7 research outputs found

    Retro-fallback: retrosynthetic planning in an uncertain world

    Full text link
    Retrosynthesis is the task of proposing a series of chemical reactions to create a desired molecule from simpler, buyable molecules. While previous works have proposed algorithms to find optimal solutions for a range of metrics (e.g. shortest, lowest-cost), these works generally overlook the fact that we have imperfect knowledge of the space of possible reactions, meaning plans created by the algorithm may not work in a laboratory. In this paper we propose a novel formulation of retrosynthesis in terms of stochastic processes to account for this uncertainty. We then propose a novel greedy algorithm called retro-fallback which maximizes the probability that at least one synthesis plan can be executed in the lab. Using in-silico benchmarks we demonstrate that retro-fallback generally produces better sets of synthesis plans than the popular MCTS and retro* algorithms.Comment: 39 pages (including appendices). Currently undergoing peer revie

    Similarity Methods in Chemoinformatics

    Get PDF
    promoting access to White Rose research paper

    Computer analysis of chemical reaction information for storage and retrieval.

    Get PDF

    Structure generation and de novo design using reaction networks

    Get PDF
    This project is concerned with de novo molecular design whereby novel molecules are built in silico and evaluated against properties relevant to biological activity, such as physicochemical properties and structural similarity to active compounds. The aim is to encourage cost-effective compound design by reducing the number of molecules requiring synthesis and analysis. One of the main issues in de novo design is ensuring that the molecules generated are synthesisable. In this project, a method is developed that enables virtual synthesis using rules derived from reaction sequences. Individual reactions taken from reaction databases were connected to form reaction networks. Reaction sequences were then extracted by tracing paths through the network and used to create ‘reaction sequence vectors’ (RSVs) which encode the differences between the start and end points of th esequences. RSVs can be applied to molecules to generate virtual products which are based on literature precedents. The RSVs were applied to structure-activity relationship (SAR) exploration using examples taken from the literature. They were shown to be effective in expanding the chemical space that is accessible from the given starting materials. Furthermore, each virtual product is associated with a potential synthetic route. They were then applied in de novo design scenarios with the aim of generating molecules that are predicted to be active using SAR models. Using a collection of RSVs with a set of small molecules as starting materials for de novo design proved that the method was capable of producing many useful, synthesisable compounds worthy of future study. The RSV method was then compared with a previously published method that is based on individual reactions (reaction vectors or RVs). The RSV approach was shown to be considerably faster than de novo design using RVs, however, the diversity of products was more limited

    Enhancing Reaction-based de novo Design using Machine Learning

    Get PDF
    De novo design is a branch of chemoinformatics that is concerned with the rational design of molecular structures with desired properties, which specifically aims at achieving suitable pharmacological and safety profiles when applied to drug design. Scoring, construction, and search methods are the main components that are exploited by de novo design programs to explore the chemical space to encourage the cost-effective design of new chemical entities. In particular, construction methods are concerned with providing strategies for compound generation to address issues such as drug-likeness and synthetic accessibility. Reaction-based de novo design consists of combining building blocks according to transformation rules that are extracted from collections of known reactions, intending to restrict the enumerated chemical space into a manageable number of synthetically accessible structures. The reaction vector is an example of a representation that encodes topological changes occurring in reactions, which has been integrated within a structure generation algorithm to increase the chances of generating molecules that are synthesisable. The general aim of this study was to enhance reaction-based de novo design by developing machine learning approaches that exploit publicly available data on reactions. A series of algorithms for reaction standardisation, fingerprinting, and reaction vector database validation were introduced and applied to generate new data on which the entirety of this work relies. First, these collections were applied to the validation of a new ligand-based design tool. The tool was then used in a case study to design compounds which were eventually synthesised using very similar procedures to those suggested by the structure generator. A reaction classification model and a novel hierarchical labelling system were then developed to introduce the possibility of applying transformations by class. The model was augmented with an algorithm for confidence estimation, and was used to classify two datasets from industry and the literature. Results from the classification suggest that the model can be used effectively to gain insights on the nature of reaction collections. Classified reactions were further processed to build a reaction class recommendation model capable of suggesting appropriate reaction classes to apply to molecules according to their fingerprints. The model was validated, then integrated within the reaction vector-based design framework, which was assessed on its performance against the baseline algorithm. Results from the de novo design experiments indicate that the use of the recommendation model leads to a higher synthetic accessibility and a more efficient management of computational resources
    corecore