18,294 research outputs found

    Le Chatelier principle in replicator dynamics

    Full text link
    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both this type of equilibria satisfy the detailed balance condition.Comment: 12 pages, 3 figure

    Quantum Replicator Dynamics

    Full text link
    We propose quantization relationships which would let us describe and solution problems originated by conflicting or cooperative behaviors among the members of a system from the point of view of quantum mechanical interactions. The quantum analogue of the replicator dynamics is the equation of evolution of mixed states from quantum statistical mechanics. A system and all its members will cooperate and rearrange its states to improve their present condition. They strive to reach the best possible state for each of them which is also the best possible state for the whole system. This led us to propose a quantum equilibrium in which a system is stable only if it maximizes the welfare of the collective above the welfare of the individual. If it is maximized the welfare of the individual above the welfare of the collective the system gets unstable and eventually it collapses.Comment: 10 page

    A relaxation model for liquid-vapor phase change with metastability

    Get PDF
    We propose a model that describes phase transition including meta\-stable states present in the van der Waals Equation of State. From a convex optimization problem on the Helmoltz free energy of a mixture, we deduce a dynamical system that is able to depict the mass transfer between two phases, for which equilibrium states are either metastable states, stable states or {a coexistent state}. The dynamical system is then used as a relaxation source term in an isothermal 4×\times4 two-phase model. We use a Finite Volume scheme that treats the convective part and the source term in a fractional step way. Numerical results illustrate the ability of the model to capture phase transition and metastable states

    Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols

    Get PDF
    Semivolatile organic and inorganic aerosol species partition between the gas and aerosol particle phases to maintain thermodynamic equilibrium. Liquid-liquid phase separation into an organic-rich and an aqueous electrolyte phase can occur in the aerosol as a result of the salting-out effect. Such liquid-liquid equilibria (LLE) affect the gas/particle partitioning of the different semivolatile compounds and might significantly alter both particle mass and composition as compared to a one-phase particle. We present a new liquid-liquid equilibrium and gas/particle partitioning model, using as a basis the group-contribution model AIOMFAC (Zuend et al., 2008). This model allows the reliable computation of the liquid-liquid coexistence curve (binodal), corresponding tie-lines, the limit of stability/metastability (spinodal), and further thermodynamic properties of multicomponent systems. Calculations for ternary and multicomponent alcohol/polyol-water-salt mixtures suggest that LLE are a prevalent feature of organic-inorganic aerosol systems. A six-component polyol-water-ammonium sulphate system is used to simulate effects of relative humidity (RH) and the presence of liquid-liquid phase separation on the gas/particle partitioning. RH, salt concentration, and hydrophilicity (water-solubility) are identified as key features in defining the region of a miscibility gap and govern the extent to which compound partitioning is affected by changes in RH. The model predicts that liquid-liquid phase separation can lead to either an increase or decrease in total particulate mass, depending on the overall composition of a system and the particle water content, which is related to the hydrophilicity of the different organic and inorganic compounds. Neglecting non-ideality and liquid-liquid phase separations by assuming an ideal mixture leads to an overestimation of the total particulate mass by up to 30% for the composition and RH range considered in the six-component system simulation. For simplified partitioning parametrizations, we suggest a modified definition of the effective saturation concentration, C_j^*, by including water and other inorganics in the absorbing phase. Such a C_j^* definition reduces the RH-dependency of the gas/particle partitioning of semivolatile organics in organic-inorganic aerosols by an order of magnitude as compared to the currently accepted definition, which considers the organic species only

    Modelling of a dynamic multiphase flash: the positive flash. Application to the calculation of ternary diagrams

    Get PDF
    A general and polyvalent model for the dynamic simulation of a vapor, liquid, liquid-liquid, vapor-liquid or vapor-liquid-liquid stage is proposed. This model is based on the -method introduced as a minimization problem by Han & Rangaiah (1998) for steady-state simulation. They suggested modifying the mole fraction summation such that the same set of governing equations becomes valid for all phase regions. Thanks to judicious additional switch equations, the -formulation is extended to dynamic simulation and the minimization problem is transformed into a set of differential algebraic equations (DAE). Validation of the model consists in testing its capacity to overcome phase number changes and to be able to solve several problems with the same set of equations: calculation of heterogeneous residue curves, azeotropic points and distillation boundaries in ternary diagrams

    Generalised model for heteroazeotropic batch distillation with variable decanter hold-up

    Get PDF
    A general model of batch heteroazeotropic distillation is proposed. Both liquid phases present in the decanter can be refluxed or withdrawn as distillate, their hold-up can be increased, decreased or kept constant, as well. By assuming maximal separation, that is, that the composition of the condensate always equals to that of the heteroazeotrope, the still path equation was derived. The still path directions are determined for all the 16 possible operational policies. It is possible to steer the still path in a desired direction by changing the operational parameters, which allows the recovery of a pure component in the still. The still path directions are validated by rigorous simulations for three policies not published yet using the mixture water – formaldehyde – propyl formate. From the 16 operational policies, 11 can be considered as useful in practice. To demonstrate the advantage of using a non-traditional policy, the separation of the mixture aniline – ethylene glycol – water was investigated, as well. By using a non-traditional operational policy with hold-up reduction in the decanter a higher purity of ethylene glycol was obtained in the still

    Dynamical selection of Nash equilibria using Experience Weighted Attraction Learning: emergence of heterogeneous mixed equilibria

    Get PDF
    We study the distribution of strategies in a large game that models how agents choose among different double auction markets. We classify the possible mean field Nash equilibria, which include potentially segregated states where an agent population can split into subpopulations adopting different strategies. As the game is aggregative, the actual equilibrium strategy distributions remain undetermined, however. We therefore compare with the results of Experience-Weighted Attraction (EWA) learning, which at long times leads to Nash equilibria in the appropriate limits of large intensity of choice, low noise (long agent memory) and perfect imputation of missing scores (fictitious play). The learning dynamics breaks the indeterminacy of the Nash equilibria. Non-trivially, depending on how the relevant limits are taken, more than one type of equilibrium can be selected. These include the standard homogeneous mixed and heterogeneous pure states, but also \emph{heterogeneous mixed} states where different agents play different strategies that are not all pure. The analysis of the EWA learning involves Fokker-Planck modeling combined with large deviation methods. The theoretical results are confirmed by multi-agent simulations.Comment: 35 pages, 16 figure

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Get PDF
    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H^+, Li^+, Na^+, K^+, NH_(4)^+, Mg^(2+), Ca^(2+), Cl^−, Br^−, NO_(3)^−, HSO_(4)^−, and SO_(4)^(2−). Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with dicarboxylic acids and with levoglucosan. Overall, the new parameterization of AIOMFAC agrees well with a large number of experimental datasets. However, due to various reasons, for certain mixtures important deviations can occur. The new parameterization makes AIOMFAC a versatile thermodynamic tool. It enables the calculation of activity coefficients of thousands of different organic compounds in organic-inorganic mixtures of numerous components. Models based on AIOMFAC can be used to compute deliquescence relative humidities, liquid-liquid phase separations, and gas-particle partitioning of multicomponent mixtures of relevance for atmospheric chemistry or in other scientific fields
    corecore