow bands.

Several studies have confirmed that high spectral resolution (10 nm or better) can improve
the estimation of water inherent optical properties (IOP) in coastal water [8,148,149]. However, as
mentioned, due to the spectral signal interference from chlorophyll, suspended sediments as well
as spatial and temporal heterogeneity of riverine and coastal waters, the applicable bands for
CDOM measurement are not always at the same wavelengths. Therefore, identification of significant
wavelengths out of hundreds of narrow bands of hyperspectral reflectance is a challenging task [55].
As a solution, first, the dimensionality of hyperspectral data should be reduced through techniques such
as band selection, derivative analysis, spectral indices, or hyperspectral transformation [122,150–152].
It is also necessary to calibrate and validate the remotely sensed CDOM concentrations using a
shipboard data acquisition approach concurrently with high spatial resolution underwater CDOM
observation. Additionally, CDOM is reported to be commonly used as an important indicator
for dissolved organic carbon (DOC) dynamics in freshwater and coastal marine ecosystems [153]
and many observations have provided evidence that CDOM is correlated to DOC [54,154–158].
Reviewing the literature revealed that most of the studies are based on four sections: underwater
CDOM measurements, in situ hyperspectral measurements, water-surface reflected radiance by
means of remote sensor on a satellite or an airborne platform, and functional data analysis [49,153].
The literature showed that CDOM could be quantified using visual spectral bands and their ratios,
which is as summarized in Table 6.

Table 6. Remotely measurements of CDOM using various spectral bands and their ratios.

Spectral Bands Sensor Reference

Single blue band (0.40–0.50 µm)

Landsat 5-TM [42]
EO-1 Hyperion [122]
SeaWiFS + MODIS-Aqua [159]
MODIS [160,161]
SeaWiFS [48,162,163]
HICO [47]
CZCS [164]

Ratio between blue (0.40–0.50 µm) and green (0.50–0.60 µm)
ALOS-AVNIR-2 [56]
MODIS [165]
SeaWiFS [166–169]

Ratio between green (0.50–0.60 µm) and red (0.60–0.70 µm)

MODIS [114]
HICO [112]

EO-1 ALI [146,170,
171]

EO-1 Hyperion [49]
SeaWiFS [172]
MERIS [173]

Furthermore, Taheri Shahraiyni et al. [174] by using reflectance values at 490, 510, 560, 620, and
885 nm of MERIS data and applying a fuzzy modeling technique, Active Learning Method (ALM),
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mapped the spatial distribution of CDOM over the southern parts of the Caspian Sea, Iran. A proxy
algorithm was reported for remote sensing of CDOM by an absorption coefficient of ocean water,
which is a multi-band quasi-analytical algorithm (QAA) developed by Lee, Carder and Arnone [141].
Further, alternative algorithms such as computer-based discrete modelling methods are developed for
remote sensing of CDOM. However, Kishino et al. [175] expressed that results can be questionable
when a neural network model is implemented to measure the CDOM concentration using ASTER
data. Johannessen et al. [176] using SeaWiFS images found out a relationship between ultraviolet (UV)
attenuation coefficient (Kd) at 323 nm, 338 nm, and 380 nm and the Rrs(412)/Rrs(555) band ratio.

Researchers use many sensors to assess CDOM, but SeaWIFS and MODIS, because of their
coarse spatial resolution, were widely applied in deep waters. Due to the need for high accuracy for
large-scale applications, SeaWiFS data are of little use in shallow waters and hyperspectral imagery
like EO-1/Hyperion, EO-1/ALI, and ALOS/AVNIR-2 were preferable for these areas. In addition, a
majority of researchers have used a high-resolution spectroradiometer in their in situ hyperspectral
measurements to validate their quantified results. These in situ measurements include reflectance
values collected at a single certain location and often used as an indicative of individual targets.
These data are useful in identifying concentrations of components within the water column and can be
collected above and below the water surface [22]. They are also useful for calibration and validation of
remotely sensed estimations of water quality parameters.

4.3. Secchi Disk Depth

Secchi depth is an optical property of water strongly related to water constituents present in the
waterbodies. The Secchi depth exhibits an inverse correlation with the amount of total suspended
solids (TSS) present in the waterbodies. It can be used to study the relative nutrient and solids
loading situations [177]. The most commonly attempted method for the measurement of water
transparency is based on light attenuation principles [142]. The best-known operational estimation of
water transparency is the Secchi disk, created by Pietro Angelo Secchi SJ in 1865, and is a circular disk
used for clarity measurements in oceans and lakes. The disc mounts on a line and lowers slowly down
in the water until the pattern on the disk is no longer visible. This measure is known as the Secchi disk
depth (SDD) and is also related to water turbidity. Figure 3 shows two different kinds of Secchi disks.

SDD is a reasonable indicator of trophic conditions (algal abundance) except in highly colored
lakes with low chl-a and non-algal turbidity (clay, calcium carbonate) [42]. The Secchi depth is
inversely correlated with the amount of TSS present in the waterbodies. Therefore, remote sensing can
be an ideal tool for monitoring water transparency and estimating the SDD. Recently, Lee et al. [178]
introduced a model to estimate the SDD, which unlike the classical model that relies strongly on the
beam attenuation coefficient, the new model relies only on the diffuse attenuation coefficient at a
wavelength corresponding to the maximum transparency for such interpretations. Many researchers
have applied remote sensing for this purpose and have shown in their studies that remote sensing
data is well correlated with SDD values [179–182].
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SDD has a significant correlation with atmospherically corrected satellite radiance [184–186].
In atmospherically corrected MSS Green band, SDD is related to reflectance just below the surface,
incorporating the ratio of backscattering to total scattering coefficients for suspended particles [187].
The relationship is quite accurate for SDD < 16 m [188]. Significant algorithms have been developed
for SDD using various remote sensing data, like TM [27,39,102,189,190], MSS [24,25,191–193],
IKONOS [28,60,128] and even video data [194]. Landsat-TM is one of the most frequently used
sensors to estimate SDD. Braga et al. [195] found that SDD was closely correlated with TM data,
especially during high tide. Furthermore, highly suitable models were developed for SDD that ranged
from 4 to 15 m from TM1 and TM3 satellite radiance [186]. However, there was an exception research
conducted by Lopez-Garcia and Caselles [124]. They used TM data and reported that SDD did not
show significant correlation with any TM bands. SDD can also be quantified from reflected radiance
received by the IRS satellite [184].

There are many established relationships in the literature between Secchi depth and total
phosphorus, chl-a, TSS, and CDOM. The existing literature showed that SDD can be quantified
using visual spectral bands and various band ratios. Bhatti, Rundquist, Schalles and Ramirez [40] used
ALOS-AVNIR-2 data and found that the Secchi depth was well correlated with reflectance ratio of
R750/R560 (NIR/Green). Thiemann and Kaufmann [101] used HyMap and CASI data for Secchi disk
transparency and chlorophyll-a determination in the Mecklenburg Lake District, Germany. They used
the area between a base line and the spectrum from 400 to 750 nm and found a good correlation
with the in situ measured Secchi disk transparency (SDT). Ekercin [128] using Band 1 (445–530 nm),
Band 2 (520–610 nm), and Band 3 (640–720 nm) of IKONOS data and developed an algorithm for
SDD measurements. Mancino, Nolè, Urbano, Amato and Ferrara [26] developed an equation using
TM1 and the TM3/TM2, TM1/TM2, TM2/TM1 ratios, and Powell et al. [196] suggested a regression
equation related to in-situ Secchi disk transparency measurements by using the Blue, Green, and Red
bands of TM. In addition, based on Kloiber et al. (2002) study and TM and MSS imagery analysis, some
recommendations were made for a Landsat-based procedure of water clarity assessment. Literature
also showed that Secchi disk depth can be quantified using visual spectral bands and various band
ratios, which are summarized in Table 7.

Table 7. Remotely measurements of SDD using various spectral bands and their ratios.

Band Combination Sensor Reference

Ratio between blue (0.40–0.50 µm) and green (0.50–0.60 µm)

Landsat 5-TM [27,190]
Landsat 5-MSS [192]
Landsat 7-ETM+ [107]
ASTER and ETM+ [197]

Ratio between blue (0.40–0.50 µm) and red (0.60–0.70 µm)

Landsat 5-TM [39,42,60,102,179,186,198–200]
Landsat 5-MSS [24]
PROBA-CHRIS [121]
IKONOS [28,60]

Ratio between green (0.50–0.60 µm) and red (0.60–0.70 µm)
Landsat 5-TM [30,194]
ALOS-AVNIR-2 [56]
SPOT [108,201]

Using a single band

Blue (0.40–0.50 µm)
Landsat 5-TM [69]
MODIS [41]

Red (0.60–0.70 µm) Landsat 5-TM [12,30]

Green (0.50–0.60 µm)
Landsat 5- MSS [191]
MODIS [114]

Although several satellite remote sensing systems have been used to measure the SDD, the
relatively low cost, temporal coverage, spatial resolution, and data availability of the Landsat system
make it particularly most useful data for the assessment of this water quality parameter. Several studies
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have demonstrated a strong relationship between Landsat Multispectral Scanner (MSS) or Thematic
Mapper (TM) data and ground observations of Secchi depth, which are cited earlier.

SDD and chl-a concentrations have been successfully predicted from satellite image data by
developing the relationship between in-situ measurements of SDD and chl-a, and the spectral response
of the blue, green, red, and near-infrared bands. This approach has been successfully implemented in
Minnesota [202], Wisconsin [203], and Michigan [204] to estimate water clarity for inland lakes, where
in-situ data is limited.

4.4. Turbidity and Total Suspended Sediments

Water turbidity is an optical property of water, which scatters and absorbs the light rather than
transmit it in straight lines. Suspended sediments are responsible for most of the scattering, whereas
the absorption is controlled by chl-a and colored dissolved or particulate matter [205]. As water
turbidity is mainly the result of the presence of suspended matter, turbidity measurement has often
been used to calculate fluvial suspended sediment concentrations [206] and is commonly regarded
as the opposite of clarity. The level of turbidity or murkiness is entirely dependent on the amount of
suspended particles in a sample of water. The more suspended particles, the more difficult for light
to travel through the water and therefore, the higher the water’s turbidity. The complex nature of
suspended substances in water changes the reflectance of the waterbody and therefore causes variation
in color. To this end, interpretation of remotely sensed data just based on the color of water is not
adequate and accurate. Turbidity and total suspended matters are considered as important variables
in many studies due to their linkage with incoming sunlight that in turn affects photosynthesis for
growth of algae and plankton. These parameters are also directly associated with Secchi disk depth.

Remote sensing techniques are widely used to estimate and map the turbidity and concentrations
of suspended particles, and to provide their spatial and temporal variations. Theory shows that
use of a single band provides a robust and TSM-sensitive algorithm provided the band is chosen
appropriately [207]. Curran et al. [208] and Novo et al. [209] showed that single band algorithms may be
adopted where TSM increases with increasing reflectance. However, the complex substances in water
change the reflectance of the water body and therefore cause variation in colors, and thus, different
spectral bands can be used for TSS retrievals [207,210,211]. For example, high levels of total suspended
solids or the presence of dark-colored humus acids from the decay of vegetation, common in the water
of peat bogs, would result in high TSS and turbidity readings (Mark and Stapp, 2003). Therefore, the
advantage of using signal band or band ratios can be employed to obtain more accurate results in
different concentrations in waterbodies. In the Near-IR and Mid-IR regions, water increasingly absorbs
the light and makes it look darker, which varies based on water depth and wavelength. An increase of
dissolved inorganic materials in waterbodies causes the peak of visible reflectance to shift from the
green region (clearer water) toward the red region of the spectrum. Several studies have also found
that the first four bands of Landsat are well correlated with total suspended matters [42,198,212,213].
However, Ritchie et al. [214] by in situ studies showed that the most useful range of spectrum for the
determination of suspended particles in surface waters was between 700 and 800 nm. The literature
showed that turbidity and/or Suspended Sediments can be measured using visual spectral bands and
various band ratios, which are as summarized in Table 8.
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Table 8. Remotely measurements of Turbidity and Total Suspended Sediments using various spectral
bands and their ratios.

Band Combination Sensor Reference

Ratio between green (0.50–0.60 µm) and red (0.60–0.70 µm)
Landsat 5-TM [30,213]
PROBA-CHRIS [121]
IRS-LISS-III [71]

Ratio between blue (0.40–0.50 µm) and red (0.60–0.70 µm)
Landsat 5-TM [198]
AISA [22]

Ratio between near infrared (NIR) and red (0.60–0.70 µm)
MODIS [59]
ALOS-AVNIR-2 [56]

Using a single band

Near Infrared (0.75–0.90 µm)
SPOT [215]
Landsat 7- ETM+ [57]
CASI [29]

Red (0.60–0.70 µm)

Landsat 7- ETM+ [216]
Landsat 5-TM [12,42,216]
HICO [112]
PROBA-CHRIS [216]

Green (0.50–0.60 µm)
Landsat 5- MSS [192]
IRS-LISS-III [217]

Furthermore, Ekercin [128] used Band 1 (445–530 nm), Band 2 (520–610 nm), Band 3 (640–720 nm),
and Band 4 (770–880 nm) of IKONOS data and estimated the concentration of TSS in Istanbul, Turkey.
Alparslan, Coskun and Alganci [61] obtained the amount of turbidity from Band 1, Band 2, Band 3,
Band 4, Band 5 and Band 7 of Landsat-5 TM Satellite Image. He, Chen, Liu and Chen [73] used a
combination of Landsat TM Bands 2, 3, 6 and 7 to correlate with the in situ turbidity measurements.
Also, Sudheer, Chaubey and Garg [58] suggested that a combination of TM1, TM2, TM3 and TM4 was
significant to retrieve suspended sediments information from remote sensing data. Bhatti, Rundquist,
Schalles and Ramirez [40] by using NIR/Green band ratio of ALOS-AVNIR-2 developed a relationship
to calculate total suspended matters. Lim and Choi [36] found that suspended solids was correlated
with Bands 2–5 of Landsat-8/OLI, and constructed 3 multiple regression models through single bands
of OLI.

Reviewing the literature demonstrated that the Landsat/TM was used much more than
other sensors. For rivers and other case studies that need more spectral and spatial resolution,
ALOS/AVNIR-2, IKONOS on spaceborne sensors, and CASI and AISA hyperspectral imagery on
airborne sensors were used to determine turbidity and suspended matters. The methodology to
interpret images and to evaluate the turbidity was also improved from simple linear regression to
non-linear multiple regression, principle components analysis (PCA) and neural networks.

4.5. Total Phosphorus

Total phosphorus (TP) studies consist of the measurement of all inorganic, organic and dissolved
forms of phosphorus. Phosphates are plant nutrients whose increased quantity helps plants and
algae to grow quickly. Total phosphorus can be directly related to chl-a concentration and indirectly
related to transparency or water clarity, which is estimated by Secchi depth [218]. Rivers that flow
through various land use activities can include different substances and chemicals like total suspended
sediments, nutrients, residential fallout, and others. When a river or a creek passes through an
agricultural area, for instance, the phosphorus load may show a higher concentration compared to
other parameters present in the surface water. Fertilizer-rich agricultural runoffs and effluents from
wastewater treatment plants are the main sources of high phosphorus and nitrogen concentrations in
surface waters that threaten many worldwide ecosystems [219]. Total suspended matters usually act as
a carrier for TP and also closely related to Secchi disk transparency with an exponential equation [220].



Sensors 2016, 16, 1298 17 of 43

The measurement of total phosphorus concentrations in waterbodies is challenging due to
the spatial heterogeneity and the labor-intensive collection and testing of required field samples.
Remote sensing as a robust tool has already been used successfully to monitor water quality parameters
in various scales and areas, although it presents a challenge in estimating phosphorus concentration.
Remote estimation of total phosphorus (TP) has been investigated based on its high correlation with
optically active constituents [69,220–224]. Total phosphorus is not directly measurable by optical
instruments, but has a general correlation with other water quality parameters. As mentioned above,
TP is closely related to some other parameters like phytoplankton [220,223], turbidity and total
suspended matters (TSM), and Secchi disk transparency (SDT) [224], which is the basis for remote
monitoring of TP dynamics [225]. Multispectral Landsat TM data have been widely used to monitor
and map the TP spatial and temporal pattern in different regions [69,221,222]. Hyperspectral airborne
or spaceborne remote sensing due to its finer diagnostic spectral band(s) provides more potential to
detect TP in rivers and small lakes.

Many studies have shown that increasing the TP concentration in waterbodies results in a
general tendency of increase in chl-a concentration [226–229]. Schindler [230] showed that 74%
of the variability in chl-a concentration among lakes has a direct correlation with the variation of
phosphorus concentration. His result suggests that chl-a concentration may play a role as a proxy of
phosphorus concentration in waterbodies. In another study conducted by Heiskary and Wilson [231],
the Secchi disk depth was decreased with increasing TP concentration that proved that a proportion
of phosphorus can be attached to suspended particles resulted from soil erosion and transferred
through river’s downslope. These studies suggested that both chl-a concentration and SDD are closely
correlated with TP concentration [220] and therefore can be used as the potential theoretical parameters
for the indirect prediction of TP concentration.

Table 9 shows a number of investigations to measure total phosphorus by applying blue band
(0.45–0.51 µm) and green band (0.50–0.60 µm), and integration of red (0.60–0.70 µm) and green
(0.50–0.60 µm) ratio from different sensors. Empirical estimations and various statistical regression
models were used to correlate phosphorus concentration with other water quality indicators, such as
Secchi depth (SD) and chl-a concentration. In addition, Bistani [232] using EO-1/Hyperion obtained a
reflectance determination coefficient of 0.49 from the 467 to 529 nm bands ratio values, from which he
derived a polynomial algorithm used to produce a total phosphorus distribution map. Song et al. [233]
studied the correlation between TP and TM1, TM2, TM3, and TM4 from the Landsat 5, and found
that each band had a correlation with TP of 0.62, 0.59, 0.55, and 0.51, respectively. Later in another
study, Song, Li, Li, Tedesco, Hall and Li [68] by using the airborne imaging data (AISA), and applying
red band (around 690 µm) and NIR spectral region (around 710 µm) estimated the total phosphorus
(TP) in three central Indiana water supply reservoirs. Wu, Wu, Qi, Zhang, Huang, Lou and Chen [69]
used a combination of TM1, TM3/TM2, and TM1/TM3 data to correlate chl-a concentration and
SD measurements with TP concentration. Also, Alparslan, Coskun and Alganci [61] using Band 1,
Band 2, Band 3, Band 4, Band 5 and Band 7 of Landsat-5 TM Satellite Image obtained the amount of
total phosphorus concentration. Lim and Choi [36] used Bands 2, 3, 4, and 5 of Landsat-8/OLI, and
constructed 3 multiple regression models by selecting both single bands and band ratios, and obtained
significant correlation coefficients.
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Table 9. Remotely measurements of total phosphorus (TP) using various sensors and blue and green
bands, and integration of red and green bands ratio.

Band Combination Sensor Reference

Blue (0.45–0.51 µm) and green (0.50–0.60 µm) bands,
and integration of red (0.60–0.70 µm) and green
(0.50–0.60 µm) bands

Landsat 5-TM [69]

MODIS [234]

PROBA-CHRIS [121]

CASI [29]

SPOT [108]

Results from studied articles indicate that there is a potential to estimate total phosphorus
concentration at different scales using airborne and satellite images. The Landsat/TM was used much
more than other sensors for TP assessment in the reviewed literature. As phosphorus does not directly
present optically diagnostic signals in water leaving radiance for the water quality remote sensing
spectral domain (400–900 nm), thus empirical modeling is considered the most applicable approach
for the remote estimation of TP in water column [68,69,235]. The literature review also showed that TP
has a similar spatial pattern to chl-a and SD concentration due to a high correlation of TP with these
parameters. Total phosphorus also was highly related to sediment loadings. However, there is a time
lag for phytoplankton to consume TP in reservoirs, which make the relationship between TP and chl-a
or SD and total suspended sediments more complicated [68].

Light reflection from the bottom in shallow waters cannot be very reliable, because it may be a
result of the above-water remotely sensed reflectance spectra. Therefore, the TP concentration estimated
in shallow water may be questionable and needs to be validated using in situ data. Spatial and temporal
distribution algorithms for TP concentration produced from satellite-based observations should also
be verified by in situ measurements. These empirical methods provide site-specific predictions of total
phosphorus with reasonable accuracy [236].

4.6. Water Temperature

Water temperature is an important parameter for the physical and biochemical processes occurring
within water as well as in air-water interactions because temperature regulates physical, chemical, and
biological processes in water. Water temperature also influences the solubility, and thus availability
of various chemical constituents in water. Most importantly, this parameter affects dissolved oxygen
concentrations in water; as oxygen solubility decreases with increasing water temperature. It is
also very important to analyze the temporal variations due to seasonal changes. On the other hand,
distribution, transportation, and interaction of some contaminants, such as nutrients have a significant
relation with water column temperature.

Thermal infrared bands are able to measure the amount of infrared radiant heat emitted from land
surfaces and the radiant temperature of waterbodies that have environmental and economic import.
As thermal infrared is emitted from the surface, temperature estimations derived by remote sensing
must be evaluated with great care when there are reasons to assume that the water is stratified [237],
which occurs shortly after precipitation or solar warming and in areas influenced by freshwater runoff.
In such cases, no relation can be expected between sea surface temperatures and the temperatures
found in the water under the surface. Thermal stratification in freely flowing rivers is inherently
unstable due to variations in channel shape, and in-stream objects, which cause a turbulent flow
regime and can usually be detected in the imagery [238].

Remote sensing of water temperature in rivers is more complex than in other waterbodies because
of their much smaller dimensions and difficulties of determination at the resolution (pixel size) of the
thermal-infrared (TIR) data [45]. Stream and river temperature is crucial especially when dealing with
endangered fish populations, which are sensitive to increased water temperature. Sparse sampling
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in both space and time restricts traditional assessment of water temperature, which is typically
measured using a network of in-stream gauges, and records the temporal change at given locations.
These gages, located in main streams and rivers, are limited in terms of spatial distribution of
river temperatures. The application of remote sensing techniques can be an attractive alternative
to measuring and monitoring stream temperatures with determined accuracies and uncertainties.
Remotely sensed TIR images could provide reliable measurements of the spatial distribution of the
stream and river temperature. Remote measurements of water temperature can be obtained with a
sensor that detects thermal radiation (3–5 and 8–14 µm wavebands) emitted from the upper 0.1 mm of
the water surface [239–242].

The emitted TIR radiation (3–14 µm) is a well-established practice, particularly in oceanography
where daily observations of regional and global sea-surface temperature (SST) are made from
satellites [7,243–245]. In the terrestrial environment, TIR remote sensing of surface water temperature
initially focused on lakes [246,247], and coastal applications such as thermal pollution from cooling
water discharge from a power plant [248]. However, starting in the 1990s, airborne TIR remote
sensing has been conducted by government agencies over thousands of kilometers of rivers to
monitor water quality, identify sources of cold-water inputs, and to develop spatially referenced river
temperature models [249–251]. Currently, many TIR imaging sensors are available that have multiple
spectral bands located at different wavelengths, which make them suitable for water temperature
measurements. For the selection of appropriate band or bands, careful consideration on the least
amount of instrument noise and atmospheric effects is necessary for accurate calculation of the water
temperature. However, multiple bands can be averaged to reduce noise due to atmospheric or sensors
differences and provide a better estimate of the actual temperature [45].

Spaceborne TIR imaging sensors cover greater aerial extents compared to airborne TIR imaging
sensors. However, significant differences in their range of pixel sizes, number of bands, revisit times,
and sensor sensitivities exist. TIR satellite images are an attractive source of broad-scale data due to
their low cost, capability for regional coverage, and revisit times, if they are available for the study
time, and also have a suitable pixel size. Airborne sensors with finer pixel size are necessary for smaller
waterbodies like rivers, but these images are limited to use over large areas because of the high expense
of calibrating and processing. In riverine environment, airborne TIR imaging sensors are widely used
for monitoring water temperature. When using airborne data acquisition, it is imperative to consider
that these images do not provide a truly synoptic assessment of water temperature at a particular time,
if the images are collected consecutively along the river course. Therefore, diurnal changes in water
temperature should be considered in planning airborne data collection [252]. TIR imaging system
must also be able to minimize internal drift such that frame-to-frame measurements are consistent.
In addition, in the case of frame based TIR imaging sensors, the TIR accounting for radiometric
distortion must be considered due to variability in individual detector response and lens optics.
These uniformity corrections can be performed internally or during the post processing [253].

Water temperature is a good indicator of the vertical mixing condition and water mass type, and
can be used to estimate primary production and phytoplankton growth rates. Preliminary studies
have shown that the application of remote sensing combined with traditional in situ temperature
measurements can provide reliable information on temperature zones at a relatively low cost.
Many studies have shown the applicability of remote sensing to temperature estimation for rivers
and streams. For example, Torgersen, Faux, McIntosh, Poage and Norton [251] used fine pixel-size
(0.2–0.4 m) airborne TIR images to evaluate the accuracy of radiant temperature measurements, and
found that the remotely sensed radiant temperature was within 0.5 ◦C of in-situ measurements.
They identified that reflected TIR radiation, vertical thermal stratification in the stream, and thermal
boundary-layer effects at the water surface should receive greater attention in the thermal remote
sensing of streams. They also concluded that fine pixel-size measurements of stream temperature
are useful for studying fine-scale spatial variation and patterns in stream temperature related to
hydrological features such as ground-water inputs.
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Accurate remote sensing measurement of sea surface temperature (SST) is also vital for weather
and climate operational as well as atmosphere studies. Infrared radiometers yield SST to around
0.5 ◦C precision, though its use is limited in shady zones due to the presence of clouds or fog.
Therefore, standard remote sensing practices should be applied to identify and mask these issues
out of the used images before one proceeds with the measurement of the water temperature by TIR
radiation. Passive microwave techniques are used in cloudy areas with an accuracy limit of about
1.5–2 ◦C by the relatively large variation of microwave emissivity with surface conditions, such as
wind speed [254]. Addition of active microwave (radar) observations can enhance the precision of
passive microwave estimates of SST. Reviewing the literature indicates the use of infrared thermal
band for quantifying water temperature, which is as summarized in Table 10.

Table 10. Infrared thermal band applications to quantify the water temperature.

Sensor Reference

TIR band of Landsat sensors
(TM, ETM+, and OLI/TIRS)

TM: [43,198,255–257], ETM+: [43,45,197,253,258–261],
OLI/TIRS: [46,262,263]

TIR band of MODIS [22,41,45,264,265]

TIR band of ASTER [45,197,253,260,261,266]

TIR band of AVHRR [44,267–270]

TIR band of airborne MODIS/ASTER (MASTER) [45,253,261,266]

Sea Surface Temperature monitoring studies
using microwave radiometers (MWRs)

WindSat: [271,272], AATSR: [273–276], ATSR-1: [277–279],
ATSR-2: [273,280–282], AMSR-E: [283,284], TMI: [285–287]

4.7. Sea Surface Salinity (SSS)

Salinity and temperature are important factors to identify the density of seawater, and in turn,
density is a critical component driving the currents in the oceans. Therefore, salinity is one of the
key variables worth considering when monitoring and modeling the circulation in oceans. The role
of ocean circulation in moderating the climate is crucial, and thus, sea surface salinity (SSS) is also
critical to determine the global water balance, productivity forecast models, as well as evaporation
rates. For example, when the salinity is relatively low, the mixed layer will be more stable, and the
nutrient pump may be partially inhibited, possibly leading to reduced productivity or a delay in the
onset of spring and autumn phytoplankton blooms [288]. Seasonal and inter-annual variability of sea
surface salinity represent limitations on the hydrologic balance and coupled ocean-atmosphere climate
models [288,289]. Salinity plays a crucial role in the air-sea exchange of gases.

Precipitation makes the ocean water fresher and less dense, which overlays the salty water below,
and this thin layer of sea surface fresh water can spoof the shallow satellite readings. The effect of this
phenomenon in the tropical ocean, where heavy rainfalls can create pools of local fresh water, is more
sensible. It can increase the stability of the upper layer of the water column and significantly reduce
the rates of gas transfer across the pycnocline. Spatial and temporal variations in salinity are greater in
inland waters and gulfs because they are strongly influenced by climatic events like precipitation vs.
evaporation, seasonal river runoff variations, and exchanges with oceans due to tides and flushing
times. Spaceborne and airborne experiments in the 1970s and 80s proved the potential of passive
L-band microwave radiometers for the measurement of SSS.

Satellite remote sensors provide more frequent and higher spatial resolution data and also
make observations at high latitudes. As the measurement of surface salinity by passive microwave
radiometers requires long wavelengths (20–30 cm), accurate estimation of SSS from satellite
altitudes would require an enormous antenna, which most satellites could not accommodate [290].
New interferometric technology has made it possible to overcome such problems with antenna
size [291,292]. For instance, the Moisture and Ocean Salinity satellite (SMOS) has been in use to
measure SSS and provide synthesized SSS maps with a high accuracy. It employs the Microwave
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Imaging Radiometer using Aperture Synthesis (MIRAS), as the primary instrument on the SMOS, with
a fixed two-dimensional interferometric antenna, which operates over a range of incidence angles and
makes it different from the old passive microwave imagers. The SMOS operates in a sun-synchronous
orbit at an altitude of 760 km with a three-day repeat cycle [291–293].

Aquarius is another salinity-related sensor that provides the global view of salinity variability
required for climate studies. Aquarius was launched on June 10, 2011 and was a NASA microwave
radiometer aboard the Argentine. Aquarius L-band radiometer and a scatterometer instrument
combination was designed to provide global salinity maps on a monthly basis with a spatial resolution
between 76 and 156 km, a swath width of 390 km, and an accuracy of 0.2 psu. The Aquarius was
mounted on SAC-D (Scientific Application Satellite-D) and was designed to provide high precision SSS
data and monitor the annual and seasonal variation of the large-scale features of the surface salinity
field in the open ocean. Additionally, it had the capabilities of conducting long-standing studies
regarding how the oceans respond to climate change and the water cycle. For instance, changes in
freshwater input and output to the ocean, associated with precipitation, evaporation, ice melting, and
river runoff, could be obtained from monthly SSS maps. In addition, Aquarius data are useful for
tracking the formation and movement of huge water masses that regulate ocean circulation and the
Earth’s climate (NASA, 2011). The Aquarius instrument successfully achieved its science objectives and
completed its primary three-year mission in November 2014. Airborne microwave radiometers, such
as the Scanning Low-Frequency Microwave Radiometer (SLFMR) and the Salinity, Temperature, and
Roughness Remote Scanner (STARRS), have also been used successfully to map SSS and its variability
in estuaries and coastal waters.

Many researchers have also used indirect methods based on, for example, satellite-derived
temperature profiles, brightness temperature, and CDOM to determine SSS variability. As the
salinity has no direct color signal, it could be rather estimated the color signal dominated by
major water constituents and developed relationships, such as: (I) Relationship between salinity,
temperature, and brightness temperature [64,288,294–301]; and (II) Relationship between salinity and
CDOM [54,166,302,303]. Remote sensors on aircraft and satellites offer a means for making detailed
SSS measurements over large coastal and ocean areas. Some of these experiments are as listed in
Table 11, based on the used sensor.

Other notable experiences are performed using European Remote Sensing satellite (ERS)
C-band scatterometer [304]; the first seven bands of MODIS [305]; TOPEX/Poseidon Microwave
Radiometer [298,306], and Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS)
L-Band Radiometer [64]. Nonetheless, a comparison of the various sensors’ characteristics shows that
the airborne ESTAR and SLFMR are more appropriate than other instruments to sea surface salinity
measurements. That notwithstanding, SMOS and Aquarius are the most widely used sensors for the
remote sensing of salinity.

Table 11. Remote sensing of Sea Surface Salinity (SSS) based on the used sensor.

Sensor Reference

European Soil Moisture and Ocean Salinity (SMOS) [63,65,289,293,307–313]

Aquarius L-band radiometer carried by the SAC-D [66,314–316]

SLFMR [300,317–320]

STARRS [301,319,321]

Other MWRs experiences PALS: [322–324], AMSR-E: [325] 2D-STAR and ESTAR: [326–328]

predicted indirectly by making relationship between
salinity and temperature [64,288,294,295,297–301,329]

predicted indirectly by making relationship between
salinity and CDOM [54,166,302,303]
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Salinity-measuring satellites require extensive procedures for internal and external calibration and
validation to ensure the quality of the geophysical data. These processes are based on characterization
measurements, which are performed initially on the ground before launch and, subsequently, in-flight.
The calibration scheme encompasses both the spaceborne instrument and the ground data processing.
Once the system has been calibrated, the instrument performance can be verified, and the ocean salinity
can be measured with a higher level of confidence [307,308].

4.8. Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)

Dissolved oxygen (DO) is a crucial water quality parameter that influences the living conditions
of all aquatic organisms that require oxygen. The level of DO in waterbodies can be affected by
anthropogenic activities and natural occurrences in catchments. Water temperature, the amount of
oxygen taken out of the system by respiring and decaying organisms, and the amount of oxygen put
back into the system by photosynthesizing plants, stream flow, and aeration are the factors that control
the amount of dissolved oxygen in waterbodies. The water temperature highly influences the amount
of DO; in other words, less oxygen dissolves in warm water than cold water.

Biochemical Oxygen Demand (BOD) is a measure of the amount of oxygen that bacteria will
consume under aerobic conditions while decomposing organic matters. Among the sources of food
for water-borne bacteria include among others natural organic detritus and organic waste from waste
water treatment plants, failing septic systems, as well as agricultural and urban runoff. By exploiting
dissolved oxygen, the bacteria decompose these organic materials resulting in a reduction in the level
of DO necessary for supporting aquatic life. A simple means of determining the biochemical oxygen
demand is by incubating a sealed sample of water for five days and measuring the loss of oxygen
from the beginning to the end of the test. Noteworthy is that the need to dilute the samples prior to
incubation stem from the likelihood of the bacteria depleting all the oxygen available in the bottle
before the test is complete.

Chemical oxygen demand (COD) is the quantity of matter measured with chemical method that
needs to be oxidized in water, especially organic contamination. In the context of chemical oxygen
demand, no differentiation exists between biologically available and inert organic matter, and COD is
largely a measure of the total amount of oxygen required to oxidize all organic material into carbon
dioxide and water. BOD values are always less than COD values, yet measuring the latter take only a
few hours while measuring BOD takes five days.

Any discharge of effluent with high BOD levels into a stream or river spontaneously accelerates
bacterial growth in the river, which in turn consumes and thus reduces the oxygen levels of the water.
One pertinent catastrophe is that the oxygen may diminish to levels that are lethal for most fish and
many aquatic insects. However, as the river re-aerates due to atmospheric mixing coupled with algal
photosynthesis that adds oxygen to the water, the oxygen levels will slowly increase downstream.
Routine methods to measure COD are based on points, and have the time-consuming and laborious
disadvantages in obtaining the distribution patterns so that it is difficult to reflect the status of whole
region synchronously. This kind of point sampling methods may give accurate measurements, but
they are time and money consuming. Further and most importantly, they cannot provide the real-time
spatial overview that is necessary for the global assessment and monitoring of water quality [90].
Satellite remote sensing may provide suitable ways to integrate aquatic data collected from traditional
in situ measurements.

A review of the available literature confirmed that no single identified and/or recommended
sensors can be used with high confidence to perform an appropriate model to measure the reflectance of
water resulting from DO, COD, and BOD. There are some examined statistical techniques to determine
the relationship between the satellites estimated reflectance and physicochemical parameters of water.
Several water quality models were developed to investigate the relationship between the measured
values of DO, BOD, and COD in laboratory and remote sensing reflectance, by establishing linear,
exponential, and logarithmic regressions. Also, various bands ratios have been studied to obtain the
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DO, BOD, and COD distribution maps in order to analyze the spatial and temporal changes of these
water quality parameters. However, interpretation of the satellite or airborne images and making
authentic relationships between spectral characteristics of images and in situ measurements of DO,
BOD, and COD in the aquatic ecosystems are still poorly understood. The most notable studies to
estimate the amounts of DO, BOD, and COD are as cited in Table 12.

Although the results of studied articles indicated that the Landsat/TM was used much more than
other sensors to estimate the amount of DO, BOD and COD, this research found relatively low potential
and accuracy of current remote sensing techniques for the measurements of DO, BOD and COD values
in waterbodies, unless there are enough and adequate ground proofs. In situ measurements of surface
water radiation and atmospheric corrections of images are vitally important for both the calibration
and validation of remotely sensed data.

Table 12. Remote sensing of dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical
oxygen demand (COD) based on the used sensor.

Sensor Reference

Landsat 5-TM [61,73,74,77]
Landsat 5-MSS [75]
WorldView-2 [9]
IRS-LISS-III [71]
MODIS [169]
MERIS [169]
AVHRR [62]
SeaWiFS [236]
SPOT [76]

Despite the fact that remote sensing can be used to reflect many of water quality parameters, such
as Secchi disk depth, chlorophyll concentrations, CDOM, total suspended sediments, and temperature,
emphasis should be placed on the fact that this technique cannot substitute the traditional methods.
The reason behind this is that some parameters of water quality, like DO, BOD and COD cannot be
determined with a high level of confidence by these techniques. However, remote sensing techniques
are valuable and important for remote areas where direct access is not easy and where the sum of
sampling and chemistry analysis costs is high.

5. Limitations of Remote Sensing for the Assessment of Water Quality Parameters

Remote sensing is a suitable technique to study the spatial and temporal variations of water
quality variables. However, a number of important constraints that require precise considerations
prior to conducting this technique. Developed models from remote sensing data require adequate
calibration, and validation using in situ measurements, and can be used only in the absence of clouds.
Moreover, the accuracy of extracted water quality parameters might be debatable for some situations;
for instance, Kutser [170] contends that the densest areas of cyanobacteria blooms in the Baltic Sea are
usually undetected by standard satellite products due to atmospheric correction or processing errors.

The spatial, temporal, and spectral resolution limitations of many current optical sensors can
confine the application of remotely sensed data to assess water quality. Furthermore, certain key
parameters that are not easy to measure directly by optical sensors exist, examples of which include
water discharge and vertical distribution of water quality parameters in waterbodies. The cost
of hyperspectral or airborne data, as well as the required equipment for in situ hyperspectral
measurement, is among the main restrictions of using remote sensing methods for water quality
assessment. The optical complexities of inland and coastal waters also narrow the scope of remote
sensing application [40].

The segregation of spectral signatures for chl-a, CDOM, and inorganic suspended matter is not
well documented in the literature, which is challenging because of the influence of these parameter on
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each other. The atmospheric interference also restricts the optical signals coming from waterbodies.
In the clear sea waters, the maximum light penetration depth expected is about 55 m near 475 nm [330],
and the majority of the incident energy on the water surface is absorbed, and/or transmitted. On the
other hand, when the concentrations of suspended sediment extend to say 400 mg/liter, the penetration
depth reduces to only 60 cm. Therefore, a progressively thinner layer of surface water is detectable [40].

Most of the studies have focused on optically active variables, such as chl-a, CDOM, TSS, and
turbidity. However, a number of important water quality variables such as PH, total nitrogen (TN),
ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), and dissolved phosphorus (DP), etc. are not
well investigated due to their weak optical characteristics and low signal noise ratio. Despite the
mentioned limitations, remote sensing is still a useful tool for water quality monitoring.

6. Discussion

Several satellite images could be used for water quality assessments. Nonetheless, Landsat TM
(Thematic Mapper) images have been used extensively due to their relatively low cost, temporal
coverage and spatial resolution [3,11,12,26,42,58,61,73,86,88,102,103,105,106,109]. TM data resided on
Landsat-5, a sensor that was operational from 1984 until November 2011, and is considered one of
the oldest sensors still used for water quality assessment today [39,61,69,213,216,331]. Results from
earlier studies referenced in tables indicate that the resolution of Landsat TM is suitable for water
quality studies.

Information from the available literature revealed that the Landsat sensors, TM
(Thematic Mapper), MSS (Multi-Spectral Scanner), ETM (Enhanced Thematic Mapper), and
OLI (Operational Land Imager) have been used fairly successfully to measure most of the important
water quality parameters, such as chlorophyll-a, Secchi disk depth, Total phosphorus, Total Suspended
matters, Turbidity, Dissolved Oxygen, Biochemical Oxygen Demand, and Chemical Oxygen
Demand [10,24,39,42,61,75,130,196]. Nonetheless, the use of Landsat data for measuring water quality
characteristics has important limitations. The repeat cycle of 16 days imposes major limitations
on intra-seasonal monitoring, especially in areas characterized by frequent cloud cover. The water
quality parameter characteristics must be related to an “inherent optical property” (IOP) that can be
measured by the satellite sensor [42]. For instance, Kloiber, Brezonik and Bauer [24] related Secchi
disk transparency (SDT) to the radiance measured by Landsat TM and MSS in several spectral bands.
Some other potential sources of error due to varying atmospheric conditions are mentioned for
Landsat. For example, Brezonik, Menken and Bauer [42] noted that the measurements of the radiance
at the TM sensor are not calibrated for the intensity of incoming solar radiation, which varies with
latitude, season, and time of day. Atmospheric interference can be significant over waterbodies
because atmospheric haze scatters light (especially blue wavelengths), and the potential for such
interference increases as reflected radiance from the water decreases; thus, lake waters with high
clarity and high algae and CDOM are most affected. These restrictions may apply to other sensors
with similar characteristics to Landsat sensors.

Although, spaceborne hyperspectral sensors with low spatial resolutions, such as MERIS and
MODIS have been used for many years to monitor coastal and large inland waterbodies, currently,
there are not many hyperspectral sensors in space with suitable spatial resolution capable of monitoring
small lakes and ponds. Due to its spatial resolution of 30 m, the hyperspectral imaging spectrometer
Hyperion on the EO-1 platform, launched in November 2000, gave rise to new possibilities of
operational monitoring [332]. The Compact High Resolution Imaging Spectrometer (CHRIS) on
the platform PROBA with a ground resolution of 18 m complies with these requirements as well.
However, since it is a technology demonstrator, it is not in operational use.

Spaceborne and airborne remote sensing and their characteristics, advantages, and disadvantages
were discussed previously in this paper. Different considerations of a project, such as required spatial
and spectral resolution, geographic coverage area, and project budget determine the preference of one
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sensor or another. Table 13 represents a summarized comparison of the previously discussed issues
related to spaceborne and airborne sensors, where various parameters of these sensors are compared.

Table 13. Comparison between spaceborne and airborne sensors.

Parameter Spaceborne Airborne

Time of overpass Mostly fixed Flexible

Spatial resolution

Ground Sampling Distance (GSD) up to
0.5 m for panchromatic images. For
multi-band images, it ranges from a few
meters (low altitude sensors) up to a few
kilometers for high altitude sensors

Ground Sampling Distance
(GSD) < 5 m

Spectral resolution

Mostly panchromatic (one band) to
multispectral, recently developed sensors
like HyspIRI, CHRIS, and HICO
are hyperspectral

Panchromatic to hyperspectral

Temporal resolution
(Revisit time) Days Minutes

Calibration Precalibration before launch, then on-board
characterization (usually yearly)

Before launch + possible
on-board

Cost

Free (non-commercial), up to about
$50 per sq km (commercial). High spatial
resolution imagery can be very expensive
(~$2–10 k per scene)

Average costs of
$350 per square mile
(Chipman et al. 2009)

Stability High Low, due to turbulence

Swath width
High (up to 2500 km for low altitude
sensors, a full hemisphere for high
altitude sensors)

Small (up to 10 km per
flight line)

Interpretation approaches Mostly empirical-and
semi-empirical-based approaches

Both empirical and
analytical approaches

Complexity of
image processing

Less complex compared to
hyperspectral sensors

Processing of hyperspectral
images is more complex and
requires specific skills

Constraints

Limited to the coverage schedule of the
satellite, including weather/cloud
constraints; this can be challenging when
trying to conduct water quality monitoring
at a certain time of the year or dealing with
project schedules

Coverage schedule is flexible

Geographic coverage areas Local, regional, and global Local and regional

Morel & Gordon [333] distinguished three different approaches for estimating concentration
of water quality parameters; empirical, semi-empirical, and physical or analytical approach.
Empirical approaches seek statistical relationships between spectral bands or band combinations
and the measured water parameters, without including knowledge of spectral characteristics of the
constituents or any physical explanation of the relationship. Semi-empirical methods utilize the
physical and spectral information (e.g. absorption features) to develop the algorithms, which are then
correlated to the measured constituents. The statistical coefficients are typically bound to the specific
region and time of calibration. Analytical approaches determine the constituents’ concentration by
modeling the reflectance of surface water and utilizing the inherent and apparent optical characteristics.
However, the semi-analytical approaches use simplified analytical models.

The empirical approaches are easy to implement and require less mathematical skills and
computation time. Nonetheless, these methods are not suitable for parameters which do not represent



Sensors 2016, 16, 1298 26 of 43

distinctive absorption features, like CDOM and to a certain extent for suspended matters [334].
The analytical approaches can simultaneously determine all constituents of water if the inherent
properties of the parameters are well known and large amounts of in situ data are accessible.

7. Conclusions and Recommendation

By increasing the anthropogenic activities and industrial development, water quality has
dramatically degraded. Remote sensing and GIS techniques in conjunction with traditional in-situ
sampling are the most effective, cheaper and more reliable tools for monitoring water quality
parameters in various waterbodies (lakes, rivers, ground water, etc.). From the available literature, one
pertinent deduction is that various space-borne and airborne sensors can measure water quality
parameters with reliable precision. Newly developed hyperspectral satellite imageries, which
can simultaneously record up to 200 spectral channels, such as the Hyperspectral Imager for the
Coastal Ocean (HICO), are much more powerful systems for detecting water quality parameters.
Also, hyperspectral airborne sensors have greater potential because of their simultaneous collection of
narrower and contiguous bands that allow various parameters of water quality to be measured and
monitored. Therefore, monitoring and assessing water quality issues through remotely sensed data can
result in effective management of water resources. However, few managerial decisions rely on remote
sensing-derived water quality evaluations. Instead, current methods for measuring water quality
focus on periodic (boat-based) or continuous (ship-based or buoy-based) monitoring models. To best
realize the full application potential of remote sensing technologies, an open and effective dialogue
is needed between scientists, policy makers, environmental managers, and stakeholders at federal,
state, and local level. Results from an internal US Environmental Protection Agency qualitative survey
performed by Schaeffer et al. [335] were used to determine perceptions regarding the use of satellite
remote sensing for water quality monitoring to begin understanding why management decisions do
not typically rely on satellite-derived water quality products. They also pointed out that difficulties in
developing solutions to clarify the perceptions of environmental managers, identified 22 years ago by
Specter and Gayle [336], still exist today.

In most cases, managers and policy makers without technical expertise typically lack the
knowledge to understand technical descriptions, abilities and limitations of remote sensing techniques.
Therefore, it is essential to clarify perceptions of water quality managers, which does not seem to be
necessarily simple or readily achievable. It is highly recommended that researchers, who work in the
field of optics and remote sensing beyond publishing manuscripts in peer-reviewed journals, continue
to communicate more with water resource management agencies on using appropriate available tools
to address important monitoring requirements.

As illustrated in this paper, both satellite and airborne remote sensing are useful in assessing the
quality of inland waters. Airborne sensors are more flexible tools than spaceborne sensors because
of their higher spatial and spectral resolution coupled with their greater number of spectral bands
that makes it possible to retrieve the water quality parameters with more accuracy. Airborne sensors
are more suitable to monitor smaller waterbodies, such as rivers and their tributaries, ponds, and
estuaries, while satellite sensors are more suitable for the observation of larger waterbodies. In this
paper, various properties (spectral, spatial and temporal, etc.) of spaceborne and airborne sensors are
tabulated to be used as a sensor selection guide in related studies. Furthermore, based on the literature
surveyed, this paper compiled a list of sensors that have been used by researchers to measure various
water quality parameters, and compares various parameters of spaceborne and airborne sensors.

Due to the need for high accuracy in local-scale and riverine studies, some of the above mentioned
sensors, such as SeaWiFS data are of little use. For these cases, the high resolution and/or hyperspectral
remote sensing on spaceborne platforms such as EO-1/Hyperion, ALOS AVNOR-2, IKONOS, HICO,
and Landsat-8 and airborne platforms CASI, AISA, AVIRIS, HyMap are recommended for use in water
quality measurements.
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In addition, the recent advances in computer sciences have had a profound influence on the
water quality monitoring, resulting in a broader development of the remote sensing technology.
Computers can store and analyze the large sets of data generated by most of the Remote Sensing
projects. Also, the use of decision support systems (DSS) and Geographical Information Systems (GIS)
provide efficient tools for storing, manipulating and analyzing remote sensing data. GIS can enhance
the contributions of water quality modelling for practical water quality forecasting, which is essential
for sustainable water resources management and development. Therefore, the excellent practicality
and interoperability of the RS and GIS techniques will lead the future water quality models towards
integration of RS and GIS techniques and the increased use of these technologies in qualitative studies
of water resources. Regardless of numerous endeavors reported in the literature, remote sensing
techniques utilized to quantify water quality are yet to be adopted on a routine framework. Based on
author’s prior knowledge and experience, and the gained information from this literature review, a
schematic flowchart of the supposed framework for water quality monitoring and assessment using
remote sensing techniques is presented in Figure 4. Despite the recent development of analytical
approaches, empirical and semi-empirical algorithms are still in extensive use due to the complexity
of analytical approaches in terms of their theory and calculation difficulties. Improvement of the
methodology to interpret images from simple linear regression to multivariate statistical analysis
approaches like principle components analysis (PCA) and neural networks will help to make the
procedures more accurate and easier to manipulate.Sensors 2016, 16, x 27 of 42 
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125. Osińska-Skotak, K.; Kruk, M.; Mróz, M.; Ciołkowska, M. Chris/Proba Superspectral Data for Inland Water
Quality Studies; Imaging Spectrocsopy—New Quality in Environmental Studies: Warsaw, Poland, 2005;
pp. 357–366.

126. Alberts, J.; Filip, Z. Humic substances in rivers and estuaries of Georgia, USA. Trends Chem. Geol. 1994, 1,
143–161.

http://dx.doi.org/10.3390/s150306152
http://www.ncbi.nlm.nih.gov/pubmed/25781507
http://dx.doi.org/10.3390/rs6021007
http://dx.doi.org/10.1080/01431161.2014.894663
http://dx.doi.org/10.1080/07438140609353895
http://dx.doi.org/10.1016/j.rse.2010.06.006
http://dx.doi.org/10.1016/j.rse.2012.11.001
http://dx.doi.org/10.1016/j.watres.2011.11.068
http://www.ncbi.nlm.nih.gov/pubmed/22209281
http://dx.doi.org/10.1007/s10661-010-1831-7
http://www.ncbi.nlm.nih.gov/pubmed/21243424
http://dx.doi.org/10.1016/j.rse.2006.12.017
http://dx.doi.org/10.1080/10106049109354290


Sensors 2016, 16, 1298 34 of 43

127. Lathrop, R.G. Use of Thematic Mapper data to assess water quality in Green Bay and central Lake Michigan.
Photogramm. Eng. Remote Sens. 1986, 52, 671–680.

128. Ekercin, S. Water quality retrievals from high resolution IKONOS multispectral imagery: A case study in
Istanbul, Turkey. Water Air Soil Pollut. 2007, 183, 239–251. [CrossRef]

129. Zhang, C.; Han, M. Mapping chlorophyll—A concentration in Laizhou Bay using Landsat 8 oli data.
In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015.

130. Kim, S.-I.; Kim, H.-C.; Hyun, C.-U. High resolution ocean color products estimation in Fjord of Svalbard,
arctic sea using Landsat-8 oli. Korean J. Remote Sens. 2014, 30. [CrossRef]

131. Mannheim, S.; Segl, K.; Heim, B.; Kaufmann, H. Monitoring of lake water quality using hyperspectral
chris-proba data. In Proceedings of the 2nd CHRIS/PROBA Workshop, ESA/ESRIN, Frascati, Italy,
28–30 April 2004; pp. 28–30.

132. Choe, E.-Y.; Lee, J.-W.; Lee, J.-K. Estimation of chlorophyll-a concentrations in the nakdong river using
high-resolution satellite image. Korean J. Remote Sens. 2011, 27, 613–623. [CrossRef]

133. Qi, L.; Hu, C.; Duan, H.; Barnes, B.B.; Ma, R. An EOF-based algorithm to estimate chlorophyll a concentrations
in Taihu Lake from MODIS land-band measurements: Implications for near real-time applications and
forecasting models. Remote Sens. 2014, 6, 10694–10715.

134. Feng, L.; Hu, C.; Han, X.; Chen, X.; Qi, L. Long-term distribution patterns of chlorophyll-a concentration in
China’s largest freshwater lake: MERIS full-resolution observations with a practical approach. Remote Sens.
2014, 7, 275–299. [CrossRef]

135. Aiken, G.R.; McKnight, D.M.; Wershaw, R.L.; MacCarthy, P. Humic Substances in Soil, Sediment, and Water:
Geochemistry, Isolation and Characterization; John Wiley & Sons: New York, NY, USA, 1985.

136. Corbett, C.A. Colored Dissolved Organic Matter (CDOM) Workshop Summary; University of South Florida:
Tampa, FL, USA, 2007.

137. Miller, R.L.; DelCastillo, C.E.; Powell, R.T.; DSa, E.; Spiering, B. Mapping CDOM Concentration in Waters
Influenced by the Mississippi River Plume; NASA Technical Reports Server: Cleveland, OH, USA, 2002.

138. Strömbeck, N.; Pierson, D.C. The effects of variability in the inherent optical properties on estimations of
chlorophyll a by remote sensing in Swedish freshwaters. Sci. Total Environ. 2001, 268, 123–137. [CrossRef]

139. Mannino, A.; Russ, M.E.; Hooker, S.B. Algorithm development and validation for satellite-derived
distributions of DOC and CDOM in the Us Middle Atlantic Bight. J. Geophys. Res. Oceans 2008, 113.
[CrossRef]

140. Antoine, D.; d’Ortenzio, F.; Hooker, S.B.; Bécu, G.; Gentili, B.; Tailliez, D.; Scott, A.J. Assessment of uncertainty
in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at
an offshore site in the Mediterranean Sea (BOUSSOLE project). J. Geophys. Res. Oceans 2008, 113. [CrossRef]

141. Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband
quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [CrossRef] [PubMed]

142. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: New York, NY, USA, 1994.
143. Nelson, N.B.; Siegel, D.A. Chromophoric DOM in the open ocean. In Biogeochemistry of Marine Dissolved

Organic Matter; Academic Press: San Diego, CA, USA, 2002; pp. 547–578.
144. Hoge, F.E.; Williams, M.E.; Swift, R.N.; Yungel, J.K.; Vodacek, A. Satellite retrieval of the absorption coefficient

of chromophoric dissolved organic matter in continental margins. J. Geophys. Res. Oceans 1995, 100,
24847–24854. [CrossRef]

145. Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow
waters: 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843.
[CrossRef] [PubMed]

146. Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping lake CDOM by satellite remote sensing.
Remote Sens. Environ. 2005, 94, 535–540. [CrossRef]

147. Pan, X.; Mannino, A.; Russ, M.E.; Hooker, S.B. Remote sensing of the absorption coefficients and chlorophyll
a concentration in the United States Southern middle Atlantic Bight from SeaWiFS and MODIS-Aqua.
J. Geophys. Res. Oceans 2008, 113. [CrossRef]

148. Ammenberg, P.; Flink, P.; Lindell, T.; Pierson, D.; Strombeck, N. Bio-optical modelling combined with remote
sensing to assess water quality. Int. J. Remote Sens. 2002, 23, 1621–1638. [CrossRef]

http://dx.doi.org/10.1007/s11270-007-9373-5
http://dx.doi.org/10.7780/kjrs.2014.30.6.11
http://dx.doi.org/10.7780/kjrs.2011.27.5.613
http://dx.doi.org/10.3390/rs70100275
http://dx.doi.org/10.1016/S0048-9697(00)00681-1
http://dx.doi.org/10.1029/2007JC004493
http://dx.doi.org/10.1029/2007JC004472
http://dx.doi.org/10.1364/AO.41.005755
http://www.ncbi.nlm.nih.gov/pubmed/12269575
http://dx.doi.org/10.1029/95JC02561
http://dx.doi.org/10.1364/AO.38.003831
http://www.ncbi.nlm.nih.gov/pubmed/18319990
http://dx.doi.org/10.1016/j.rse.2004.11.009
http://dx.doi.org/10.1029/2008JC004852
http://dx.doi.org/10.1080/01431160110071860


Sensors 2016, 16, 1298 35 of 43

149. Doxaran, D.; Cherukuru, N.; Lavender, S.J. Apparent and inherent optical properties of turbid estuarine
waters: Measurements, empirical quantification relationships, and modeling. Appl. Opt. 2006, 45, 2310–2324.
[CrossRef] [PubMed]

150. Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices
derived from hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [CrossRef]

151. Pu, R.; Yu, Q.; Gong, P.; Biging, G. EO-1 Hyperion, ALI and Landsat 7 ETM+ data comparison for estimating
forest crown closure and leaf area index. Int. J. Remote Sens. 2005, 26, 457–474. [CrossRef]

152. Xu, B.; Gong, P. Land-use/land-cover classification with multispectral and hyperspectral EO-1 data.
Photogramm. Eng. Remote Sens. 2007, 73, 955–965. [CrossRef]

153. Yu, Q.; Tian, Y.Q.; Chen, R.F.; Liu, A.; Gardner, G.B.; Zhu, W. Functional linear analysis of in situ hyperspectral
data for assessing CDOM in rivers. Photogramm. Eng. Remote Sens. 2010, 76, 1147–1158. [CrossRef]

154. Ferrari, G.M.; Hoepffner, N.; Mingazzini, M. Optical properties of the water in a deltaic environment:
Prospective tool to analyze satellite data in turbid waters. Remote Sens. Environ. 1996, 58, 69–80. [CrossRef]

155. Del Castillo, C.E.; Gilbes, F.; Coble, P.G.; Müller-Karger, F.E. On the dispersal of riverine colored dissolved
organic matter over the west florida shelf. Limnol. Oceanogr. 2000, 45, 1425–1432. [CrossRef]

156. Stedmon, C.A.; Markager, S.; Søndergaard, M.; Vang, T.; Laubel, A.; Borch, N.H.; Windelin, A. Dissolved
organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use.
Estuar. Coasts 2006, 29, 388–400. [CrossRef]

157. Spencer, R.G.; Ahad, J.M.; Baker, A.; Cowie, G.L.; Ganeshram, R.; Upstill-Goddard, R.C.; Uher, G.
The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to
chromophoric dissolved organic matter in two North Sea Estuaries (UK). Estuar. Coast. Shelf Sci. 2007, 74,
131–144. [CrossRef]

158. Vignudelli, S.; Santinelli, C.; Murru, E.; Nannicini, L.; Seritti, A. Distributions of dissolved organic carbon
(DOC) and chromophoric dissolved organic matter (CDOM) in coastal waters of the northern Tyrrhenian
Sea (Italy). Estuar. Coast. Shelf Sci. 2004, 60, 133–149. [CrossRef]

159. Ortega-Retuerta, E.; Siegel, D.; Nelson, N.; Duarte, C.M.; Reche, I. Observations of chromophoric dissolved
and detrital organic matter distribution using remote sensing in the southern ocean: Validation, dynamics
and regulation. J. Mar. Syst. 2010, 82, 295–303. [CrossRef]

160. Paavel, B.; Arst, H.; Metsamaa, L.; Toming, K.; Reinart, A. Optical investigations of CDOM-rich coastal
waters in Pärnu Bay. Estonian J. Earth Sci. 2011, 60, 102–112. [CrossRef]

161. Palacios, S.L.; Peterson, T.D.; Kudela, R.M. Development of synthetic salinity from remote sensing for the
Columbia River Plume. J. Geophys. Res. Oceans 2009, 114. [CrossRef]

162. D’Alimonte, D.; Zibordi, G.; Berthon, J.-F. Determination of CDOM and NPPM absorption coefficient
spectra from coastal water remote sensing reflectance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1770–1777.
[CrossRef]

163. Georgas, N.; Li, W.; Blumberg, A.F. Investigation of Coastal CDOM Distributions Using In-Situ and Remote
Sensing Observations and a Predictive CDOM Fate and Transport Model; DTIC Document: Detroit, MI, USA, 2009.

164. Alvarez-Borrego, S. Satellite derived photosynthetic pigment surveys: A review of marine phytoplankton
biomass and productivity. Oceanogr. Lit. Rev. 1996, 11, 1174–1175.

165. Schroeder, T.; Brando, V.; Cherukuru, N.; Clementson, L.; Blondeau-Patissier, D.; Dekker, A.; Schaale, M.;
Fischer, J. Remote sensing of apparent and inherent optical properties of tasmanian coastal waters:
Application to MODIS data. In Proceedings of the XIX Ocean Optics Conference, Barga, Italy,
6–10 October 2008.

166. Ahn, Y.; Shanmugam, P.; Moon, J.; Ryu, J.-H. Satellite remote sensing of a low-salinity water plume in the
East China Sea. In Annales Geophysicae; Copernicus GmbH: Antalya, Turkey, 2008; pp. 2019–2035.

167. D’Sa, E. Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA:
Effects of an algal bloom. J. Appl. Remote Sens. 2008, 2. [CrossRef]

168. D’Sa, E.J.; Miller, R.L. Bio-optical properties in waters influenced by the mississippi river during low flow
conditions. Remote Sens. Environ. 2003, 84, 538–549. [CrossRef]

169. Tehrani, N.C.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S.; Schaeffer, B.A. Chromophoric dissolved organic matter
and dissolved organic carbon from sea-viewing wide field-of-view sensor (SeaWiFS), moderate resolution
imaging spectroradiometer (MODIS) and MERIS sensors: Case study for the northern gulf of mexico.
Remote Sens. 2013, 5, 1439–1464. [CrossRef]

http://dx.doi.org/10.1364/AO.45.002310
http://www.ncbi.nlm.nih.gov/pubmed/16608000
http://dx.doi.org/10.1109/TGRS.2003.812910
http://dx.doi.org/10.1080/01431160512331299324
http://dx.doi.org/10.14358/PERS.73.8.955
http://dx.doi.org/10.14358/PERS.76.10.1147
http://dx.doi.org/10.1016/0034-4257(96)00058-2
http://dx.doi.org/10.4319/lo.2000.45.6.1425
http://dx.doi.org/10.1007/BF02784988
http://dx.doi.org/10.1016/j.ecss.2007.03.032
http://dx.doi.org/10.1016/j.ecss.2003.11.023
http://dx.doi.org/10.1016/j.jmarsys.2010.06.004
http://dx.doi.org/10.3176/earth.2011.2.04
http://dx.doi.org/10.1029/2008JC004895
http://dx.doi.org/10.1109/TGRS.2004.831444
http://dx.doi.org/10.1117/1.2838253
http://dx.doi.org/10.1016/S0034-4257(02)00163-3
http://dx.doi.org/10.3390/rs5031439


Sensors 2016, 16, 1298 36 of 43

170. Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal
and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [CrossRef]

171. Kutser, T.; Pierson, D.; Tranvik, L.; Reinart, A.; Sobek, S.; Kallio, K. Estimating the colored dissolved organic
matter absorption coefficient in lakes using satellite remote sensing. Ecosystems 2005, 8, 709–720. [CrossRef]

172. Tiwari, S.; Shanmugam, P. An optical model for the remote sensing of coloured dissolved organic matter in
coastal/ocean waters. Estuar. Coast. Shelf Sci. 2011, 93, 396–402. [CrossRef]

173. Kutser, T.; Paavel, B.; Verpoorter, C.; Kauer, T.; Vahtmäe, E. Remote sensing of water quality in optically
complex lakes. In Proceedings of the XXII Congress of the International Society for Photogrammetry and
Remote Sensing, Melbourne, Australia, 25 August–1 September 2012.

174. Shahraiyni, T.H.; Schaale, M.; Fell, F.; Fischer, J.; Preusker, R.; Vatandoust, M.; Shouraki, B.S.; Tajrishy, M.;
Khodaparast, H.; Tavakoli, A. Application of the active learning method for the estimation of geophysical
variables in the caspian sea from satellite ocean colour observations. Int. J. Remote Sens. 2007, 28, 4677–4683.
[CrossRef]

175. Kishino, M.; Tanaka, A.; Ishizaka, J. Retrieval of chlorophyll a, suspended solids, and colored dissolved
organic matter in Tokyo Bay using aster data. Remote Sens. Environ. 2005, 99, 66–74. [CrossRef]

176. Johannessen, S.; Miller, W.; Cullen, J. Calculation of uv attenuation and colored dissolved organic matter
absorption spectra from measurements of ocean color. J. Geophys. Res. Oceans 2003, 108. [CrossRef]

177. Lindell, L.; Steinvall, O.; Jonsson, M.; Claesson, T. Mapping of coastal-water turbidity using Landsat imagery.
Int. J. Remote Sens. 1985, 6, 629–642. [CrossRef]

178. Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory
and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [CrossRef]

179. Lathrop, R. Landsat Thematic Mapper monitoring of turbid inland water quality. Photogramm. Eng. Remote
Sens. (United States) 1992, 58, 465–470.

180. Kloiber, S.M.; Anderle, T.H.; Brezonik, P.L.; Olmanson, L.; Bauer, M.E.; Brown, D.A. Trophic state assessment
of lakes in the Twin Cities (Minnesota, USA) region by satellite imagery. Adv. Limnol. Stuttg. 2000, 55,
137–151.

181. Dewidar, K.; Khedr, A. Water quality assessment with simultaneous Landsat-5 TM at Manzala Lagoon,
Egypt. Hydrobiologia 2001, 457, 49–58. [CrossRef]

182. Hadjimitsis, D.; Toulios, L.; Clayton, C.; Spanos, K. Dam trophic state evaluation using satellite remote
sensing techniques: A case study of Asprokremmos Dam in paphos, Cyprus. In Proceedings of the
International Conference on Protection and Restoration VI, Thassos, Greece, 28 June–1 July 2004.

183. Secchi Disk. Available online: https://en.wikipedia.org/w/index.php?title=Secchi_disk&oldid=710966414
(accessed on 28 July 2016).

184. Choubey, V. Laboratory experiment, field and remotely sensed data analysis for the assessment of suspended
solids concentration and secchi depth of the reservoir surface water. Int. J. Remote Sens. 1998, 19, 3349–3360.
[CrossRef]

185. Hurley, P.; Payzant, L.; Topliss, J. Monitoring offshore water quality from space. IGARSS’ 88. Remote Sensing:
Moving Towards the 21st Century. In Proceedings of the 1988 International Geoscience and Remote Sensing
Symposium, Edinburgh, UK, 12–16 September 1988.

186. Pattiaratchi, C.; Lavery, P.; Wyllie, A.; Hick, P. Estimates of water quality in coastal waters using multi-date
Landsat Thematic Mapper data. Int. J. Remote Sens. 1994, 15, 1571–1584. [CrossRef]

187. Mulhearn, P. Landsat reflectivities versus Secchi disc depths. Remote Sens. 1995, 16, 257–268. [CrossRef]
188. Liu, Y.; Islam, M.A.; Gao, J. Quantification of shallow water quality parameters by means of remote sensing.

Prog. Phys. Geogr. 2003, 27, 24–43. [CrossRef]
189. Lavery, P.; Pattiaratchi, C.; Wyllie, A.; Hick, P. Water quality monitoring in estuarine waters using the Landsat

Thematic Mapper. Remote Sens. Environ. 1993, 46, 268–280. [CrossRef]
190. Álvarez-Robles, J.A.; Zarazaga-Soria, F.J.; Ángel, M.; Latre, R.B.; Muro-Medrano, P.R. Water quality

monitoring based on sediment distribution using satellite imagery. In Proceedings of the 9th AGILE
Conference on Geographic Information Science, Visegrad, Hungary, 20–22 April 2006; pp. 144–150.

191. Garrison, V.; Bryant, N. Lake Classification in Vermont; NASA Technical Reports Server: Cleveland, OH,
USA, 1981.

192. Khorram, S.; Cheshire, H.; Geraci, A.L.; ROSA, G.L. Water quality mapping of Augusta Bay, Italy from
Landsat-TM data. Int. J. Remote Sens. 1991, 12, 803–808. [CrossRef]

http://dx.doi.org/10.1080/01431160802562305
http://dx.doi.org/10.1007/s10021-003-0148-6
http://dx.doi.org/10.1016/j.ecss.2011.05.010
http://dx.doi.org/10.1080/01431160701442062
http://dx.doi.org/10.1016/j.rse.2005.05.016
http://dx.doi.org/10.1029/2000JC000514
http://dx.doi.org/10.1080/01431168508948486
http://dx.doi.org/10.1016/j.rse.2015.08.002
http://dx.doi.org/10.1023/A:1012281416096
https://en.wikipedia.org/w/index.php?title=Secchi_disk&oldid=710966414
http://dx.doi.org/10.1080/014311698214037
http://dx.doi.org/10.1080/01431169408954192
http://dx.doi.org/10.1080/01431169508954394
http://dx.doi.org/10.1191/0309133303pp357ra
http://dx.doi.org/10.1016/0034-4257(93)90047-2
http://dx.doi.org/10.1080/01431169108929696


Sensors 2016, 16, 1298 37 of 43

193. Verdin, J.P. Monitoring water quality conditions in a large western reservoir with Landsat imagery.
Photogramm. Eng. Remote Sens. 1985, 51, 343–353.

194. Mausel, P.; Karaska, M.; Mao, C.; Escobar, D.; Everitt, J. Insights into secchi transparency through computer
analysis of aerial multispectral video data. Remote Sens. 1991, 12, 2485–2492. [CrossRef]

195. Braga, C.Z.F.; Setzer, A.W.; de Lacerda, L.D. Water quality assessment with simultaneous Landsat-5 TM data
at guanabara bay, Rio de Janeiro, Brazil. Remote Sens. Environ. 1993, 45, 95–106. [CrossRef]

196. Powell, R.; Brooks, C.; French, N.; Shuchman, R. Remote Sensing of Lake Clarity; Michigan Tech Research
Institute: Ann Arbor, MI, USA, 2008.

197. Stefouli, M.; Dimitrakopoulos, D.; Papadimitrakis, J.; Charou, E. Monitoring and assessing internal
waters (lakes) using operational space borne data and field measurements. In Proceedings of the
European Water Resources Association on Water Resources management–EWRA Symposium, İzmir, Turkey,
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