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Summary 

This thesis addresses itself to tho :lutomatic eenerat:iO!l 

of machine reaclable descriptions of the subs tructural ch'mge3 

occurring in chemical reantion.s; the primary aim of the VTork 

is the inclusion of such dab. in current computer basei chemical 

info~ation systems. 

In the first ompter a review is given of the methorls,both 

manual and automatic, which h'lv9 b~en d.<3scriberl for th~ inrlexine 

of chemical reaQtions. In particular, a critical evaluation is 

m3.de of the work on automatic reaction inrlexing carried out in 

Sheffield over the past·decade. This work, which used both 

l'Tiswesser Line Notation(i'lLN) and connection tables as the structure 

. representation, h.ls formed the basis for the multi-level, whole 

structure, WLN fragmentation procedure described in the second 

chapter. The basic fra5Jllenta tion aleori thms are 'outlined 

together with their implementation in a progre~ for producing 

printed reaction indexes. Experience of the use and retrieval 

effectiveness of such an index is comparel with tha.t of a 

commercial~ available reactions documentation service. 

Vlhilst of wiie applicability, the use of a notation leads to 

diff'icultics both in. computer processing an,i in the quality and 

level of description of the analyses produced. Many of these 

problems are eliminated if' conne-ation tables are usell as the 

structure repre:Jc:!ntation and in the third chapter wo present 

an approximate structure matchinG algorithm which enables the 

rapid identification of many of the subzraph isomorphisms present 

between the sets of reactant and product molecules in a reaction. 

The technique io bas ed upon an adaption of the ~llorgan algori th.1U 

to' the description of circular substructures and this has permitted 

the development of a sys ter:l.:l tic method. for the s election of 



-. 

fragm~nts as screens for u~c in chenical susbtructllre search 

systens. 

Finally an e:tperi!!lental reactions retrieval system is described 

which uses both the methons of an~lysis described ~arlier to 

characterise the reaction~ in the search file. A ranee of 

reaction queries have been put to the syntern vdth reason~ble 

results in terms of the m~teriill retrieved. The techniques 

could be easily iJ'llp18monted in 11 conventton3.l substrueture 

s oar ch sys tern. 

(214 references) 
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CHAPTER I 

Previous work in 

the field. 



1.1 1ntrod.uction 

The advent of the computer has led to rapid changes in the methods 

used for the ana~sis, storage and retrieval of (primarily) scientific 

and technical information(1). The primar,y application has been in the 

rationalisation and mechanisation of the procedures necessar,y for the 

pUblication of printed secondar,y sources of information i.e. indexing 

and abstracting tools(2). Secondly, the availability of a machine-

readable form of the souroe material, the data base, has allowed the 

development of computer pased information services which provide users 

with a variety of acoess mechanisms by which they may interroeate the 

data base. Batoh processed ourrent awareness and retrospective searoh 

faoilities became generally available about twelve years ago in the 

shape of tapes from Chemical Abstracts Service(CAS) and the National 

Librar,y of Medicine(3,4). The rapid development of telecommunication 

networks and of disc storage and multiprogramming technology has meant 

that both of these functions are now frequently performed using online 

systems which allow both a greater i~mediacy of response and the potential 

for more refined search techniques(S)i online searching has indeed 

proved so popular tha~ the continued production of the souroe hard 

copY'publicationshas been called into doubt(6). 
. . 

. . It must be emphasised that these systems involve operations primarily 

upon the form of records ~.e. manipulations ~th (sub)strings of alpha

numerio characters in specified data elem~ts of the document file. The 

decisions as to which charaoter strings should be considered as 

representing the content of the document are, in large part, still 

performed manual~ although research in the field of 'oontent analysis~ 

i.e., the automatic indexing of natural language documents, is being 

oarried out by many workers(7). In the case of chemical structure 

1nforma.tion, the differentiation bet\veen form and content· is much less 

well defined since the form, the structure diagram, is a much closer 
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representation of the content, the wave equations describing the molecule, 

t~~ in the case or natural language words. It is primarily ror this 

reason that computer based information systems are, perhaps, most 

wide~ established in the field of chemist~(8,9,10,11) where although 

many of the items to be handled are textual or numerical in nature, the 

heart of a system is:the chemical structure file which contains the 

machine readable representations or a large number of chemical compounds. 

The development of methods for the notation of molecules has been a 

long, not to say tortuous, process(12,13,14) but in the context of 

this dissertation we shall be concerned mainly with three of the 

methods that have been used to describe compounds in a machine readable 

form: these are fragment codes(15), connection tables(16) and Wiswesser 

Line Notations(V~)(17,18). The twp largest compound files are those 

belonging to CAS which contains over four million compounds in connection 

table form(19~20) and to the Institute for Scientifio Information 

which oontains about three million WLNs(21). Commercial riles, such 

as are operated by the research departments of m~ agrochemical, 

pharmaceutioal and petroohemical firms, are substantial~ smaller but 

may well contain over fif~ thousand oompounds(22,23,24,2S). These' 

files, together with the systems that control the storage and retrieval 
,-

of information from them, represent a considerable investment of time, 

money and expertise and it would seem worthwhile to oonsider other 

uses to which th~ might be put. 

This thesis considers the application of current structure handling 

techniques to the provision of rapid and easy access to chemical 

reaction data(26,27). This is of fund~~ental importance to several 

branches of chenistry(28) but we shall be primarily concerned. with the 

field of synthetic organio chemistry where the need for adequate 

means of retrieval has been apparent for many years; the preface of 

the first edition of Weyl's famous book on organio chemistry contained 
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the state~ent that a scientist could hardly hope to be familiar with 

every one of the innlli~erable methods described therein(29). More 

recently, both Meyer(30) and Valls(27) have called attention to the 

importance of providing adequate reaction information; it has been 

stated that approximately one half of all the organic queries put 

by chemists to the BASF Ludwig~hafen Documentation Group were ooncerned 

with reactions(31). - As there are now over four million compounds 

lmown and any one may be transformed in to many others by sui table 

reac,tions, it can be seen that the amount of potential data is enormous 

and it is also constantly increasing(32,33). Hendrickson, indeed, has 

pointed out that there are large classes of reactions for which there 

are as yet no known members (34) • There are often many ways in which 

a molecule may be synthesised and yet there are current~ f~v aids to 

help the chemist in his search for a viable synthetic pathway. The 

difficulty of the problems involved may be evidenced both by the wide 

recognition of the achievements of chemists such as Corey and Woodward 

and by the frequent use of terms such as 'elegant' in reviews of 

syntheses: synthetic organic chemistry has indeed been described as 

"an ar.t.~.the,midst o~:a science"(3S). 
'. . ".!' . 

It ,might have been expected that computers, with their abili~J to 

compare and collate large volumes of data Vlould provide a ready means 

for the control of chemical reaction data but·this has not· proved to 

be so. At least in part, this la~k of success has been due to the 

~ted amount of research carried out in the field - the documentation 

of a reaction presupposes a method for the encoding of the reacting 

molecules, or some portion of them, which has only become feasible 

within the las t ten years or so - but the main problem, as has been 

pointed out again and again(26,27,36,37,38,39,40), is that whereas 

a chemical molecule is a unique entity and thus susceptible to listing 

in a canonical form, such as ~ the CAS Registry Systern(20), a reaction 

,;0. ;1 ~ . .'. ,~ : : .' 
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has many parts, all of which may need to be stored for subsequent 

retrieval. The large number of characteristics - starting materials, 

products, reaction sites, catalysts, conditions, bond chanBes and 

yields - makes the organisation of the information and the selection 

of suitable data items quite difficult(37). 

There seems to be fairly beneral agreement that at least the 

following four data elements should be present in a reaction file if 

it is to be capable of handling a reasonable range of query types(27): 

(i) compound information: ideally this should,include details of any 

intermediates formed in the course of the reaction but in general the 

reactants and products alone will be encoded. 

(ii) experimental conditions: these include such things as cata~st~ 

concentration, temperature and solvent. 

(iii) reaction analysis: a definition of the changes occurring during 

the course of the reaction. 

(iv) bibliographical details. 

Of these the reaction analysis is both the most important and the 

least well defined. Outside 'of this department, almost all of the 

systems that have been examined or implemented to data, however 

effective in operation, have been very expensive ,to create and use 

since the reaction analysis has been performed manually. A large scale 

reaction file can only be efficient in operation if the analysis for 

storage and retrieval can be performed automatical~. There are thus 

valid economic grounds for the development both of general techniques 

of representation and. of software systems for "in house" processing; 

were such packages to become general~ available, it seems probable 

that machine readable 'reaction data would become available from 

commercial sources such as ISI. The availability of large machine 

readable reaction files would also form a natural complement to the 

rapidly growing area of computer aided synthesis design(41). Since the 
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potential reaction data base is potentially very large, reaction 

indexing programs must be simple in concept and efficient in operation 

if economical processing rates are to be achieved; synthesis programs, 

on the other hand, perform sophisticated manipUlations using a limite:, 

file of, perhaps, three hQ~ared basic reactions(42,43,44). A 

potential~ useful approach would be to use the transformations,output 

qy a synthesis program as the 'basis 'for 'searches in a more substantial 

reactions file. 
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I.2 Manual methods of indexine reactions 

In the next two sections we shall consider some of the many methods 

that have been proposed for indexing chemical reactions; for the 

present we shall limit ourselves to those where the intelleotual tasks 

of ana~sis and representation have been performed manually, albeit 

for subsequent mechanised storage and retrieval in some cases. 

As with compound information, the earliest forms of reaction 

indexing were based upon nomenclature and to this day the most widely 

employed and most easily understood description is the use of a 

trivial name, usual~ that of the chemist(s) who originally discovered 

the reaction. Terms such as Skraup synthesis, Claisen condensation 

and Clemmensen reduction are common in the literature and several 

compendia are available, the most comprehensive of these containing 

several hundreds of entries(45,46,47,48). Nomenclature may occasionally 

prove very powerful in rapidly describing complexes which can. be 

difficult to charaoterise using more systematic methods e.g. the Cope 

rearrangement. Generally, however, the use of indexing terms which 

have no direct relationship with the reaction that they are supposed 

to describe may lead to severe problems in retrieval. Thus struotural~ 

similar transformations may be separated which might be considered 

more f~itfully in conjunction and, as was pointed out by Clews(49), 

there may also be disagreement as to the exact extent of the reactions 

th:l t should be considered under a single·! heading. However the 

greatest deficiency is simply the lack of coverage offered by such a 

system since the overnhelming number of reaotions have not been graced 

by a suitable appellationo 

A more systematio use of nomenclature has been suggested by 

Patterson and Bunnett(50) and by Kunz(51). The former authors 

propose~ that the name of a substitution reaction should be composed 

of the name of the incoming group, the syllable 'de', the name of the 
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outgoing group and the suffix ration': thus the hydrolysis of an 

alkyl chloride would be called hydroxydech1orination. V1eduts has 

shown thatthe scheme is ambiguous even for some cases in the limited 

field of funotional group interconversion reactions(52) and the 

authors give no indication as to hoy/ the system could be extende,} to 

cover more complex processes. Nomenclature has also been used by 

Ursprung-Fischer who found that the uneven distribution of reaction 

types amongst tha classes of a proposed. notation scheme for reaotions 

necessitated the subdivision of several of the classes by the use of 

trivial nomenclature(53). Dyson and Riley described reactions by a 

mnemonin code descriptive of the reaction type e.g. Chl-01 represented 

ch1orination(54). None of these schemes appear to have been used in 

practice although the International Union of Pure and Applied Chemist~ 

(IUPAC) has recently shovm interest in an extended version of Patterson 

and Bunnett's system. 

Of greater practical importance is the annual publication "Organic 

Syntheses" which is devoted to the description of the preparations of 

specific compounds so that the indexing is primarily upon the basis 

of the name of the product(55). Mischenko has described an index to 

the Russian translation of this publication in which broad classes, 

such as halogenation or nitration, are subdivided by a structural 

expression of the particular reaction class(56). Structure based searches 

are the prime means of access to Chemical .Abstracts and Current Abstracts 

2f Chemistrr(CAC) for reaction queries; in the latter case an automatic 

search is also possible since a WIN magnetic tape is available which 

contains a list of all the new compounds (21) whilst limi te.:l substructure 

searches of CAS files may be performed online using the CHUILnrE fi1e(57). 

It should be noted. that there is no inherent difference between a. 

systematic name and a unique line3.r notation so that compound. names 

may become widely used as a machine readable structure representation. 
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Work is currently being carried out, primarily by CAS, upon the use 

of systematic nomenclature for structure storage and search(58,59) 

and algorithms are being developed to generate connection tables from 

an input compoun,i name(60,61). Applications of this research to the 

area of reaction in-::1.exing are not impossible(62). 

It is convenient at this point to mention the use of indexes of 

functional groups. and of reagents. The former are usual~ arranged 

by the functional group of the product and then subdivided by the 

functional group of the reactant which has been involved in the change. 

Obviously, such an approach can only deal satisfactori~ with simple 

changes, especially if the reacting molecules are polyfunctional(29,63, 

64). Examples of reagent based indexes are "Synthetica Merck" and the 

well kno~ Fieser and Fieser(65,66)i under each reagent is listed the. 

types of reactions for which it may be employed, usually with details 

of the appropriate reaction conditions. 

A more systematic approach is to classify reactions according to 

the bonds broken or formed in the course of the reaction, an idea 

first proposed by Weygand(67). Theilheimer developed Weygand's system 

to produce a simple classification based on the types of bonds broken 

and formed and on the nature of the reaction(68). Reactions are described 
. , 

by a three part symbol string; the first part refers to the bond formed 

in the reaction, the second is a bond change indicator and the third 

the bond broken. The indicators represent addition, rearrangement, 

exchange and elimination reactions though these terms are used in a 

ver,y broad sense. Furthur subdivision is possible on the basis of 

the reagents but this is not included in the symbol string. When a 

reaction involves more than one bond c~nge, multiple entries are 

supposed to be made although this does not always appear to occur(69) 

and one also finds that the set of reactions denoted by a single symbol 

string often bear little relationship to one another(26): both of 
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these points are discussed at some length by Vleduts who also points 

out that it is often easier to find a reaction ~ the subjeot index 

rather than via the bond classification(52). The French firm Roussel-,-
Uc1af operate a card file based on bond formation and reaoting group 

data and this method of classification has been employed in the series 

"Cahiers de Synthese Organique"(70). Bond change data is also ino1uded 

in the "Chemical Reaotions Dooumentation Service" run by the Derwent 

organisation(71) but it is not clear whether the bond change indexing 

involves mechanistic considerations(72). 

The most fruitful development of \Teygand's idea has been the concept 

of the reaction centre, or reaotion site, which seems to have been 

first described bJ Vleduts(52) •. In his paper, he advocated the use of 

all the bond changes ocourring during the reaction, rather than the 

single changes considered by Theilheimer. As he points out "a distinctive 

feature of organic reactions, which involve complicated moleou1es 

containing almost exclusively covalent bonds, is the destruction and 

creation of a comparatively small number of bonds in such a way that, 

during the process, fair~ extensive portions of the molecules do not 

change their structures". This being so, we may attempt to classify 

reactio~ information upon the basis of the bonds that have been altered 

in the course of the reaction; taken together, these bonds represent 

the partial structures involved in the change, the reaction centre. To 

quote again "the essence of the work in developing a. skeleton scheme 

of a particular reaotion lies in the comparison of the structure of the· 

final and initial molecules and in discarding the fragments of the 

structure not undergoing changes in the course of the reaction". Such 

a skeletal reaction scheme will generally rep:resent several :similar 

reaction types since groups adjacent to the reaction si tea arf3 om:!. tted. 

although. they may play a significant part in determining the course of 

the reaction in terms of yield, stereochemistry and overall structural 
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change. The negleot of the nonreaoting parts of the molecules is claimed 

as an advantage(S2,73) since supposed~ useful analogies may be 

detected between different reaotions belonging to the same basic class 

but, as we shall see later, there are no generally available guidelines 

as to exactly what should be included in the reaction oentre. Vledut5-

suggested that the site should consist of all the bontls altered during 

the reaotion plus the following: 

(i) ~ heteroatoms that are directly connected to an atom in the 

reaction site(a k~ atom) 

(ii) any atoms oonneoted by multiple bonds to a key atom 

(iii) any groups of' the form A=B or A~B where A and B are any a toms 

of which at least one is attaohed to a key atom. 

},fockus has pointed out that this seleotion of "activating groups" is 

made upon a structural basis rather than upon the basis of ~ 

mechanistic considerations. Of greater importance in the context of 

this thesis is that such groups could be detected algotithmical~ 

with relatively little effort whereas the identification of' the actual 

activating substructures would imp~ a high degree of machine 

intelligence and significantly greater computational requirements. 

A "greatly extended list of features has been described by Bersohn and 

Esack(43). 

Vleduts described a method f'or the unambiguous linear codification 

of reaction centres and stated that, the resultant notations were to 

be used as the basis of a systematio reactions index to the Russian 

abstraots journal Khimiya, the chemist~ section of Referativnvi 

Zhurnal. Moclrus(36) states that no such index has aotual~ been 

produced but Vleduts later desoribed a simplified version of his approach 

which had been applied to a file of reactions involving organofluorine 

compounds(74). 

Ziegler, "in the"Rea.ctiones Organicae", has produoed a set of punohed 
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cards embodyinB the reaction site concept(73). F.a.ch",card bears a 

skeletal reaction scheme and the structure of the product, these 

being described by a simple fragmentation code, as well as a printed 

abstract and additional physical information such as conditions 

and heighbourine groups. The advantages cited by Ziegler are 

(i) a precise definition of the reaction type, independent of generic 

t,ypes such as oxidation 

(ii) easy detection of analogous reactions as only the reacting parts 

of the molecules are ooded 

(iii) no assumptions are made as to the mechanism of the reaction 

(iv) the use of traditional symbols since the skeletal scheme is printed 

upon the card as well as being punched for machine use 

(v) independent of nomenclature 

(vi) easy linking of the reaction centre with the whole molecule 

(vii) easy classification of reactions. 

Some of these advantages seem rather trivial whilst (vi) has been 

shovm to be incorrect(see below) and (vii) is highly optimistic but 

it d6es seem that a reaction cent~e approach holds distinct promise 

and it has played a large part in the ful~ automatic indexing 

procedures to be described in the third section of this chapter. The 

Pharma system, which forms the basis of Derwent's CRDS and is prepared 

manually(36,71), has a limited amount of reaction oentre information 

and the experimental reaction file at IeI Pharmaceuticals, again 

based on computer processing of manual input, is based entirely on the 

reaotion oentre approach(37,75,76). This system has been evaluated(77) 

and the oonclusion reached that in many cases, the reaction centre 

alone is insufficient to oharacterise the reaction which implies that 

informa tion is required about the wider chemical environment of the 

site. 'Identical conclusions have been reached by Osinga in his 

use of 'direct annotating environment numbers'(78). 
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Two widely used reaction documentation services are those 

developed by the Internationale Dokumentationsgesellschaft f~ 

Chemie(IDC)(26,79,BO) and bY,the Pharma Documentation Ring(26,38,71), 

these being two consortia of European chemical and 'phamaceu'tic.al firms. 

Both systems employ manually assigned fragmentation codes which are 

stored for subsequent'machine search. In the GREMAS code of IDC(81) 

each carbon atom is coded by at least one term consisting of three 

letters and a reaction is described by, pairs of these terms corresponding 

to the initial and final states of eve~ functional carbon atom 

modified in the course of the reaction. Various subsidiary terms are 

used to indicate the general ~pe of the reaction, e.g. chain elongction 

or ring closure, and a variety of search techniques is ,.: ,available. 

The Pharma service, which is now marketed by the Derwent organisation, 

is based on the fragmentation code of Derwent's RnrGDOC patent 

alerting servioe and a limited amount of bond change and condition 

data are also included. Other methods of reaction indexing have been 

described in the literature but the majority are of limited historioal 

interest(82,83,84,8S). 

The great triumph of physical organic chemistry over the last 

thirty, ,years or so has been the development of mechanis tic theory by 

which it is possible to rationalise a large measure of known reactions 

upon the basis of inter- and intra-molecular electronic effects(86). 

Presumably a comparable degree of coverage 'COUld be achieved in the 

documentation area by employing some sort of mechanism based indexing. 
, . 

Qualitative descriptions of reaction mechanisms have been suggested 

(87,88,89,90) but a quantitative description could only be achieved 

by wave mechanics equations, these being pictorial~ represented 

on a reaction diagram by electron shifts, charge transfer complexes and 
. 

the likeo 
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Despite the variety of approaches outlined above, it seems not 

unlikely that most retrospective searches for reaction information 

are currently made via the GAS Subjeot and ~ub~tances indexes whilst 

current awareness facilities are provided by GAG. 
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I.3 Autom~tic methods for reaction indexing 

The earliest suggestion that reaction analysis could be carried 

out automatically was made by Vleduts(52) and shortly af'terwards, 

Mischenko et al.described an algorithm by which this might be performed 

(91). The underlying assumption was made that the bonds formed in 

the reaction would be different from those destroyed; thus a simple 

comparison of the bonds in the reactant and product molecules would 

reveal those that had changed. The input to the program consisted 

of the redundant connection tables of the reacting molecules and 

these were used to generate the lists of reactant and product bonds, 

the bond representatives consisting of the component atoms plus the 

bond order i.e. simple pairs in the terminology of (92). Bonds 

common to the two sides of the equation were deletedand:the remaining 

bonds were used as the basis for binary descriptors in a punched card 

retrieval system. Analyses were produced for 85% of a sample file 

of ten thousand reactions and of those analysed, circa' 75% \vere judged 

as being correct. Such a method of analysis will be at fault if some 

of the bonds that have been broken are identical with some of those that I 

have been formed since the procedure would"have registered them as 

having played no part in the reaction; such incorrect equivalences 

might have been expected to be quite frequent due to the very small 

size of the fragnents used but, in fact, the ~esults are very encouraging 

whan one considers the simplicity of the procedure. The authors 

state that the detection of the changed bonds should be a mere precursor 

to the automatic production of a skeletal reaction scheme but this 

does not seem to have been carried out(93). It is perhaps worth 

mentioning at this P?int that this simple algorithm has formed the 

basis of much automatic analysis research to date; this includes the 

program, to be described in the second chapter of this dissertation. 

An alternative to the direct identification of structural 



, 

differences is their detection asa'result of the identification of 

structural similarities and this was first attempted by Armitage 

and Lynch(69,94,95,96), similarity being defined as the largest 

connected set of atoms and bonds co~mon to the structures on the 

two sides of the reaction equation. The method was based on the 
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generation of fragments of each structure, starting with the individual 

atoms of each, and, by concatenation, fragments of increasing 

size. At each step in the process, the fragments formed from one 

structure were compared with those from the other, non-common item3 

discarded,: and growth comtinued in the subsequent iteration 

only from those fragments which were common to both. The procedure 

terminated when the structural 'highest co~mon factor', i.e. the 

largest connected set of atoms and bonds, had been identified. Most 

of the work concentrated on acyclio structures where the building 

blocks of the common structure were linear chains of atoms. Once 

these substructures could be grown no further " the ma:x:1.mal common 

substructure was obtained by joining the straight chains together, 

thus allowing the identification of branched substructures(96). 

Although intuitively appealing in that the procedure to some 

extent mimiced the mental processes of a chemist who, upon 

scanning an equation, identifies the common features as a preliminar,y 

to pinpointing the differences,itwas found that the complexity 

of the programs became quite unmanageable for all but the simplest 

molecules since the number of chains that needed to be considered 

rapidly became very large., This was partial~ alleviated by pruning 

those smaller chains. which were completely contained in larger 

ones but even 'lTi th this modification it was found that one of the 

examples, in a sample file of 22 reactions from CAC, produced over 

80 common chains of va~ing sizes. A reoent development has been 



reported by Cone et al(97) who found that the identification of 

all co~on substructures larger than some threshold size required 

upto a hundred seconds of CPU time per reaction so that it would 

seem that other approaches must be considered if the detection of 
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similarities is to be of use in a practical environment where many 

thousands of reactions need to be processed. 

By far the most sophisticated application of Vleduts' original 

suggestion has been described by Harrison and Lynch(98). The 

differences between the reactant and product structures were again 

determined by analysing the two sets of reacting molecules into 

small bond centered fragments; a variety of fragment types were 

investigated but most work employed the bonded pair(92). After 

fragmentation, the two sets of pairs were compared with regard to 

both the type and to the number of occurrences of ~hat type. The 

analysis yielded. three fragment sets, any or all of which could 

be empty, for each side of the reaction equation. The COlTlllOn pairs 

represented. features that were unchanged in the course of the 

reaction and. could be eliminated; the extra pairs corresponded. 

to types which contained a greater number of pairs on one side of 

the equation than on the other whilst the non-common pairs represented 

types which were not present at all on one side of the equation • 
• f 

If the pair analysis was succes3ful' .. ~: in detecting some struotural 

differences the fragments were joined together to form a skeletal 

reaction' scheme. The assembly of the reaction sit,es,..' J which was 

carried out separately for each half of the equation, was essentially 

the construction of a partial connection table record of the reaction, 

the assembly being carried out in much the same way as one might 

construct a jigsaw puzzle with the parent tables acting as a sort 

of template for the rebuilding. The non-common pair types were 

specifically defined so these caused no problems when the reaction 
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sites were reassembled. Ylhere extra pairs were concerned however, 

a number of the pairs needed to be selected from the total of this 

type. The algorithm was constructed so that it would choose those 

extra pairs which, for the given se"t§) of non-com:;1on pairs, would 

yield the most compact reaction site(s) if an alternative were 

possible. Once the sites had been generated and validated, they, 
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or rather the partial connection tables that represented them, were 

compacted for storage and written to an output file; in effect 

this meant that the nodes in the site were renumbered and correspondence 

with the parent molecule lost. As the OST! report points out(99), 

it would be possible to ~orm reaction ~iles direct~ from the pair 

analyses but in this ~orm it would not be possible to investigate 

the pair interconnectionsj furthEirmore, rebuilding the analysis 

fragments into partial reaction sites was ~ound useful in 

valida ting the analyses. 

To test the worth of an automatic analysis program, three 

features need to be evaluated: 

(i) the percentage of the file analys'e~ 

(ii) the percentage of (i) which is -correctly analYsed 

(iii) the usefulness of the analyses in a retrieval system. 

All three were investigated(49,77,100). It was found that ana~ses 

were produced ~or between 79 and 97.% o~ the re~ctions in a variety 

of ~iles; o~ these circa 95% were ana~sed correctly, that is to 

say in an intuitively reasonable manner, the failures occurring primarily 

in reactions where extra pairs played a large part in the rebuilding 

of the reaction site. However severe deficiencies were revealed 

when test searches were carried out on the residue files which 

contained the partial reaction sites with simple molecular formula 

and bond,count screens; if a query passed these screens, the search 

program then attempted to match the query and reaction site bonded 

pair sets. Queries were run against a file of 1306 reactions from 



CAC and retrieved. a total of 582 reactions, 53% of' which were 

considered to be false drops (1 00) 0 Queries involving acyclic 

features were generally reasonably effective, the failures being 

overwhelmi.."1gly due to the search program's inability to differentiate 

either the size or the nature of ~~e monocycles in fused heterocyclic 

ring systems. This lack of success would seem to be primarily 

due to the rudimentary screening system employed; this could, of 

course, have been improved in the light of furthur experience. A 

much more serious objection is made by Seddon who, after comparing 

the analyses produced by three reaction centr~ analysis methods, 

states "the problem with all reaction centre analysis methods is tnat 

th~ may not include sufficient information about a reaction to 

characterise it. The technique of producing a reaction centre 

representation is to enable all compounds which react in a similar 

way to give similar reaction schemes regardless of differences 

in the environment of the reaction site. But here the aim of the 

complete retrieval system must be considered; whether broad 

classes are reqUired or detailed description to answer specific 

queries. For the latter some indication of the environment may be 

essential"(77). Campbell(100) and Clews(49) fountl that varying the 

level of que~ specificity proved helpful but the latter concluded 

that the most useful approach to the problem 'was one where searches 

could be carried out both upon the analyses and upon the parent 

molecules, the reaction sites merel! being represented by an indication 

of the appropriate atoms' in the parent connection table. 

While this work was being carried out, a study was also being 

made of V~ records of chemical reactions(101,102). There are 

disadvantages vcith linear notations due to the lack of explicit 

connectivity information and to the fact that a few 7~N symbols 

may represent quite large numbers of a toms and bonds, vlhich implies 
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that in:.·some cases one will only be able to describe the changes in 

rather broad teros. More importantly, the assumption is made that 

there will be a close correspondence between the WLN symbol 

changes and the structural changes that they are meant to 

represent;this assumption vall not be justified in all cases. 
-: " 

The advantages of a WLN based system are threefold: 

(i) as the symbols provide printable character representations of 

the structural features involved in the change, one may think in 

terms of printed indexes of reactions similar to KVIIC and K'lmC 

compound indexes(this was the original starting point for the 

work though none were, in fact, prepared) 

(ii) the notation gives especial prominence to ring systems and 

to functional groups: simple proerams will hence be sufficient to 

handle these synthetically important features. Also, a manual 

assessment of part of the file indicated that a con3ide~ble 

portion consisted of either ring cleavage or conversion reactions 

and acycHic functional group interconversions. ',i 
./ 

(iit) many organisations have YlLN structure files so that any 

results achieved might be of quite general interest and utility. 

The,. data base for this Vlork, which has been used for all 

subsequent research in this department, was constructed from the 

ISI publication CAC. All new compounds recorde~ therein are allocated 

an Index Chemicus RegistrySystem .(ICRS) number and the structures 

encoded as WUis which are available on maenetic tape •. Ten months 

issuES.of) the hard copy version were scanned manually, the ICRS 

numbers oorresponding to the reactants and products associated 

with each reaction being selected; these numbers were then written 

to a. tape which was used to retrieve the required YlLNs from the 

compound tapes which had been kindly supplied by ISl. A full 

description of this procedure, together with the subsequent 



conversion of the ~!Ns to connection table format, is given in (49). 

As a first step,a program was v~itten to determine the 

differences in the non-numeric ~ symbol counts between the reactants 

and the products, these differences being assumed to have been 

engendered by the rea~tion. It was found that over 60% of the 

analyses were unique whilst a f~v analyses occurred many times; thus 

a fair~ small dictiona~ of symbol changes would prove.sufficient 

to characterise a significant percentage of the file. The use 

of single symbols was obviousl~ restrictive and so the dictionaries 

consisted of the ~ITN symbol strings of the reactant and product 

groups involved in 41 simple functional group interconversions; these 

dictionaries were then searched for the corresponding symbol string 

changes in the reacting molecules. The identifioation was ohecked 
". 

by comparing the molecular formula change caloulated from the 
~ 

TILNs with that to be expected if the group c~nge had in faot 
.I', 

taken plaoe. 

It was found that 19.5% of the reaotions in the file were 

analysed by the routine and manual ohecking showed that the vast 

majority of these had been correct~ processed. However the quality 

of the analyses was ve~ variable since the immediate environment 

of the reaction site would not be adequate~ described if fairly 

specific queries were to be expected. It would presumably have 

been possible to include the symbol strings. of the immediate 

surroundings of the changed groups and then to use a longest match 

routine at search time; however the distribution of reaction ~pes 

mentioned above means that a very large dictiona~ would have 

been required to increase significantly the. scope of this approach. 

We may also note that problems wJuld be expeoted to arise if 

anything but ve~ simple groups were considered since the 11u~ 

Rrdering rules(17,18) might cause the symbol strings to be split(103). 
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Also, reactions in which different numbers of carbon atoms were 

gained or lost would all be identified as being of the same type 

since on~ the functionality changes were considered. The percentage 

of reactions analysed was relatively constant over a number of 

files f~om the same source, the actual proportion being strongly 

dependent on the source of the data. Thus, any dictionar,r would be 

of rather limited application outside of its source file. Saddon 

(77) carried out some limited trials using only the changes in 

specifiedV~ characters and symbol strings without any dictionaries 

to relate these to a reaction; however she gives little detail 

of this work. 

A study was also made of the utility of VrrN records in delineating 

reaotions in whioh change3 OOCt~ in the ring systems of the reacting 

molec~les(102). WLN describes complete ring systems so that it 
, ) 

was necessar,r to develop routines to describe the individual 

monocycles present; the ring lists for the reactants and products 

could then be compared to identi~ any differences caused by the 

reaction. The program considered only the ring changes and thus 

any simultaneous acyclic changes were ignored; the changes were 

also limited to a single monocycle on each side of the equation. 

2~ of the reactions in the file were processed and of these 

nearly 98% were subsequently j~dged as having 'been correct~ 

analysed. 

Taken together, the two routines could be expected to produce 

ana~ses for 41.5% of the file but there was little or no prospect 

of inoreasing this figure. Although the undeteoted failure rate 

was ver,r low we should emphasise the rather crude nature of the 

analyses; neither program gave any consideration to the environment 

of the changes that it had detected and the functional group 

interconversion segment ignored alterations in the basic carbon 



skeleton in much the same way as the ring segment ignored 

simultaneous acyclic changes. 

Clinging suggested that the main value of the work might prove 

to be as some sort of screening system and this idea was extended 

by Lynch ~ !l(40,10~) and Nunn(10S). The hyperbolic distribution 

of reaction types noted above \7aS again used as a starting point, 

the main aim of the ",ork beine to characterise a high percentage 

of the reaction types in 'the file by relatively simple algorithms 

so that only those that remained would need to be submitted to 
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the reaction site program described in (98). Interest was concentrated 

on reaction subfiles representing the same molecular formula 

change, rather than on changes in the WLN symbol counts, and 

it was found that circa 4D% of the file compriset?' reactions that 

could be characterised by changes such as :-..H20 and ;tH2• Although 

it was clear that these were gross changes which might disguise 

more complex reactions, an examination of a sample file showed that 

the simple molecular formula changes ver.y often gave a correct 

analysis. 

The adopted procedure was based on a series of three screens. 

The first was the molecular formula change which narrowed down 

the number of possible skeletal reaction types quite considerab~ 

and each of these screens was associated with a set of secondary 

screens which analysed the types within the subfile by looking for 

the presence of certain non-common and extra pairs in the reactant 

and product connection tables. The third screen acted as a final 

check and consisted of making modifications to the connection table 

'of one of the reacting molecules in order to simulate the table of' 

the other molecule in the reaction. 

The 'analyses were compared with those described by Clinging 

and Lynch(101) and it wa~ found that a similar group of reactions 
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lvas,.. being dealt with although the consistency of the' analyse3 was 

somewhat greater. As each subfile was considered, it became obvious 

that greater effort was required to analyse th~ increasing variety 

of types present in the subfiles. It was also found that the 

relatively simple algorithms that had been developed were inade~uate 

for analysing reactions involYing changes in ring systems(28). 

and it was hence decided to reconsider the use of ,~ for ana~sing 

such reaction types. 

The approach involved the comparison of V~ symbol strings 

in the reactant and product molecules as the means of identifying 

the reaction site but, in contrast to the previous work, the 

method was not limited by the use of any kind. of dictionary. The 

file was organised into categories according to the type of 

ring system present to facilitate subseQuent processing and three 

main classes of reaction were identified, these being 

(i) reactions with no apparent change in the numbers or sizes of rings 

(ii) reactions with a change in the numbers or sizes of rings 

(iii) other types, these including acyclic reactions and those 

involving molecules containing benzene rings onlyo 

Programs were written to analyse the first two types which comprised 

circa 8~fo of all the reactions in the data base. 

The first class of reactions consisted mainly of changes in the 
". 

acyclic components of cyclic molecules although there were 

sometimes minor changes both inside and outside the ring brackets 

(the VffiN symbols L,T and J). The analysis consisted of comparing 

the ring aubstituents one locant position at a time, thus allowing 

of changes at more than one substituent position. Checks were 

also made for certain symbol interconversions within the ring 

brackets to cover such elementary reaction types as reduction of 

ring carbonyls and the hydrogenation of unsaturated linkages. The 
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second class of reactions was analysed in two stages. The first 

of these was to identify the changes in the ring system which 

enabled s~aries of ring changes to be produced, the procedure 

being bas ed upon Clinging's algorithm. The second stage of the analysis 

rms to determine additional changes other than those occurring in 

the ring systems, this being carried out using the algorithm 

designed for the first class of reactions; it was hence possible 

to provide descriptions of all the parts of the molecules that 

had been involved in the reaction. No algori thIns were developed 

for the third class of reaction types although it was claimed that 

a procedure analogous to that used for the first class could be 

employed; in toto, circa 70% of the reactions in the file were 

analysed. A trial index for the first class was produced in which 

the sort key v'/as the WLN syr.lbol strings produced by the analysis. 

Alt~ough satisfacto~ in m~ respects, this work suffers 

from several deficiencies. Firstly, the ring change algorithm was 

not ve~ specific in that there was no way of connecting the intra 

ring changes with any simultaneous substituent changes. Next, in 
,' .. 

many of the reaction~~' the entire substi tuEmtm.iN strings were 

given as the analysis even though large sections of them may 

have been unchanged i.e. the exact site of the reaction was not 

specifically defined. Also problems might arise due to the ordering 

rules of the notation. 

Osinga and Stuart(39) have described a faceted classification 

scheme(106) for reactions which contains eight main facets, the39 

including addition, elimina.tion ani rine change3. The aim of their 

research is claimed to be the automatic classification of reactions 

using this scheme but it seems to have been applied only to a file 
, 

of seven reactions, one of which was incorrectly processed(107). 
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\1.LN was use~ as the input structure representation ~or the reacting 

molecules and the 1'ILNs were used to produce a sort o~ connection 

table in which the nodes were described by direct environment 

annotating numbers (DEAN) , these beine intAeers representing atom 

centred fragments similar to augmented atoms(78,108). The approach 

used in the generation of the connection tables was presumably 

similar to that adopted by Hyde ~~.in their work on the 

CROSSBOW project(109,110) and by G-ranito ~ !,1.during the CHE.!TRAN . 
project(111,112,113)i it seems that the DFANs play a similar role 

to the 'units t section of a CROSSBOW table ( 16) • Reactions were 

analysed by generating lists of augmented bonds from the co~~ection 

tables of the reacting species and then deleting those common to 

both sides of the equation i.e. the approach was basical~ that ,of 

Mischenko .tl.!!1(91). The assignment process by which the analyses 

were used to produce the appropriate claasification is unclear. 

All of the procedures outlined above involve some form 

of fragmentation which implies that a degree of ambiguity may be 

present in that it might not be possible to determine the exact 

location of the reaction sites in their parent molecules. Vladuts 

has suggested a method for indexing reactions which, potentially 
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at least, could overcome this problem. He stated: that "the ultimate 
.' . 

objectives of the algorithmic analysis of reactions in the 
" 

framework of the approach is the detection of the exact locations 

of the chemical bonds altered by th~ reaction ••• and the identification 

of the exact na ture of the changes involved" ( 114). His approach 

consisted of an atom by atom mapping of one reaotine molecule onto 

another to identify the lareest common substructures and, in 

consequenoe, the differences engendered by,:, the reaction. Once the 

atoms iri t)1.e co:nmon substructures had been mapped it would be a 

simple matter to identify the bond changes that had occurred. 

~ 
ii 
I' ,I 
il 
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The algorithm involved the identificatiori of the maximal 

subgraphs common to the two sides of the reaction equation; in 

contrast to the problem of graph isomorphism(115,116,117,118,119), 

maximal subgraph isomorphism has been little studied due to the 

greater complexity of the problem(120,121,122). It is well 

knO\7.n that isomorphism may be letermined by a simple enumeration 

algorithm(119); in the present context a possible procedure would 

consist of' generating all possible subgraphs(partial structures) 

from one graph(reacting molecule) and then matching them against 

all possible subgraphs from the other(120). The computation 

required may be substantially reduced if propertias of such 

subgraphs which are invariant under isomorphism are taken into 

account; thus a reactant atom may not be mapped onto a product 

atom if the atom types are different. Such 'set reduction' 

techniques, initial~ described by Unger and Sussenguth(115,116), 

form the basis of the iterative search procedures used in 

searching structure files(123,124). A method for maximal subgraph 

identification will only be of practical utility if ~he process 

of subgraph matching is simple and efficient; indeed Vleduts 

suggested that such an algorithm, implemented upon current 

hardware, would probably be limited to structures not exceeding 

ten to fifteen atoms. He accordingly described a procedure whereby' 

a comparison of the ~r.LN symbol strings of the reacting molecules 

would be used to provide possible reactant-product atom 

equivalences to reduce the amount of iterative mapping that vrould 

need to be performed. Neither stage of the procedure was implemented. 



CHAPTER IT 

The usc of Wiswesscr Line Notation records in the automatic 

analysis of chemic~l reaction data. 



II.1 Introduction 

In the previous chapter, we have given a deta.iled account of 

the work carried out in this department on the automatic indexing 

of chemical reactions. Two distinct approaches to the problem were 

identified. Firstly, an attempt was made to map the structures of 

the reactant and product molecules onto one another so as to identi~ 

the largest cornnon substructures and hence the differences by 

subtraction(94,95). The work was abandoned owing to program 

complexi ty and the amount of processing time required. More 

recently, Vleduts described an alternative algorithm by which the 

mapping could be achieved but no attempt to implement the procedure 

was forthcoming(114). We shall return to this approach in the 

following chapter of this thesis. The second approach involved 
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a comparison of the reactants and products to identify the differences 

directly: both connection tables and Wiswesser Line Notations were 

used as the structure representation(40,98,101',102). 

The earlier work involved a whole structure fragmentation 

process in which the redundant connection tables of the reactin~ 

molecules were broken down into sets of small molecular fragments 

called bonded pairs. It should be noted that in the chosen 

fragr.lentation mode, all parts of the molecule were described in .. 
equal terms: this is in direct contrast to .the majority of the 

fragmentation codes used in screening systems which consist of a 

limited number of chemically significant features which are 

specifically searched for in the structure to be screened(125). 

Although the use of a whole structure fragmentation ensures that all 

the fragments present can be described in some vlay, it does mean 

that the chemically significant features, such as functional 

groups and rings, may not be sufficiently delineated. Also, the 

fragments used were quite small, two atoms and the bonds around and 
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between them, and thus or relatively high ~requency and o~ low 

variety, i. e. the sets of fragments produced by the an~lysis o~ten 

consisted o~ several occurrences of a limited number of fragment 

types. This led to severe problems when the non-common ~ragments 

were reassembled to produce a skeletal reaction scheme(99). It was 

also found that the more specific the fragment type, the better the 

chance that a successful analysis would be achieved(98): thus 

larger fragments such as bonded pairs and augmented atoms were 

found to produc~ better results than fragments such as augmented 

bonds and bonded atoms(92,108). 

The early \~ work considered only a limited number of structural 

features, specifically monocycles and some of the more common 

functional groups, in the reacting molecules(101,102). The procedures 

could only detect certain of the changes taking place since some 

portions of the reacting molecules were not considered •. Further 

work(40,104) concentrated on reactions involving molecules containing 

ring systems, these being found to represent over 80% of the 

reactions in the file used for the stuqy. All parts of the reacting 

molecules were considered and trolS reactions involving both 

cyclic and substituent changes could be analysed as such although 

no attempt was made to link the changes together to form a reaction 

site. Also, the substituent changes were described in rather 

generalised terms so that it was not always possible to locate 

the changes within the molecules. Finally, the method of ring 

analysis vms·limited in scope since it relied, in part, on a 

dictiona~ of ring heteroatom symbol ohanges. 

The work described below represents an attempt to combine features 

of both the connection table ani ~~ methods of reaction analysis: in 

particular, an algorithmic structure fragmentation procedure is 

adopted, together with a residual fragment rebuilding routine to 

\! 
I' 
\ 
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produce a reaction site, 'but this is designed to be applied to iVLN 

structure records. Analogous fragmentation procedures have been 

described by Bawd·en( 126) and by Hyde ~ .i!1( 110') but the method 
I 

developed here would seem to be considerably more detailed since 

provision is made for the generation of descriptors at four levels 

of detail, these levels being chosen on the basis both of a 

knowledge of the reaction types in the Shefield file and by the 

way in which r~N delineates the various kinds of substructural 

feature that may be expected o The procedures have been chosen so 

as to produce fragments representing chemically significant 

groupings and thus they may be expected to describe adequately 

common reaction types such as functionality changes, elimination 

and ring converaions with the minimum of processing: at the same 

time. provision is made to allow of a description of all p03sible 

types of reaction. 

The rationale for a multi level fragmentation is simple, but 

does not appear to have been explicitly stated in the context of 

reaction analysis. Algorithmic fragment generation is routinely 
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used as a means of obtaining potential screens for searching chemical 

struct~e files: as will be discussed in the fourth c~apter of this 

thesis, efficient screen sets are obtained by consideration of the 

distribution of fragment incidences, the fragments in the soreen 

set being chosen so that each screen occurs approximate~ 

equifrequently across the whole file.· The procedure described here 

. is based on a verJ different criterion since we wish to produce 

fragments which are as laree as possible, subject to the constraint 

that they represent features co~mon to both sides of the reaction 

equation. Once these large, cocrmon features have been identified 

they may' be discarded and a more specific fragmentation method 

adopted to remove furthur corrman features. The process continues 



until, hopefully, the remaining truncated structures represent the 

reaction sites. This simple principle is the basis both for the 

method of WLN analysis described belo~v and for the approximate 

structure matching algorithlll presented in the following chapter. 
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11.2 A multilevel WLN !·ragmentation procedure 

In this section we present the Ioour Iraementa tion procedures 

that have been developed to decompose a ° '.'lLN symbol string into 

a set or substructural representatives. The description is mainly 

by example since some 0:1" the details are rather complex. 

!!'ram a consideration of the ring size numerals Ioor the reactant 

and product notations in a Ioile Or" 9197 one reactant/one product 

reactions, Lynch et ~.(40) lound that.circa 50% were reactions 

in which no change was apparent in the number or sizes 01 the 

ring systems or the molecules involved. It should be noted that 

this IOignre does not include molecules containing only benzene 

rings and does include reactions in which there were changes 

in certain 01' the ring heteroatom symbols(104). Nevertheless, it 

would seem that in a large number 01' cases, the basic ring systems 

remain unaltered, the changes being con:rined to the substituents: 

note that in our work, phenyl groups, deno ted by the -mM symbol 

R, are considered as ring systems in just the same way as those 

described .vithin the ring delimiters L, T and J. This being so, 

three types of' feature are considered in the f'irs t level 01' 

1'raementation, these beine ring systems, phenyl groups and ring 

substituents. The two notations are scanned, symbol by symbol, and 

any such groupings are noted and stored, acyclic molecules having 

been isolated previously. J~ e~~mple of the method of analysis is 

shoo:m in Fie. 11.1 for which reaction vie obtain the two fragment 

lists 

(1) L E5 n666 BUTJ, *1, *1, *Y1&UNZ and 

(2) L E5 B666 BUTJ, *1, *1, *YH:UNNUY1&1 
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where * represents an attachment to a ring of some kind. E1~nation 

of the cor.unon fraf,ments then yields thean3.lysis shown in the lower 



hal~ o~ the Figure. Two furthe~ examples are shown in Figures 

II.2 and II.3. One should note that in all cases, the ~ragments 

resulting ~rom the analysis are passed on ~or ~urthe~ processing 

so that we may delineate the reaction site as precisely as possibl~ 

only for the reaction o~ Fig. II.3 would the final analysis be the 

same as that provided by this level o~ fragmentation. 

More general~, thera will also be changes in the ring systems 

of the reacting molecules 50 the second fragmentation involves 

a description o~ any ring systems in the reacting molecules 

\'lhich have not been eliminated by the first level analysis: as in 

the previous work carried out in She~field, the ring systems are 

described in terms o~ their constituent monocycles. It is worth 

considering exactly which monocycles should be considered sinoe 
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even a simple syste,J such as decalin may be thought of as oonsisting 

o~ either two fused six rings or a single, bridged ten ring whilst 

for more complex systems, the number of possibilities proliferates 

e. g. cubane contains a total o~ twenty eight rings of various 

kinds. The detection o~ all the possible rings in a compound or, 

more generally, the circuits in a graph, has been stu~ied by many 

workers while other investigation~ have concentrated on some 

limited subset of the potential ring set: for further details 

the reader is referred to a paper by Wipke and Dyott(127) which 
/ 

discusses over a dozen different ring perception algorithms. More 

recently, Zamora has given an algorithm for ietecting the smallest 

set of smallest rings(128) and this subset is the one used in the 

present work since it is these rings v/hlch are explicitly defined 

by the mR of a compound. 

Having decided which rings are to be investigated, we must 

identi~ the constituent atoms of these rings so that they may 

be characterised in terms of, e. g. size and heteroatomic character; 



finally, the exact level' of description must be sel ecied. A simple 

algorithm for detectin~ the constituent atoms of each monocycle 
, 

in a VlLN has been given by Grani to 2i al( 112) and by Palmer(13~ ): 

Clinging's adaption of the former procedure yields a canonical 

description of the atoms in each of the rings(102). However, one 

of the primar,y objectives of the work is to generate reaction 

descriptions which could be used in a printed index and it was 

felt that the descriptions provided by Clinging's algorithm, a list 

of the atom ~es together with their degrees of saturation, 

would neither be simple to scan nor compatible with the rest of 
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the index entries which were to consist of "TLN sYmbol s.trings. It W3.S 

therefore decided to encode the constituent atoms in a form of simplified 

~1 using the TILN ordering rules for monocycles(17): a detailed 

description of the way in which this was achieved iSf;given in Appendix 

I. Eakins(129) and Adamson .et~(130) have described a range of 

possible levels of ring description but none of these are directly 

applicable here due to the use of V~, rather than of a connection 

table, as the structure representation: thus the WLN symbols Y, V 

and S~, when contained within the ring delimiters L, T and J, all 

represent extra-ring attachments of some kind whilst many of the 

attachments are not described explicitly and may only be detected 

by a consideration of the ring substituents. Problems also arise 

when one comes to assign a rine saturation symbol, T or &, since 

in a complex fused system, it is often dificult to state the exact 

degree of satura.tion of each atom and/or monocycle. 

The descriptions provided are, perhaps, best illustrated by 

example. If we consider the reaction shown in Fig. II.4-, the 

fragment sets produced after the first level analysis are 

( 1 ) T66 FlI!T&J and. (2) T66 BNJ J 

• 
the benzene rings and their substi tuents haVing been eliminate·i. 



The ring analysis algori thl1 yields the a.escriptions 

( 1) @L6J, ©T6 JJlrTJ and (2) @L6J, QlT6 PJ1J 

v/h8re ~L6·J represents a fuserl, carbocyclic, un !'\ a tura ted, six 

rine i. e. a fused benzenoid monocycle. A comparison or the 

two fragment lists gives the reaction analysis sho'lm in the lower 

half of the Figure. Further examples of the method of analysis 

are given in Fies~ II.S and II.6. Fused rines are denoted by the 

prefixed symbol @ but no attempt has been made to identify the 

exact mode of inter-ring attachment: thus both of the ring systems 

shown in Fig. II.7 will yield the same fragment lists, i. e. 

two @L6T.1.;dngs. For the rile studied., this has not proved to 

be a great limitation but means are available for providing 

this information if it were thought necessary(131). 

So far, no attel!tion has been paid to the acyclic portions 

of the reactine molecules: these arc analysed in the third ana 

fourth levels of f'ravnentation. The third level involves 

rupturinG the \'lLN symbol string whenever a terminal a tom or 

branchine symbol is identified, branchine symbols being define,l 

as any symbol that disturbs the line~rity of' the ch~racter string: 

thus X, Y and -SI- are considered as branching symbols whereas 

',/ V, '1, when attached to S, or N, v,hen attached to U, are not. 

This methOd of' fragmentation was chosen for three reasons: 

(1) as the resultant fragments are linear, it is easy to 

obtain canonical descriptions for them by a simple a1phanumerio 

comparison of the fragment oharacter string, as generated, and 

its reverse. That sorting lower may then be arbitr~rily chosen 

as the representative SO that, e.g., the substructure shovm 

in Fig. II.8 will always be described by the fraement symbol 

string /1 QV'ZJ1/ where / represents an a ttaahment to an acyclic 

branching symbol; 

.' 
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(2) a hieh percentage of functional groups remains intact 

under this type of fragmentation where we use fUnctional group to 

describe any string of hetero- and/or unsaturated atoms: 

Vleduts(52), Hendrickson(3h) ant! Seddon(77) have all emphasised 

the importa~ce of' such f'ea tures. ClineinG.' and Lynch ( 101) showed 

that circa 20% of the reactions in the file could be analysed 

usins a small dictionar,y of functional group interconversions and 

the more general description 'u.;;ed.. here 'i~plie3 . that a. sil."niflcantly 

larger percentage of the file should be effectively characterised. 

(3) fragmentation at the branching points of the notation 

allovrs p. relatively simple reassembly of the noncorrunon fragments 

into a reaction site(see below). 
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Aeain, the fragmentation is described by example. The uncanonicalised 

fraonent lists for the reaction shmm in Fie. 11.9 are 

(1) QMU1/, X, /1, /1, /V5U1, Y, /1 ~ /1 and 

(2) Ne/, X, /1, /1, /V5Tl1/, Y, /1, /1. 

Elimina tion of the common fragments yielc1s the analysis shov/l'l 

in the lower half of the Fiew-e. Further' ,examples are ei ven in 
, . 

Figs. I1.10 and 11.11. 

Although effective in many cases, this method of fraementation 

does mean that long, unbranched carbon chains will remain intact 

and the fourth and final level of analysis involves the truncation 

of any such features present to a fixed length of one methylene 

unit, i. e. /1/. Fieure 11.12 illustrates a typical acyclio 

reaction together with the fraements obtained after the first 

three levels of analysis. Althoueh the long carbon chain is 

important in describing the exact environment of the group that 

has changed, it does mean that in a printed index, there would be 

an inevitable scattering of the entriesdescrihins the hydrolysis 

of unsaturated acid esters beca.use of the various possible lengths 



of the methylene chains. The final fragmenatation truncates the 

symbol strings to yield the much more general analysis shovm 

in the lower half of the Figure, the four /1/ units having been 

eliminated since they are common to both sides of the equation. 

, 36 



II.3 A program for automatic chemical reaction analysis 

The fra,gmentation procedure described above has been implemente'.l 

in a program t~ produce reaction descriptors automatically usine 

as input the t~s of the reactant and product molecules. It 

will have been noticed that all the reactions illustrated so 

far have yielded only a single analysis fragment on each side 

of the reaotion equation. Many reactions, however, produce 

several fragments and it would clearly be of value if these 
, 

species could be recombined to pro~uce a notation string describing 

the reaction site. Such an approach forms the basis of the 

I work described in (98) and we have developed an analogous synthesis 

segment to produce a TILN symbol string characterisation of the 

reaction sites. In principle, synthesis could take place after 

each and every level of fragmentation but in practice we have 

included synthesis routines only after the second and third levels. 

In the first case, the fragments to be considered are monocycles 

and ring substituents, whilst in the second they are branching 

symbols and the pendant linear chains: as reactions involving 

ring systems predo~inate in our file(40), the first of these 

routines 'is much the more heavily used. 

The choice of level at which synthesis takes place has been 
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largely conditioned by the ease with which the requisite conneotivity 

information can be obtained from the input notation. As WIN is 

a whole structure representation it is. possible to generate a 

full atom adjacency matrix description for a large percentage 

of notations(110,112,133,134) but at this stage of development 

it was decided that the incorporation of a full connection table 

generation seement would be uneconomic in terms of programming 
. 

effort. Moreover, we are primarily interested not so much in 

the interconnections of individual atoms but of the analysis 



fragments. Accordingly, instead of a full atom adjacency matrix, 

we have used fragment connectivity lists which are built up 

during the running of the program. We shall consider first the 

ring-substi tuents list. '. During the first level fraementation, 

whilst scanning the input WLN strings for ring brackets and 

benzene rings, a note is made of the locant position of all 

substituents: at the same time, a stack is operated to keep 

track of all the benzene rings and later ring systems after the 

first so that it is possible to match all substituents with their 

parent ring systems. If any such systems are left after the first 

analysis, the monocycle generation routines produce a list of all 
"' . 

locant positions for each monocycle so that it is alsa possible 

to match analysis substituents with their parent monocycles. 

During rebuild.ing, the analysis fragments are joined together 

in a linear string using th~ information in the connectivity lists: 

where a choice is possible, the program chooses the non-overlapping 

site or sites which are most highly con:lected, i. e., those 

comprising the largest number of analysis fragments. The resultant 

sites are compressed to a continuous linear symbol string for 

output. .. 
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The rebuilding is done in two stages: firstly, where appropriate, 

substituents are joined to benzene rings and then these larger 

fragments are joined to their parent monocyoles. The procedure 

will be exemplified by the reaction shown in Fig. 1I.13. The 

fragment lists obtained after the first two levels of fragmentation 

are 

(1) @T6 J.N DUJ, @L6J, *Q, *OSW*, Rand 

(2) ~6.AM mu, @L6 AV DVJ. 

Inspection' of the connectivity reoords for the two reactant phenyl 

groups, the i'lLN symbol R, shmvs that one of them is attached to an 



*OSry* grouping and it is accordingly assumed that it is this 

phenyl group that has been involved in the reaction. Merging the 

,t'.vo fragment character strings yields the string *OSW* R. A 

subsequent inspection of the 'four @L6J reactant fragm~nts' 

oonn~ctivity lists shows that one of them has both an *OSW* and 

a *Q substituent attached to it: the character strings are 

hence merged to yield @L6J *Q *os,:r* R. No analysis fragments 

are fauna to be attached to either the reactant @T6 AN DNJ or 

the product @l'6 AM DMJ and @L6 AV DVJ rings and so the procedure 

terminates with the analysis, i. e. reaction site notations, 

shovm in Fig. II.14. No details are included as to the manner 

in which individual monocycles are joined together so that if 

two analysis rings were fused, the fact could only be noted by 

an inspection of the parent ring system WLN; many of the ring 

change reactions in our file are found to be confined to a 

single monocycle so that we do not consider this to be a major 

problem. It should also be not'ed that the exaot substituent 

ring positions are not specified so that we are dealing with 

a form of Markush structure; however. the trial searches carried 

out to date suggest that this is n~t a serious omission. 

The second set of synthesis routines is used for acyclio 

molecules after the third level fragmentation and ana~sis. 

During this f~agmentation a reoord is generated, similar to that 

above, but rather than noting substit~ents attached to monocycles 

we list linear chains attached to branching symbols. As an 

acyclic molecule can be considered as'a tree, it is relatively 

simple to reconnect all the fragments so that we have a true whole 

structure representa.tion whereas the ring ... substituent synthesis, 

routines produce a much more generalised description of the parent 

molecule. The acyclic synthesis routines are exemplified by the' 



hydrolysis and decarboxylation reaction shown in Fie. II.15. The 

canonicalised fragment lists obtained after the third level 

fraementation are 

(1) /V02, X, /V02 and (2) /VQ, Y. 

The connectivity list for the first reactant analysis fragment, jV02, 

shows that its only attachment is to the second fragment, X, 

which also appears in the analysis fragment list: the fragment 

character strings are hence joined to give the string 20V/ X. 

The attachments of the second fragment, the tetravalent carbon, are 

then considered and this results in the reactant reaction site 

string 20V/ X /V02. Similarly, the product reaction site string 

is obtained as QV/ Y. The analysis and reaction site notations 

are shown in ¥ig. II.15~ 

Al though somewhat crude in design, it is found that the tVIO 

types of synthesis routine are quite effective in providing a 

general description of the change. Both routines operate by 

considering each fragment set one fragment at a time, this 

including both analysis and common fragments, and then commencing 

reaction site symbol string growth whenever a potential analysis 

fragment is found. This allows the selection of the largest, i. e. 

greatest number of included analysis fragments, reaction site if a 

choice is possible. Thus, for the reaction shovm in Fig. II.16 

the single reactant site notation /40/ X /1 /1 /1 rather than the 

four part /1, /1, /40/, X /1 would be. chosen. After the largest 

single site has been obtained, the algorithm cycles back through 

the fragment lists to produce secondary, smaller sites if there are 

still analysis fragments outstanding. 

Further;' illustrations of the synthesis routines are provided 

by the reactions and notations shmm in Figs. II.17 to II.19. 

The basic segments of the program have now all been described 

and an outline of the overall algorithm is as follows(note that 
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most·of the steps are applied to both the reactant and product 

structures) : 

(1) read in reactant and proiuct VlLNs. 

(2) f'ragment the molecule into ring systems and subsUtuents 

noting their interconnectians. 

(3) compare fragoent lists and eliminate duplicates. 

(4) decompose any remaining ring systems into the component 

monocycles. 

(s) as (3). 

(6) synthesise any remaining monocycles and substituents into 

a reacticn site. 

(7) fragment mo1ecu1e(if acyclic) or reaction site notation 

into linear chains and branching symbols. 

(8) as (3). 

(9) if acyclic, synthesise remaining fragments into a reaction 

site. 
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(10) truncate linear symbol chains to a length of one methylene unit. 

(11) as (3)., 
I 

(12) output the remaining analysis fragments, rnaction sites, 

origin:ll nO,ta tions and bibliographical ci ta. tion3 to ta.pe for sorting 

and index. production •. 

The program, ,\which contains about 3000 CaBaL statements, was 

tested by processing the file of 9197 one reacta.nt, one prorluct 

reactions described earlier. The program required 587 cpu secon(ls 

inclusive of transput although this timing figure could be reduced 

. significantly with a limited amount of reprogramming . 

. :.,~.':t) In all, analyses were produced for 7415 ·reactions, 80.6% 

of the file, these eiving rise to 29609 index entries. The reactions 

not.an3.1ysed can be conveniently divided into two classes: those 

failures arising from limitations in the algorithms and 



limitations in the program implementing them. It was found that 

1154 reactions, ~ 65% of the failures, were in the latter class, 

these arising from a variety of restrictions such as ring systems 

with non-consecutive locant paths, too many or too la.rge fragments 

for :av!j.ilablestora.ge,· variable valency heteroatoms and the like. 

Most, if not all, of these re<\ctions could be processed given 

addi tional progra.mming et'fort. Our discussions will hence be 

restricted to the 628 failures arising from limitations in the 

algorithms used. These reactions can be divided into three 

classes: 

(1) 404 reactions for which a unique reaction site could 

not be produced, 

(2) 119 reactions for which no co~mon fragments could be 

detected, i. e. no fragments Vlere elimina.ted and 

(3) 105 reactions in which all the fraements on both sides of 

the equation were eliminated. 

Examples of type (1) failures are shovm in Figs. I1.20 to 

11.22. In the first case there are two possible reactant reaction 

site stri~gs, these and the associated substructures, Ca) and Cb), 

being shown in the lower half of Fig. II.20. Since they contain 

the same fragments, but in different orientations, the ring 

synthesis algorithm is unable to prefer ona possible site to 

the other. 

A frequent reason for failure is a substituent at a fusion 

point since if bot~ the rings and the substituent are involved in 

the change, the program cannot know to which monocycle the 

substituent should be allocated; this is exemplified by the 

methyl group inll-Fig" I1.23, which could be attached either to 

the @T3 AOTJ or to the @L9 AVTJ ringo 

Occasionally, an ambiguity is noted where one does not 
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actually exist; thus for the re.:tction shoml in Fig. 11 .24~ the 

two equal~ valid strings G/ X /1 anQ X /1 /~ are produced for the 

product reaotion site and an ambiguity is therefore presUI:!ed to 

exist •. 

Type (2) failures occur mainly with small molecules producing 

only a 1j~ited number of fragments suoh as the two re.:tctions 

shovm in Fie. 11.25. Finally, cases where all the fr.:tements are 

elimina ted arise primarily frop.! clmnge3 in ring sa tur:J. tion patterns 

sinoe these are not explicitly defined by the monocycles produced 

in the seoond level fragmentation; the only information on 

monocyole unsaturation patterns is that obtained from the & or T 

symbols immediately prior to the J ring delimiter in the parent 

system 7TLN. 

Having considere~ the analyses that have been rejected, what of 

those that have been passed as valid? Inspection of the analyses 

shows that reasonable description3 are provided for a l~rBe number 

of the reactions processed. This is especially true for most 

simple functional group interconversions, many acyclic eliminations 

and hydrogenations and simple ring chanBes; in such reactions 

there are generally close similarities between the reactant and 

product WLNs and the program produces both reasonable fragments and 

also a valid, and useful, reaction site. Examples of such 

reaotions together with the reaction site notations and analysis 

fragment lists are sho?m in Figs. II.26 to II028. In cases 

where there is little") or no similarity between the WI.Ns of the 

rooctine molecules, either or both of the levels of reaction 

description provided may be at fault in some way. This is 

especially true when a ring formation occurs from a purely acyclio 

precursor since then the synthesis routines will be called after 

different levels of fragmentn tion and thus the reaction ai"te 
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strinl)s do nO,t localise the change at all: examples are shown in 

Figs. 1I.29 and 11.30. Minor ring changes often produce analyses 

of little value: thus both the analysis fragments and reaction 

sites do little to localise the changes involved in the reactions 

of Figs. 11.31 and I1.32. 

The best test of the ade~uacy of the descriptions is given 

by actual retrieval experiments to which we now turn. 



II.4 Searching a printed index of chemical reactions 

The output from the analysis program has been used to produce 

a printed index to the file of an~lYSed.reactions~ The initial 
. \ 

mode of access is via the analysis fragments, these being the 

monocycles produced by the second level of fragment~tion or the 

truncated linear chains produced in the final analysis. Having 

isolated potentially relevant material, the search can be made 

more specific by consideration of the reaction site symbol 

strings whilst the original V~s are also provided as a final 

check. Sample pages from the index produced arE> shown in Fig. 

II.33. 

It Vlill be clear that effective searching of the index 

requires a fair degree of knowledge as to the methods of ana~sis 

used: however, it is felt that, given a reasonable degree of 

familiarity with ;7.LN, the index should prove relatively simple to 

use. Trial searches were run with a set of queries kindly 

supplied by the staff of the Research Information Department, 

Pfizer(UK) Ltd. and three examples will be used to illustrate 

the search procedureo 

The first request is for hydrogenation reactions of the form 

R-CH=N-R' 

The eight possible reactant analysis fragments are *1 UN', *1UN/, 

*1NU1 *,. *1UN1/, *N1H/, /1 UN/ , *1NU1/ and /1NU1/ although several 

of these fragments were not present ~ the index. SearchinB under 

these fragments, together with a subsequent inspection of the 

45 

reaction site notations to deteroine the presence of the corresponding 

hydrogenated prod.uct character string, produced the five reactions 

shown in Fig. II.34. 

The second query ~~s for reactions of the form 

R-CH(OH)CH20H --> R-CHO. 

This change correspond.s to the reaction site notation 



Y /1Q IQ ---~ *V'"rl, /VH, '*1VH or /1VH. 

Referenoe to a ranked list of analysis fragment frequencies 

showed that the least fre~lent of those available for search was 

the reactant fragment /1Q: subsequent inspection of the reaction 

sites listed under this heading yielded the four rea.ctions shown 
". 

in Fig. II.35. The final query vms for the reaction shown in the 

upper part of Fig. II.36. Searching under the reactant analysis 

fragments @T6 ANTJ and @T6 A1,~TJ produced the reaction shown in 

the lovler half of the Figure. 

It should be noted that several of the querjes could not be 

searched in any way at all. Thus requests for condensation 

reactions involving diethyl phosphate and reactions involving 

aromatio carbo~Jl protecting groups are much too general 

while the reactions shown in Fig. II.37 and 1I.38 both require 

additional data not present in the records available. Finally, 

the reaction shown in Fig. II.39 would produoe a quite massive 

output unless an initial sub3tructure search procedure could be 

used to remove the vast majority of the reactions that would 

otherwise be retrieved. In toto, of .forty queries searched" eleven 

retrieved some relevant material and twenty four retrieved 

nothing, the remaining eight queries not being searchable. The 

total search time was about four hours, well under ten minutes 

per query, though this would obviously be greater if someone 

other than the author Vlere to be doing the searching. 

A better test of the effectiveness of the descriptions 

provided has been performed in collaboration vdth the staff 

of the Research Information Department, Pfizer(UK) Ltd.. This 

involved a' detailed comparison of the ·reaotion ,descriptorsprovided 

, by the WIN analysis developed here and by Derwent' s Chemical 

Reaotions Documentation Service(CRDS). Since this project was 



collaborative in nature, only a synopsis of the work will be 

presented here: a full description is given in Appendix III 

which is a copy of a joint paper submitted for publication 

in the Journal of Chemical Information and Computer Science. 

The work involved the encoding of £i:t:c1l: 509 reactions from 

the CRDS database in ','ILN' and then producing a printed WLN 

index. Eighteen typical reaction querie3 were then searched 

manually by the author whilst computer searches of the CRDS 

descriptions, which are based on bond change information together 

with Ringcode(38), were carried out at Pfizer. A detailed 

comparison of the reacti0ns retrieved by the two systems 

showed that the descriptions provided by the VlIlr analysis 

appeared to be at least as effective as those produced bJ Derwent's 

manual indexing. In several cas es, the wur results were 

noticeably more precise due to the range of levels of search 

provided but both systems were relatively ineffective for very 

general queries. In the case of CRDS, this was because the 

searches produced a. very large amount of irrelevant output whilst 

in the TILN case, the specificity of the analyses meant that 

many possible search terms had to be·considered. It is clear 

tha~if,printed indexes are t~ be used in anoperationa.l situation, 

broader terms must be provided. For instance, the monocycles 

could be described simply by their size and the number of 

hetereatoms. Similarly, acyclic groups could be indexed at a 

general level by matching their character strings against those 
... 

of a limited number of common functionalities such as acids, esters 

and nitro groups: this approach would be similar to that used by 

Clinging and Lynch(101). Futher details are given in Appendix m.:
The size of the iniex produced could be significantly 

reduced if entries are not made for commonly occurring fragments: 



as noted above, searching is best carried out using a ranked 

fragment freCj,uency list to identify specific index terms. Thus 

the removal of entries under the ten most common fragments, 

shovm in Fig. II.J+O, would decrease the size of the in:iex by 

over a' quarter: Wi th very li ttle red~c'tion in its effec:ti venes s • 

How discriminating are the fragments that have been produoed? 

Fig. II.40 5ho'/vs a ranked occurrenoe list for theLten ~ost", \ 

frequent analysis fragments, these being based on the 7415 

successful analyses. It will be seen that even the most common 

fragment, *Q, may be expected to occur in just over 10% of·the 

file, if the reactant or product character is stated" whilst 
, 

the tenth most frequent species, *Z, ocours in less than 7% of the 

file in toto. Over 1500 of the 1862 different fragment types 

produced occur less than 10 times in the file either as reactant 

or produot and hence the majority. of the fragments £J"e very 

speoifio in character. Entirely analogous results have been 

obtained by Lefkowi tz in his Mechanical Chemical Code( 135,136) 

and any algorithmic fragmentation procedure that can give rise 

to large fragments will invariably produoe a great variety of 

fragment bJPes(137,138)i this vdll discussed in the fourth 

chapter of this thesis. Meanwhile, we note that if the method 

of analysis describ·ed here were to be applied to very large 

files some form of generic search capability would need to be added. 

An even more disparate frequency distribution is exhibited 

by the reaction site notations. The ten most frequent sites are 

illustrated in Fig. II.41 and it Vlill be seen that they represent 

ver,y simple changes indeed. This iS,in line with' the re3ults of 

G-aragnarni and Bart(139) and of Lynch(140), both of whom found 

that verY simple changes predomin!lted. As \ull be seen from the 

Fieure, the most frequent notation occurs only ~~ times and it is 
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foun,i that 4452 of the notations occur once only. Such distributions 

are to be expected if very la.rge fragments(which isliow the 

reaction sites can be thought of) are considered: similar 

results have been obtained from files of author surnames(142). 

To some extent, the low freq'.lenc,ies are due to the fact that the 

rea.ction site notations are not canonicalised in any way:';ho~1ever, 
• t, \"'} , 

replacement of the reaction site strings with an alphabetically 

sorted list of the analysis fragments, which have been canonicalised, 

only increased the most frequent reaction to 70 occurrences and 

decreased thenQ~ber of singly occurring sites to 3661. 

. ' 
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The ten most common analysis fragments. 

The numbers after each fragmedt type correspona to the reactant, proauct ana combined frequencies. 

~Q 796 738 1534- *1 282 41+9 731 

/1 486 703' 1189 /Q 332 321 653 

/1/ 415 631 1046 *1/ 244 336 580 

y 555 473 1028 *OV1 228 285 513 

R 445 486 931 *z 217 239 456 

It will be noticed that many of these fragments arise primarily from the fraementation methods used 

and woula not actually be used for searching a print ea inaex. 
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All substi tuents shown arE) upon rings and all the rings e.re fused. The numbers 

in the right hand column are frequencies of Ocourrence in the complete file 

of 7415 re~ction site notations. 



CHAPTER lIT 

The use of connection table records in the automatic 

analysis o~ chemical reaction data. 



III.1 J..n approxim':l.te structure matching algorithm 

ITe have earlier described a method for autonatic reaction 

indexing suggested by Vleduts(114) which involves the identification 

of the maximal subgraphs common to two graphs, i. e., to the 

connection tables representing the reactant and product molecules 

of the reaction. It was stated that the algorithm Vlould probably 

be limited to structures not exceeding ten to fifteen atoms, and 

Vleduts accordingly described a procedure whereby a comparison 

of the iTIJr symbol strings of the reacting molecules would be 

used to provide 'guiding information', i. e. react~t-product 

atom equivalences, to reduce the amount of iterative atom matching 

that Vlould need to be performed. The approximate structure 

ma tchi."'lg algorithm presented in this chapter was initially 

developed to provide an alternative mean3 of obtaining this 

guiding information but 'We now feel that the method can, it] solo, 

be used to process large files of chcnical reactions and to provide 

machine-readable representations for search which could then be 

interrogated using currently available (sub)structure search 

techniques. The procedure consis,ts of identifying large areas 

co~on to both sides of the reaction equation; taken together, 

these areas may correspond to the maximal co~on subgraph(s) but 

this vdll not general~ be so. Accordingly, it.is not possible 

to delineate specifically the bonds changed by the reaction but 

this limitation is more than offset by the ve~ much larger number 

of reactions that may be processed in the same amount of ti~e. 

rTe consider chemical structures as represented by labelled 

graphs the nodes of which are the atoms and the edges the bonds. 

The graphs Rand P are the reactant(s) and product(s) of a chemical 

reaction and their nodes are denoted by r i and Pi' or generally 

ai • The simple reaction of Fig. III.1 will be used to illustrate 



the basic procedure, the aim being to isolate the change shown 

'in the lower part of the Figure and to note that relctant atoms 

11-13 have been transformed into product atoms 11-12. ~e have not 

made any attempt to specify, for example, that atom 11 in the 

reactant reaction site corresponds to atom 11 in the pro'duct 

reaction site: such mappings may only be made if assumptions are 

made as to the mechanism of the reaction. As advocated by 

Hendrickson(3S) we are only concerned with the overall structural 

. changes that have taken place. 

If we consider the methyl groups present in· the reacting 

molecules, the possible mappings are, in an obvious notation,. 

1,. 6 ~< ___ ~> 1, 6 

and we wish to deteot the equivalences 

1~1· and 6H6. 

Equivalent atoms within a single molecule may' be detected by appl

ication of the Morgan algorith!!l(141). This partitions the atoms 

present by considering the number of their attachments, the first 

order connectivity; as oonnectivity values rarely exceed four or 

five; furthur refinement is obtained .by consideration of higher 

order connectivities. The nth order connectivity of an atom is 

calcula ted by summing the (n-1) th connectivity values of all 

the a.djacent.; atoms; thus the two reactant methyl groups of Fig. 

III.1 may be differentiated by their third order connectivities since 

their sets of adjacent atoms have different surrounding bond 

patterns. The discriminatory power of the procedure may be furthur 

increased by the us e of additional properties,. such as a tom type 

and the surrounding bond orders, in conjunotion Vii th the cOD."1eotivi ty 

(143); at the same time, the nth order. property (conn~tivity)" value 

~f an atom" ai' vn , more accurately represents a ·circular substructure a i 
of radius (n-1) bonds centred upon ai~ r 



We may consider the number vn to be a hash o~ its parent n. 
~ 

circular substructure which may be obtained without a detailed 

atom by atom investigation o~ the ~eature that it desoribes. Hash 

90ding, or content addressing, is a filesize-independent method 

o~ table search whioh has been' vddely used for dictionary 100kup 

using alphanumeric oharacter strings(144,145) but it has also been 

used for chemical structure handling. Early versions of Feldman's 

substructure search system(146,147) used a hash of the molecular 

formula and Feldman also mentions that hashing is used extensively 

in the name file of the CAS Registry System; more recently, entire 

conneotion tables have been used as the .hashins algorithm~s 

source string(148) and similar work has been reported by Wipka 

~t a1.(149), Evans et al. used a topological index which could be 

considered as a hash of a connection table(150) and an analogous 
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approach has been described by O'Korn(151) and Freeland et al.(152). 

All of these workers were, however, interested in obtaining 

search codes for registration rather than for substruotral 

representations; the closest approach to the present work, and that 

described in the next ohapter, would appear to be that of Dubois 

The matching procedure is based on two principles. Firstly, 

a modifioation of the Morgan algorithm is applied simultaneously 

to both o~ the reacting molecules so that inter-, rather than intra-, 

moleoular equivalences are detected. Secondly, we assume that ' .. 

the nth order property value vn is a unique representation of an a. 
~ 

(n-1) bond radius, circular substructure centred 'upon atom a
i

• Hence 

if vn = vn , the reactant and product atoms r i and P
j 

may be 
r i Pj 

considered to be at the cent~e of identical substructures and 

these areas may be assumed to be the same \vithout a detailed 

examination of the constituent atoms, io eo an isomorphism is 

presumed to exist. 



For the initial property value of each atom, V1 , we have used 
a. 

l. 

an integer derived from the atomic 'dot-plot' symbol which uniquely 

5"3 

desoribes the type and bond pattern of a wide range of atoms(109,§4). 

Higher order property values are obtained ~rom the equation 

r a. 
l. 

= +r. r-1 
a. 

J 

where the summation is over all the atoms j that are adjacent to 

s .• 
]. 

The function is similar to that used by Shelley and Munk 

to identify intra-moleoular atomic equivalences(155)." Higher order 

property values are calculated for all of the reactant and produot 

atoms until there are no remaing pairs for which vn = vn. At 
, r i Pj 

this stage, the pair(s) of atoms for which yn-1= yn-1 are noted 
r i Pj 

and all the atoms within (n-2) bonds of these atoms, the 'match 

radius' r, deleted from the reactant and product connection tables. 

The partitioning of the sets of reactant and product atoms is 

similar to the use of atomic properties of various kinds in the 

set reduction techniques first p~oposed by Sussenguth and Unger 

(116,115) for the detection of (sub)graph isomorphisms. These' 

procedures involve the generation of pairs of corresponding 

subsets of the nodes present in the trial and que~ structures; 
.. 

these subsets are subsequently partitioned by the application 

of a range of characteristics to determine correspondences between 

the individual nodes in the two structures. The properties used 

for the partitioning include atom ~JPe and degree of connectivity 

though both authors point out that these may not be sufficient in 

some cases. More recently, Figueras(124) has considered higher 

degrees of connectivity and a similar approach has been described 

by Schmidt and Druffel(156). The partitioning procedure means that 

in many cases an isomorphism, or the lack thereof, may ba detected 

without the need for any iterative atom by atom searchtng(157,15S). 

Our application goes one step furthur insofar. as substructures, 



rather than sinsle atoms, are matched without such a search. 

Applying the procedure to the reaction of Fig. I1I.1, possible 

matches, r. L-"- p., are obtained until the sets of V6 values 
1'--' J a' 

i 
have been calculated at which point no mappings remain ~or which 

the property values are the same. We hence obtain the equiValence 
',' '\ 

1 ,r=4, 1 
<\; ;' 

which, after the elimination of all the atoms contained within 

the match radius, results in the reaction diagram sho'Nn in Fig. 

III.2: the atoms that are shaded in the Fig. are those which have 

been deleted, i. e. noted as not being involved in either of the 

reaction sites. Consideration of the remaining atoms yields the 

equivalence 

10 ( r = 3) 10. 

No furthur mappings can be found, so after updating the reactant 

and product adjacency matrices, the procedure terminates to yield 

the reaction scheme sho"llll in the 10i'ler half of Fig. Ill.}. 

The actual implementation has three additional features which 
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should be mentioned. Firstly, WG must allo\" for multiple equivalences 

as illustrated by the reaction sho'm in Fig. ITI.4 for which we 

obtain the mapping 

r - 7 14, 15, 16 < - >- .. 14, 15, 16. 

The atoms, and the substructures centred upon them, may be deleted 

only if all three reactant atoms have the same set of three possible 

matches, i. e. if the members of the reaotant set are equivalent 

one to another as well as to the product set. If this is fo~~d to 

be so, an arbitrar,r assignment is made for each member of the reactant· 

set and the deletion process then takes place as normal. Seoondly, 

we have defined a minimal match radius of two bonds: early work 

showed that if a match radius of one is per~itted, corresponding 

to the matohing of two augmented atoms(108,159), there is a slight, 
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but noticeable, increase in the nurnbsr of mappings which, although 

representing isomorphic substructures, do not correspond in chemical 

terms. Finally, for a match radius r, only the atoms within (r-1) 

bonds are deleted,. This step is taken to guard aBainst cases such as 

ths-reaction of Fie. III.5 where the bonis attached to the 

outermost atoms, r4 and PJ+-' are differently orientoo in the two 

structures. These latter two restrictions tend to recluce 

slightly the number of atoms elimin~ted; thus the reaction of 

Fig. III.1 is no\'l analysed as shovrn. in Fig. III.6 with the;.. , 

B.,djacent carbon being included in the reaction site. It should 

be notecl that, in some cases, these limitations may extend the 

derived reaction sites quite considerably: thus for the reaction 

ShO'lffi in Fig. III.7, the methyl groups attached to the tetravs.lent 

carbon atoms are all noted D,S being in the reaction site. 

"A further' example of the method of' analysis is shovm in Figs. 

III.8 ... and III.9. The maxlmal mapping obtained for the reaction shown 

in the upper portion of Fig. III.8 is 

r = 5 , 
7~(-- :' 7 

and deletion of' the appropriate substructures gives the reaction 

diagram sho"Nll in the lo',',er half of the Fig.. The next maI'ping 

arises from the two remaining phenyl groups and is 
r = 4: 14, 23~.' .) 14,23 

which produces the furthur deletions shown in the upper, half of Fig. 

III. 9. The final mapping is 

r = 3_~ 1 (----./ 1 

whioh gives rise to the final analysis shown in the lOITer half of 

the Fig •• 

Having given two examples of the procedure, '\'le ClOS9 this section 

with a brief description of , the basic algorithm: a detailed 

implementation is given in Appendix lIT. 

:,'.,: (', ,', (' ,'1 " 

" . 
-: . , . ~ 



(i) read reactant and product connection tables. 

(ii) m := 1; assign all V 
1 

and V1 value.s using the units values. r. 'D. 
1. • J 

(iii) generate higher order property values until there are no 

atom sets for which VU = VU (m = n). 
r i Pj 

(iv) determine the most similar atom pairs(ri , P
j
), i. e. 

those sets of atoms which obey the relationship vm = vn (h<Ilt~n-1). r. p. 
1. J 

(v) n := n - 1. 

(vi) if there are no unique mappings go to (vii) else delete all 

atoms vdthin an (n-1) bond radius of the atoms r. and Pj for all 
1. . 

the pairs of atoms (r., Pj). 
1. • 

(vii) if . there are any r'emaining.mhltip'le. mappings', assign ", 

equivalent reactant and product atoms and then go to (vi). 

(viii) determine the most similar remaining atom pairs, set n 

accordingly and then if n:>2 go to (v). 

(ix) output connection tables with the atoms in the reaction site 

sui tably tagged. 



III.2 Results of the procedure 

The algorithm was tested using a sample file of .534 reactions 

taken fro!l1 the WIN data base described above. The i'lLNs, of the 

reacting molecules were converted to Crossbow connecti9n tables 

(16,109) using software kindly provided by ICI~~d.(Pharmaceuti~als 

Division) and these tables were then used to produce redundant 

adjacency matrices using a program written by the author(a listing 

of which is included in Appendix Ill). An advantage of the 

CrossbO\'1 representation is tha. t the /'ooi ts· '· section identifies 

both the atom type and the bond pattern around each atom in a 

molecule within a single character, the dot-plot symbol(1.54). The 

binar,y representations of these symbols were used as the first 

order property values for the structure matching procedure which 

was implemented in a,n ALGOL 68R program (160) which was run on the 

Universi ty lCL 19063 computer. The program contained circa 200 

lines of code and occupied 3.5K 'VIords of core storage; it required 

63 cpu seconds, exclusive of transput, to process the file of 

.534 reactions, that is between eight and nine reactions p~ second. 

The input to the program. consiste,i of the redundant adj.'l0enc,Y 

matrices to~ether with a vector giving the units vdlues of the 

atoms; the output was identical except that the vector now contained 

a note as to whether a given atom was to be considered as being part 

of the reaction site. The results of this computer run are sho'nn 

in Fig. III.10. Inspection of the output showed that successful 

analyses were obtained for 491 of the r'eactions (92%) where a 

satisfe.ctb~ analysis is judged to be one that adequately represents 

the change though, as noted above, additional a toms may be included 

in the r~acticn site. i'Ti th. this proviso, the an::.lyses· exhibit 

a quite striking degree of reaction site localisa~ion; examples to 

justify this statement are sho-;m in Fias. III.11 to III.16 
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which contain the reactions, the mappings and the derived reaction 

. sites. For large match radii, the property values may become ve~ 

large and the reactions described under "Overf'low" in Fig. III.10 

correspond to cases where the values became too large for the 

computer '\"lord reserved for them:. in both cases, the match radius 

, if calculated, would have been over 20. 

Reactions where no atoms "Tere deleted are shown in Fie. III.17 

and III.18. The two reactions of Fig. III.17 are not processed 

since an ambiguous mapping is obtained, i. e. more than one reactant 

atom maps onto the same product atom or vice versa. For 

symmetric molecules an arbitra~ assienment procedure. could 

be invoked to overcome this problem; rUng and Tauber(123) give 

a detailed description of assi~nment procedures for structure 

matching using a backtrack procedure(161) but these are not 

generally applicable here since incorrect assignments could not 

be detected subsequently. We will also not obtain any mappings 

if the reaction has occurred in a fairly small molecule, e.g. 

the reactioris of Fig. III.18 where no pairs of atoms have a 

match radius greater than 1. 

Some .. of the failures are shown in Figs. III.19 .to III.23 

and it will be seen thatth6'J arise for a variety of reasons. 

Problems arise in the rirst example due to t.he shirt or~he 

al~l group. The second reaction, Fig. III.20, is one of ,the r~R 

undetected caseS" which' contradict the assumption tkt equal 

sets of property values correspond to identical substructures: 
, 

.the reaction involves a functional group shift not detected by the 

matchin~ algorithm. Incorrect mappings will be obtained ir an 

atom involved in the change is matched with a non-reacting atom; 

. thus in Fig •. III.21, the invalid equivalence 
r = 5 

16 < » 25 

is obtained. other ~ailures are shovm in Figs. III.22 to III.23. 
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, 

failures is very small indeed. A graph isomorphism routine 

could be incorporated after a mapping has been detected to 

check that the circular substructures that have been mapped are 

in fact isomprphic and this would probably be quite fast in 
. "" 

opera tiori since it is senerally a sirnpierma tter" to prove that an 

isomorphism does not exist between two graphs than to prove the 

contrary(162). This, however, would only be useful for the one 

or two reactions in which a non-isomorphic mnpping is, obtained: 

most of the failUres, on the other hand, arise from correctly 

identified. isomorphisms which, however, do not correspond with 

wha t has taken place in chemical terms. The assumption that 

e1ual sets of property values correspond to identical substructures 

would seem to be valid for the overwhelming number of reactions 

considered. Note, ho.,.,ever, that such an assumption probably 

would be much less applicable to a general graph matchine 

algorithm in a substructure serach system where a wide range of 

structures are to be matched against the query: in the present 

application, it may be taken~ priori that a large degree of 

similari ty exists between the two (sets of) molecules being 

considered and hence if a mapping is found, it is almost 

oertainly a valid one. 
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Successful analyses 

Reactions for which overflow 

~~Clo~ place .>-

No matches obtained 

Incorrect mappings made 
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11 

, 
Results for analysis of' sample file of 534 reactio!ls using the graph 

°ma tchiI'.g algorithm of Chapter lIT. 
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CHAPTER IV 

The automati~ generation of screGn set~ for chemical 

substructure search systems. 



IV.1 Introduct:i.on 

The rapid builCl.-up of laree machine-readable files of cr.emical 

compOlmds has led to a need for sophisticnted search procedures 

to meet the needs of users for improved access to struotural and 
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related property data. Searches may be performed both for individual 

cornnolmds and for groups of molecules possessing certain substructural 
~ 

features in common. The first of these tasks, registration, is 

carried out to ensu~e that there is no scattering of the information 

pertaining to a single compound and that information concerning 

different compounds does not become confused; general descriptions 

of the problems involved are Biven by Ash(16) and Evans(163) 

and a specific implementation by Evans et ~1.(150). 

Substructure search is normally carried out using a multi-

level' approach in which increasingly specific search techniques 

are applied to rapidly diminishing seotions of the structure 

file. The search strateeies adopted will be in large part. 

dependent upon the structural represent9.tion use<l in the file 

and questions may therefore be a.nswered by nomenclature-based 

or structural fragment code3(59,164), by string searching linear 

not.::ttions(103,165) or by searchine of bit screens eenerated from 

notations(~69), nomenclature(58) or connection tllbles(12S). 

There will be Borne ques tions, hOl'lever, vlhi ch can only be ade'lua tely 

answered by a conprehensive a tom-by-atom search for which a. 

connection tablp. record, of some sort, is essential. Such searches 

are equivalent to detectinz the isomorphism of a subgraph, the 

query structuro, with a cO!:lpletc eruph, Cl cOI:lpound from the struct'..lre 

file; suberaph isomorphism detection is mown to belonB to the 

cla.ss of problems kno\'m as NP-completp.( 121 ,167) for which no offic:t~nt 

amonnts of corrputer time if m~ny triDI struc tl1!"O~ n~e,l to bIJ 

mntch~n. ar,ainst the query. !,bT'l-by-atoM s'~:l.rchinz of large compound 



files is accor(linr,ly feasible only if the number or R earches can be 

kept to a minimloo by the rarid and inexpen3ive elimination ot' that 

large portion ot' the file which cannot possibly meet certain 

minimal requirements in the query rormul~tion. The structural 

characteristics which are use1 to carry out this file partitioning 

are called screens; we use the term' screen set' to describe the 

group of characteristics which are chosen for this purpose. 

~7hat criteria should be used in generating a screen set from 

the astronomical number of possible fragments that could be 

employed?(168,169). Ray and Kirs~h(158) pointed out that the 

menbers ot' a screen set should be independent of one another and 

be applicable to the whole range of questions that might be 

expected. In a non-chemical context, Mooers(170) noted tlut in an 

ideal situation a set of twenty characteristics, each of which was 

independent of all of the others and occurred in one half of a 

file of one million items should be capable of uniquely identifyin~ 

a sin~le record •. , Although such requirements are not obtainable 

in praotice, these broad guidelines have played a 1aree part in 

the development of information systems in general and of chemical 

structure systems in particular. It is found that there are 

tv'tO factors which prevent screen sets. from achieving a near ideal 

performance; the first is the extremely disparate occurrence of 

structural features and the second the pre3ence of strone inter

fragment dependencies. In the next section, we discuss previous 

work dealing with these two factors and follow' this by the presentation 

of an algorithmic method for screen set generation \7hich t:,ikes the. 

f~ctors into account. 



IV.2 Theoretical considerations in the de3ign of screen sets 

It is found empiricqlly that a varie~J of hyperbolic, and other 

lon~-tailed, distribution,s ch~.r2.cterise the behaviour of many 

parts of library and information systems(171,172,173,174) anrl in 9. 

series of papers(92,108,130,175), Lynch ana his co-workers 

demonstrateci that there is an i!1verse relationship between the 

frequency of occurrence of a substructural feature ana its 

rank when the features are ranked in decreasing frequency order. 

An extreme example is provided by the distribution of eler.lent 

types in·a structure file: analysis of almost 3qooo compounds 

dra7m at randoD from the Chemical Abstracts Registry System 

sho':led that the occurrence of' the most frequent atom, carbon, was 

al.-nost 1000 times that of' the tenth-ranked atom, iodine. Moreover 

carbon, o~gen and nitrogen tozether accounted for almost 9~ 

of the non-hydrogen atoms in the sample file. The obvious 

implication is that the value of the element type alone as a 

screen is highly variable, since searches involving iodine ,7.111 

be highly selective whereas queries invo1vinJ carbon or nitrogen 

will require many other characteristics to be specified if an 

enomous, 101'1 precision out:mt is to be avoided. Analysis of 

larger, more detailed fragment vJPes yields the same broad 

conclusions but with two qualifiers: firstly, the frequency 

difference between differently ranked fraements is much reduced 

but, secondly, the tot~lity of fragment tYP33, the VClriety, 1s 

much increased with the majorivJ of types occurring very few 

tir.lcs indee(l. J...n additional problem is that the queries a1d.rcssed 

to a structure file are a fair representative of the file's 

cO!1tents(161~,176) ['.nl'!. it rill hence be the very frequent features 

~hich are most oftc~ s~ccified at, 'search time. 

The disparate freqllenl~ie3 of the fra[;IIl,mt types may be 

oo~pensatea for in the desien of n screen set by enp10ying 
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varying levels of description, the frequently occurring characteristics 

beine aelineatea in some detail whilst the less common feat'..lres are 

described in more general teems. In this way, we may achieve a 

balancebetvleen the proliferation of low incidence fragments of' 

superfluous specificity and the small number of high incidence, 

low precision f'ragments. At the same time, the occurrences 

of' the resultant screen set members vdll become much less disparate 

than if' a single level of' description were to be employed. 

This move to~~rdsscreen equifrequency is, however, lessened by 

the necessi~ of describing frequent characteristics at the more 

general levels, as well as in detail, to allow of easy query 

encoding since, othe~vise, the union of many highly specific 

features may be required in order to describe a more general 

f'eature common to all of' these. 

A theoretical justification for such an approach is obtained 

from simple considerations of information theory. Shannon's 

mathematical theory of' comrnunication(177) considers the statistics 

of' symbol occurrences in mess~ges and gives a quantitative 

measure of the maximum amount of information that may be gained 

from a message encoded using a given collection of' symbols. The 

actual nature of the symbols is immaterial: thus they may be the 

letters of' an alphabet, the fragments in a screen set or the. 

indexterms in a controlled vocabulary in,iexing lan3Uaee. The 

theory shows that the average amount of information conv~Jed by 

each symbol is given by 

where H is callerl the entro:?y of the symbol set ani the values 

Q(F) are the probabilities of occurrence of' each symbol F in the 

set of N symbols. The pr0rnbili ties may be approx:L"!l:l ted by the 

relative occurrenccsJN(F), of' the symbols in the set, ie eo 

Q(F) = N(F)/N 
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Irrespectiva of the nature of the symbols in the set, the 

entrony will be at a maximum when the symbols are equinrobable i e ... .... ,.. 
they occur with equal frequencies, an(! in.:lependent of one another; 

in such a case, the entropy, H(rnax), is simply given by the 

logarithm of the symbol set size. A rapid measure of the coding 

efficiency of the set is given by the relative entropy H(R) 

H(R) = H/H(max) 

where H is the actua~ measured entropy. It should be noted that 

the relativa entropy measure becomes somewhat insensitive as 

its value tends to unity. 

An additional problem is that the screenout performance of 

a screen se~ cannot be directly calculated from fragment incidence 

data since it is foun1 that the incidences of the screen set 

m~bers are not iniepenient of each other(178). An ana~sis of 

the co-assignment fre1uencies of pairs of screens' shovled that the 

association between fragment types of a given size increased 

directly as the size ani that certain of the screen-pair association8 

were sufficiently large to have a considerable effect on the 

performance of a query involving that pair of screens. If a 

querJ involves two positively associated screens, the associ~tion 

will reduce the screenout whilst the converse will occur if the 

screens are negatively associatedG 

Many of the positive fragment associations may be easi~ 

explained in terms of overlap between fragments. The iterative 

fragment generation method developed at Sheffield(179) conside~ed 

all possible centres of a given type in a structure, the typ'es 

being bon(!s, atoms and ringsc Thus, once fragments had reached 

a certain size, those generated. from adjacent. I centres would 

start to overlar> ani the reeion of overl!il-p would incre:1.se with 

increasing fragment size. Hence if a substructure occurred fairly 

fre1uently, frae:nents derived from it would have quite high, 



positive associations, e.g. the carboxylic group yields the simple 

pairs C-O, C-C anti C=O all of which share the same carbon a tom. 

Negative fragment associations, which would improve the screenout, 

are more difficult to explain ana this is also true for both 

positive and neeative associations between individual atom ~JPe3 

where no overlap is possible. The stud.y concluded that, in 

practice, no consideration need be given to fragment assooiations 

as long as the scree~ set members were not too large. 

The Sheffield group considered only associations between 

fragments of the same size, but iterative ~raementation algorithms 

introduce' very strong assooia tions betvreen a fragment and its 

i~~ediate parent, i. e. the fragment ~rom the previous iteration 

of the fra.onenta tion algorithm from which it has been derived. 

It is clear that if the incidenqe of a fraement is not dissimilar 

from that of its parent, one of the fragments is redundant and 

should.not be included in the screen set; the filial fragment 

will have the lOiver frequency ani thus should be deleted to permit 

easier query encoding at search time. 

A model for such associations ~s been developed by Hodes and 
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been applied to the formation of a screen set in use at the WaIter: 

~R:eed Army Institute of Research(168,180,181). " The discrimina.tion 
I .", ',' 

~f a fragment, D(F), is defined as being the reduction in 

uncertainty when the fraement is used to partition the file, 

i. e. is assigned to the appropriate molecules within it. UsinB 

the notation given above, a.pplication of the fragment will cause 

the file to be reduced in size fro!ll N to N(F) so that the cronge 

in uncert:l.inty will be 

D(F) = loeN - logN(F) 

which, substi tutin5 from e'lu:ltion (2) Rbove yields 

'D(F) = -log~ (F) 

if, and only if, there are no inter-fragment associations. If 



l.- t is no~v assumed tlu t the s tron!':es t association ';s that b ~ - ....,' e,,'Neen 

F and its !larent fraemcnt, P, Hodes showed. that the discrimination 

may be aI'proxima ted by 

n(F) = -Q(F)log(Q(F)/Q(P)) (5) 

if F is symmetrical, i. e. has only one possible parent fre.ement(180). 

In an operational imp1enentation of this work(168), the rounded 

n(F) values were used to represent the n~~ber of bits to be assigned 

to eac~'fragment in a· superim~osed bit screen system: thus 

fragments for which the ratio' Q(F)/Q(P) was near unit-J were 

eliminated from the screen set since no bits would have been set. 

In the present work, which has been carried. out for implementation 

in a dedicated bit screen system, such low discrimination 

fragments are automatica1~ eliminated at screen set selection 
" 

time.; this is achieved by only allowing into the screen set those 
'" 

filial strings whose frequencies of occurrence are sufficiently 

diffe~entiated f:om those of their. parents. 
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IT.3 The description of chemic3.1 substruct'.1res by integer strings 

The Sheffield group made a systematic investigation of th's 

frequencies of a limited nunber of simple f'ragrnent typ~s, these 

including simple, augmented and bonded pairs, octuplets, elements, 

coordinated, bon'led and augmented atoms, linear four atom strings 

and simple ring descriptors(92,108,130,137,17S). For each 

fragment type, frequency counts were mao.e for all fea tures at 

the lowest levels of description and then the most frequent 

fragments were investigated at the more detailed levels of 

specificity: thus a frequently occurring simple pair would be 

considered for inclusion at the augmented pair level(179). The 

hierarchical nature of the fragment types was thus reflected in 

the method ot' screen selection which was pert'ormed manually 
. -

using the ranked fragment freq,uency lists. 

The fraBfIlents considered at WRAIR oovered a much wider rl:tnge 

of substructural sizes and the hierarchy was much less well 

defined though no mention is given as to whether this affected 

the ease of que~ encoding. ·The initial fragments were individual 

atoms and single adjacent atoms were added t'.) th,3se to form the 

fragments in the first iteration: thus a tetravalent atom Vlou1d 

give rise to four filial fragments. However, presumably because 

of the vast number of fragment types produced, increasingly 

severe restrictions were made as the number of iterations incrE>-3.sedi 

thus after the second iteration, the fragments were limited to 

unbranched acyclic chains and monosubstituted rines. During ench 

iteration, fragment incidenccs were cumulated and those occurring 

in less than O.1~~ of the file deleted froll furthur .consideration; 

conver~e1y, those occurring in more' tho..n 1% of the file were 

included. in the subs oquen-t i t~rCl. tion, This nppro:! ch in vi3r:r 

sir.li1tl.r ·in cone e~t to the nctbo,'ls dev0lopeJ by Sal ton £'.nc1. his 

co-workers for the autom::.tic G'ln8ru tion ef inr.!.e:d.nr:, terms for 
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doc"JI!lent a,escription(1/:52,,183). It is not obvious from their re::,ort 

(168) ho'.", much manual work was required by the WRAIR '1rorkers but it 

seems clear that the entire file YlaS processed at each iteration 

of the fragment generation algorithm. 

The work described here represents a method for screen set 

generation in which not only are all the steps aleorithrnic in 

character but also it is possillle to pron,ucF! a screen set from 

Cl sinele pass of the, structure file 'wi thbut any subsequent 

manual intervention. The screens may be atom, bond or rine 

centred, are symmetrical and, within each fragment type, form 

a strong hierarchy to f?,cilitate generic coding at search time. 

The process consists of three stages, these being the generation 

of all possible fraements at the most specific level of.'de~cM,ption, 

cumulation of the individu~l fragment occurrenoes to obtain 

frequencies covering the whelp. file and then selection of certain 

of these fragments for inclusion in the final screen set, this 

being carried out upon the basis of the incidenoe and association 

considerations outlin~l above. 

It is clear that a laree amount of sorting will be required to 

obtain the fragment frequencies for the screen set generation 

algorithm. The computational requirements are somew~~t reduced 

in the present implementation since only the most specific fragments 

are generated, and hence need. to be subsequently sorterl, in the 

i'irst staze of the I'roce.1ur'''!. The subsequent cumulation then 

considers not only the specific fragments actually present but 

also the more generic fraements i'rom ,:hioh they hc.ve been 

derived. Even no, the overall proco:'lS will be most efficient if 

the frogment ropresent'ltives are chosen to be as simple as possible 

to nllo'," of ra!,lic1 sortint; prior to the seconrl s ta.~(J. Such an 

a pnronch will also bear' frul t in thn ini ti'll fraP.lllQnt "en er'" t' _ ,t' _ I.,) - ,'. ,~on 
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step since it seems certain that simple fragment representatives 

will also be sim9le to produce. :rulst it is relatively easy to 

encode small fragments such as au,~ented atoms, a description of 

a large substructure, such as a non-generalised octuplet( 137) , 

. requires, in effect, some form of cormection table which raises 

two immediate problems. Firstly, the record must be converted 

in to a canonica.l format Vii th the minimum of' eft'ort: . revi Ems. 

01' canonicalisa. tion routines have been given by Bersohn (184) 

and .Tochum and Gas.teiger(1 8S).. More serious, in view of the 

very large numbers of records involved, is· the sheer bulk o~ 

the record. Consider the substructure sho~m in Fig. IV.1: the 

circles represent substructures o~ increasing size, and henoe 

~ragments of increasing specificity, and may be considered as 

three levels of description for the double bond at the centre 

of the substructure. An explicit description of the most specific 

fraeme.nt would require a connection table involving 11 atoms ancl 

10 bonds; still lareer records are of course possible though 

their presence in the final screen set would be unlikely for 

all but the largest files. The main problem is hence one 

of compacting the representation whilst retainins easy access to 
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the more generiC, parent fragments contained vdthin the substruoture. 

The fragment descriptors developed in the present work are 

strings of inte~ers, each or which represents a more precise 

definition·.of the environment of the features described by the 

first integer in the string. The integers in the strins are 

obtained by an adaption of the ?iorean algorithm(141)i as describel 

in the third ch~ptE)r of this thesis, the a.1gorithm discriminates 

bet~'leen a toms u:::lOn the basis of their extenned conneoti vi ty 

values where the nth order connectivity of an atom is calculated 

by summing the (n-1)th order connectivity values of all adjacent 

a. toms. Increased specifici ty is obt~.ined if the (n-1) th value of' 



· the central atom is also taken into consid.eration: thus, using 

the nomenclature of Chapter Ill, we may vrri te 

vn 
ai 

= vn-1 + S·· vn-1 
8 i ........ a j 

where the summation is over all the atoms, a j , which are adjacent 

to ai- Consider the structure shovm in Fig. IV.2 where the numbers 

attached to each atom represent the initial connectivity values. 

Two iterations of the algorithm yield the sets of values shown 

in Fig. IV.3. If we· consider the o~gen atom, we may describe 

it by the string of integers (2,6,20); similarly the substituent 

methyl group carbon may be represented by (1,4,13)- Note that these 

descriptions are purely topological and say nothin$ a".lout the 

nature of the atoms that th~ represent or the order of the 

bond connections. 

As noted in Chapter Ill, significantly increased ~lscrimination 

between the a toms in a molecule may be obtained if' properties 

~ddi tional to the connectivity are U3 ed to determine the initial 

property values. The initial values used in this work are numbers, 

descriptive of the atom ~pe and the number and types of adjacent 

bonds, i. e. the number describes a bonded atom; these integers 

are then used to provide higher order descriptions of' the atoms. 

The structure representation used.wastheCrossbbwconnsction table. 

The heart of this record is the units section which consists of' 

a string of symbols, each of which is associated with one o~ the 

non-hydrogen atoms in the molecule, and the initial property values 

were simply the bina~J representations o~ these symbols. It should 
• I 

be not'ed;that a ve~large amount of' ~ Eriori selection has been 
, ' 

carried out in the design or the units notation since frequently 

occurring atom types are assigned a variety of symbols to reflect 

the variety of bond. surr01mdings that may need to be taken into 

account for adequate discrimim.tion; rarer atom types or bond. 

configurations are, on the other hand, generalised and only a 



lim1.ted number of symbols are employed ( 186). 

The Morgan algorithm can, of course, be iterated as many times 

as required so that it is necessary to derine the maximlW level 

or description that is required, i. e. the length or the inteeer 

strinG- The smaller, more generic fragments may then be obtained 

by successively replacing the riehthand~ost integer by zero. 

Initial experiments, using the basic approach described above, 

showed that refinememnts were required in that very few of. the 

loneer strings were found to occur more than one or two times_ 

The circular substructures described by the non-zero part of an 

integer string representing an atom and its environment increases 

in size by one bond in radius for each iteration of the algorithm. 

Previous work, using the sample file or 3q000 compounds mentioned 

earlier, has shown that the variety of atom-centred fragment 

types increased from 68 for a toms to 136 for . co-ordinated. a toms, 

313 for bonded ator.ls and then suddenly to 2331', for augmented atoms 

(108). Many of the larger fra·ements were of very low.occurrence: 

thus 960 of the augmented atoms occurred only once in the sample 

file. As the increase in variety from the first to the second 

level of fragment description in the present work may be expected 

to be of at least comparable suddeness, it is clear that ve~ 

many of the larger substructures Vlill occurr very infrequently. 

The problem was resolved by inserting two initial levels of 

description prior to the bonded. a tom representative, these two 

levels corresponding to the atom type and atom tYre plus 

connectivity. Thus the substructures described are in the regular 

progression shm'm in Fig. IV.4 with the first four levels 

representing elemental type, co-ordinated atom, bonded atom and 

aULmented atom resrectively; the version of the algorithm used 

to generate the fourth and. subsequent property values wns 

= ~.n-3 IC,.-' ·.11-3 3"'v + '" v-ai ...... a. 
- J 
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However, only the integers i'rorn V3 upwards, to a maxi.rnum a. oi'V7 
a ' i J. 

were actual~ \7ritten out to tape for subsequent sorting; thus 

the minimal level oi' description in the i'in":!.l screen set is the 

bonded atom. 

So far, we have only described atom-centred fragments but the 

procedure is clearly applicable to any type of fragment given 

appropriate numerical substructural descriptors. Analogous 

bond-centred strings were produced from the atom-derived integers 

using the equation 

VThere ~ a 
a i j 

= vn~ 
a
i 

a j 
(1~ n$'6) 

order property value of the bond connecting 

a
i 

and a
j

• Ideally, the i'irst value should. be the bond type 

itself(single, double, aromatic etc.) but this information 

may not be readily obtainable from a bond-implicit structure 
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repres enta tion. With this proviso, the first four levels correspond 

to simple, augmented and bonded pairs and non-generalised 

ootuplets, all of which have been used in previous work in 

Sheffield. It should be noted that a furthur type of bond-based 

fragment, the four atom string(137,187), cannot be produc~d 

using this method of fragment generation unless the corresponding 

substructure happens to be linear. 

The great advantage of the technique over other methods of 

fragment generation is that no path tracing algorithms need to be 

invoked to detect the larger fragments sinc"e only the adjacent 

atoms need to be considered at each step: as noted by Barnard(188), 

this can make quite enormous reduotions in computer time possible. 

Strings, analogous to those above, may be produced for rings 

but here, ways must be found to identify the monocycles that 

are present in the structure. As bet'ore(see pages 32-33), the 

subset of the rinr,s dAscribed by i'/LN WJ.S used since these are 
I 



rapidly identifiable from the Crossbow' record. The properties 

consid.ered include ring size, number and type, of heteroatom 

substituents, the number of extra-ring connections and whether 

the ring ~~s fused: furthur details are given in the next chapter. 

A final point that .shoulcl. be strongly emphasised. The 

integer strings developed here are structural descriptions which 

are intelligible only in machine terms: with the exception of 

the single integer strings, .i t is not· p08si,bls' to .rsconst~uct the 

,substructu:r:a correspond~ng to a given string.However, the set of 

strings has been constructed so that, hopefully, a range of 

hiehly discriminating screens, including both generic a.nd specific 

descriptors, may be assigned to any input structure representation. 

It is thus idE~ly suited to systems involving direct structural 

input, such as by chemical typev~iter(25) or an interactive 

graphics terminal (206) , both for query encoding in substructure 

search a.nd for the assignment of screens to a compound at 

regis tra tion. 
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IV.4 AA algori thIn for sc)."een set generation 

In the previo1.l~ sectio'1, D. method was ou tlinerl ['or the generrl.tinn 

of substructural descriptors from a connection table representation 

of a chl3l1lica1 structure; 'We now describt~ how these descriptors 

may be used to pro"l~lce an approximately equifrequently occurrin~ 

set of screens for subsequent ansignment anrl substructure search. 

The procedure is in three st~ges. 

The first step is very sL~p1e, albeit the most time-consuming 

part of the procedure, and involves the analysis of the connection 

tables in the structure file. For each mo1eou1e used, integer 

5trine~ are built up for all occurrences of the fragment type 

under consiaeration. Onoe this has been done, the strings are 

Vlri tten out to tape for subsequent sortin~ upon an incidence 

basis, that is only a sinele occurrence of each strine type 

is output per molecule since the subsequent screen assignment 

is to be upon a present/absent b~sis. It may be noted that, 

for all but the most cocunon substructures in a compound file, 

the incidence and ooourrence fieures are not ver,y different; 

Strines are on1ywri tten out at the most d.etailed level of 

description that is required; the production of all the subntrines 

as well results in a ver,y large number of additional records 

['or sortin$. 

Once El.11 the strines have been generated they are sorted into 

increasing order o~ the inte~er strings 50 that all occurrences of 

a given .string type appear toeether on the tape. These 

occurrences are then ctunulate,l for each fraemcnt and Il simultaneous 

count is made of the less s!,ecific fraernents ,',hieh maY' be 

eeneratcd from th,~ strin$, i. e., the string (6,1,100) will 

Zive rise to the 3ubstrin0s (6,1,0) and (6,0,0). The strin~~, 

to~ether ,'d th their associa terl frequencies, are then itl'i tten out 

to a seconrl tape for BQrtin!; into ascena.ing size anrl decre1.sing 



incinence order where the three strings above are prem.uned to 

have sizes of three, two and one unit respectively. . The resul tin'" 
u 

ranked frequency list is then used as the input to th~ screen 

set eenera. tion proGram which yi elds a s et of approxim,'l tely 

e'1uifreqllently occurrin3 screens. 

The derivation of sets of e1ua.lly fre~lently occurring sets 

of attributes has b'3en thorou~hly investigated in the context 

of bibliographical information systems where the objects are 

te:dual in nature, e. g. document index'telrmls or author names in 

a directory, and the attributes to be considered are strin~s of 

alphanumeric characters. Perhaps the most common approach is 

to represent the objects, i. e. the text, by v~~iable leneth 

ch~ra.cter strings, the longer strings representing those 

ch3.racter juxtapositions that occur most frequently in the text 

co:-pus(189,19J,191,192). In one appliclltion, character strings 

are generated from the text by moving along it one character 

at a time and producing a fixed-length string at each point; 

this length is the maximum-sized string that is to be allowed 

into the final set of attributes. The strinB occurre~ces are 

su::-.. 'le(l, together with those of their parent strings, and the 

re3ultant frequency list used as input to the symbol set 

generation algorithm. As text is one-dimensional in character, 

the attributes are also linear and generic attributes are easily 

ob~9.inAd. by successive righthllnd character truncation. Thus the 

first character of the word COapUTE will yieln the string3 

CO!.PUTE, COI.iPUT" COMPU ,CaMP , COU ,etc. dm'm to C 

a deb.iled description of this procerlure is given in (196). 

rrhc intA~er strincs dF.lscr:tbed above m~y' be mani.pllh,ted in 

2,n en tircly analogous m:lrm~r nnr'l we now present an aleori thrn, 

which has been impll1r.1snted in Alr,0168-R, to pro,luee a screen set 

fro:n a sorted input tape file of string f're11lcnoies. 

75 



I 

The program makes use of' a threshold frequ8ncy, T, above which 

strings will be considered fo:::, inclusion in the screen set. The 

relationship 

T = N/4*M 

was used where M is the sc:::'een set size and N is the total 

nuaber of fragment incidences summed in the cumulation proerami 

a tape record containinG this nllmber is constructed so as to 

move to the top of' the cumulated frasment frequenoy list after 

sorting and it will henoe be the first record to be read by 

the program after the input tape file has been opened •. The value 

of 4 in the denominator was found empirioally: a similar 

relationship has been used by Yeates(197). The value of M is , , 

the only parameter required by the prozram and is usually one 

less than a multiple of 24; the computer used for this \'lark 

had a 2)~-bit word-length and a sin~le bit is reserved for use 

as a conflated screen, that is one which m:!]' be :'!.s3iened if no 

match can be obtained for a substructure with any of the other 

screens in. the set. -'p,n alternative procedure would be to ensure 

that all the single integer strings, i. e. all possible bonded 

atom representatives, were included in the final screen set. 

A trial screen set is obtained by incluaing in the set all 

those single integer strings with associated frequenoies ~T; 

as the number of such strings is usually less than M, the set 

is made up with dummy, zero-filled strings. During subSequent 

iterations of the algorithm, the set of'strings of a eiven size 

is '(read in from the sorted tape file and these strings are 

considered for inclusion in the set so as to improve its 

equifrequency properties. Consider a general string, si' of 

length n whose parent fragment s, of length (n-1), is included 

in the set created at the' end of the previous iteratioll o Si 



will be stored for consideration as a potential ne~ screen if both 

its frequ::mcy, f ,and the difference in frequency between it s. 
l. 

and its parent are not less than T, that i~ 

f,~ >:-. T and fs - f 
Si .. si 

.... 
.-::. T. 

The latter requirenent is to encompass the parent-filial 

associations discussed by Hodes(180) whilst the presence of the 

parent in the screen set is dictated by the need for a strict 

fragment hierarchy to permit easy generic coding at search time; 

it has also been claimed t~~t, for character strings, an emphasis 

upon the shorter strings may yield a better fin~l relative 

entropy(199). Since, in later iterations, there may be many 

possible strings satisf'ying the frequency criteria above, only 

the M most frequently occurring strings are actually stored; thus 

if m n-length strinGS have already been stored, the new string Si 

will be discarded unless f is greater than the frequency of the 
Si 

least frequent of the strings already stored forsub~equent 

consideration. 

At the end of an iteration, that is at the end of the screens 

of a,:' given size n, the potential new screens are merged with 

those already in the screen set and a pruning procedure carried out 

to remove certain superfluous screens. Consider an iteration 

in which strings of length n have been considered and then addecl 

to the (n-1) ani smaller strings already in the set. Then for 

everJ (n-1)-lensth strins, 5, a check is made to see whether 

--- .,.' - ;( f ~,~ T 
• S. 

J. 

where the surruno.tion is over e.ll the n-lcngth filial ~trines, Si' 

of the parent fragment. If this ineq'Jali ty is found. to hold, 

fill'11 fragments 3.re deleted in inver3e frequen:!y order until 
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f ris"3s above T. Thus if a strin~ (23,179,60,0,0) ha!'! an 
S 

asso~iated frequency of 172 ani!. its filial strings (23,179,60,lI-73,0) , 

(23,179,60,479,0) , (23,179,60,515,0) and (23,179,60,720,0), with 

frequendes of 41, 74·, 23 and. 21 respectively, have been selected. 

as possible new strings then 
..,-' 

f -"/ f = 13 s ~-. s. 
l. 

which, for a threshold of 20, is too low. The least frequent 

string, (23,179,60,720 ,0), is accordingly deleted and. f now 
s 

rises to 34; this above the threshold and the next (n-1)-leneth 
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string may be considered after fs has been reset to its origin~l value. 

P£ter all the ~tring~ have been inspected in this manner, a note 

is made of the size of the current screen set and, if:(.. M, the 

set is sorted into alphabetical order, to permit a rapid lookup 

via a binary search in the next iteration, and the program 

con tin'.l8S to consider the (n+1) -length strings. If, hO'lIever, the 
-', 

size ef the new set / M, the least frequent screens are deleted till 

the required. size is achieved; the program then proceeds as before. 

Occasionally, it may not prove possible to produce a screen 

set of the required size'since there may be insufficient strings 

ob~Jing the strict frequency requirements; in practice, this 

only appears to occur if a laree set is being constructed from 

a very small compound file. Thus, Gannon found that a minimum 

of about 100 compotl..'rlds was needed to produce sufficient· six 

integer strings for a 239-mernber, atom-centred screen set(138). 

H.~ving describc<1 the procedure in qualitative terms, Vie now 

pre~ent the b3.sic algorithm. Ap::lrt from s, Si' f , f , T arid M s s. 
J. 

which }1:l,ve been introduced above, two arrays, A and. B, need to 

be definea. A, which is of size H, is u3ed to store potential 

screens of' length n durin3 an iteration whilst B, of sizG 2*M, 

ho11s ths screen set obt9.ineti at the end of the (n-1)th iter:J.tion 



t08ethor i'/ith excess sIJ3.ce to nccomor1ate the contents of' A .,:hen 

tho b;o arro.ys are morege(l. 

r'3d f'irst talle rocora. c.n,l M; c::tlcllhte T. 

(i 1) n := 1. 

(iii.) read a strin,n;, s.; if f "",T store s. in Dj rOj?oJ.t until 
. 1 s. 1 

J. 

all the sin~le integer str:i.n3s h:.1ve been read ::md then sort B 

(iv) n := n + 1; y := o. 

Cv) rc;d a ~trine fr:')tU the sorted. inI>ut f'ile; if the length I 
n go to (ix) (duITh-ny recor,ls h3.v'3 been innertr')ri between G1.ch of 

the croups of strings of a given lensth). 

(vi) if f' < T or s in 
Si 

(vU) if' A is not full, 

not in 

alId s. 
1 

B or f -f < T eo to (v). 
5 s. 

J. 

to the (:,'+1) th post tion then if 
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y ::: M, sort the strings in A in,j.nverso frequencY,yrcl')r e,nrl eo ,to (v). 

(Viii) if f' > least fre'1'Hmt mp.mber oC A, :i.n,'3ert s. ~n(l r::"!~)ort 
8. 1 

J. 

Ai eo to (v). 

(ix) merGe A with B ana. sort :i.nto alphabetic'?l orde.!." so th:J.t 

each parent strin~, s, app~ar3 b0fora its filial strincs, s.; 
l. 

for each string s, of lencth (n-1) evaluate f - f' ;/ Tnnd if s s. ' 
l. 

the inequality does, not hol<]" delete fili::l,l. strincs in inv~~r31) 

fro,.ruonc~T" or(l~~r un til true t:m.l then rO::;I.~t' f to it::; oridn-.xl v:lIuC'. .... J s ,It..1 

(x) \',hile the nCi'l set size> M, delete strines~in size.anll invcrs0 frequency 

order, from Bj ~ort' B into alphibr)'tica.l' orJ.cri if' th6r'e lli;e still 
str:i.nt;s'to be consiclcre,l eo to (iv). 

(xi) if the set size = M output Band h::tlt; oth0rrrise f.:J.ult. 

A lis tine of an Alco168-R implementation of this n,leorlth'1l, 

usine differ'cnt not3.tion, is included in Ap::?en1ix T',. 
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A substructure'search system for the retrieval of chemical 

reaction informatio~. 



V.1 Introduction 

In the seconi anrl third. chapters of this thesis, we have 

outlined. two metho:is for the automatic characterisation of the 

structural changes occurring in a chemical reaction. In this 

fin'3.1 chapter, we describe the design and implementation of 

an experimental substructure search systan(SSS) which permits 

searches for reaction queries to be made utilising both methods 

of analysis. 
" 

Many SSSs have been described in the literature(22,23,24,2S,58, 

181,193,194) but they all have in common the concept of two or 

more levels of structural description. This permits the efficient 

elimination of many obvious non-hits at an early stage in the 

search by the use of a simple binary attribute characterisation; 

subsequently, those molecules not so deleted are pas.sed on for 

a more sophisticated., e.ni time-consuming, analysis using a more 

detailed structure representation. The initial level of' 

structural descri?tion is some form of fragment bitscreen which 

can be searched et very high speeds and the fraements d.escribed 

are eenerally algorithmical3,y assigned from an input whole 

structure representation although manual assignment is, of course, 

also possible(12S). In the previous chapter, we have discussed. 

one approach to the ~esign of screening systems for files of 

connection tables but others arc) of course, possible(22,23,168) 

7lhilst Granito ~t ~ .• (112) an(l Granito(113) have describod en 

assicnmei'lt proce,1ure whereby the substructural features clescrib'3i'l. 

by th0 RinCcod.e i'rc.[;r!l011t:::. tion method are specifically searched in 

a connection table; similar work has been reported e1s8·.orhere( 24, 

198).. The bivtsc~eens mey also be automatic~llya~'siGriea: 'fro~ ~ 
'linear notation(195,166,200). A recent revie',v of t;':enty d.ifferent 

screening systems is given by POi'Tell et ~.(?,01). 
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interro~.:lted. usinc conventiona.l textual string search mothons(103, 

202). Computationally, this is currently a much slo·Her procedurl3 

and, for certain tYJ?A~ of substructure, a lar~e number of alternative 

query character strin~s' may need to be t"ormulated for mlltching 

against the compou.nds on file. Grani to et al. (166) quote 

a t",'!enty-fold increase in processing time if an initial bi tscreen 

search is not carried out and similar figures have been given by 

Srneng et al.(203) • . _ .J..-

Those structures that have satisfied the string search require-

menta mny then be passed on for atom-by-atom matching; in many 

cases, the connection tables that need to be searched are 

produced in situ at this stage. Increasingly, however, the \'ILN 

level is omitted and the connection table3 of· those compounc1s 

satisfying the initial bitscreen requirements are m~tched directly 

against·the queries(22,25,204, 20S): in such cases, a greater 

BXlount of effort must be expended to ensure an adequate choico 

of' fra.gr.lents in the b:ttscreen. Indeed, ROiTland ana Veal(59) 

have recently shovm that accQptable retrieval results may be 

obtained simply at the bitscreen level: experiments ~ath a 

sample file of over 20OPOO compounds showed tha.t 0. screening 

system based on the principles discussed in the previous chapter 

achieved an average precision of over 60% for a ~dde range of 

substructural queries. 

The reactions SSS to be des~ribed. is of this b. tter form, the 

heart of the search file consistin~ of a series of bitscreen 

records, though limited 7lLN strinesearch facilities are also 

provided. It should be noted th.":t the search fil~ is sma.ll, less 

th:J.n J+500 entries, in comparison with the compound files discussA<l 

above ':lhich, typic.1.lly, have u:"'T'!rc1s of 51800 members. In thA 

first ch8.pter, v/e omph'lsised the multifarious nature of chemical 
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reaction data and the neert to provide a variety of modes of access 

to it. Also important in p. reactions retrieval system is the 

ability to differentiate betneen those substructural features 

that have been involved in the reaction and those that have not. 

Due to the use of fragmentation-based methods of reaction analysis, 

vlork in this department to date has only all,?'lTed access to the 

form,~r type ofmoi.ety; and this is also in large part true of the 

VlLN approach of' Chapter II. Given a computerised SSS, the 

unchanged fpatures could, perhaps, be identified using the parent 

rrrNs but in the printed format we have chosen to concentrate our 

attentions upon the features that have been involved in the 

chanse• 

Our structure matching algorithm provides a unique opportunity 

to make explicit the ~ifferentiation between the reacting an1 

non-reacting substructures since it identifies just those atoms 

involved in the reaction site without any simultaneous rupture 

of the reactins molecules. Gi ven this ability, we may think 

in terms of a retrieval system in which we may carry out searches 

specifying either, or both, types of feature for the reactant 

and/or product structures. The SSS to be described below ~~S 

been designed with this end in mind. 
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The next section, which is highly implementation-biased, outlines 

the ... '; way in which the various screen sats,which were to be 

used in the SSS,~pre generated; this is followed by a description 

of the query encoding routines and the generation of the search 

file ~d the final part of the chapter presents the results of 

applying a series of reaction' queries to the search file • 



V.2 Generation of screen sets 

The source file for this viork was those 7J+15 reactions 

successfully ana.lysed by the "rLN program described in Chapter II. 

For e:3.ch such reaction, the ..... TLNs of the reactant and product 

molecules were input to a Crossbow connection table generation 

progra.m. If tables were proauced for both of the molecules 

involved in the reaction, the WL'Ns, connection ta.bles and ".'7LN 

analysis fragments YTere written out to tape; in this 

way a file of 5226 reactions vras ,obtained in CrossboW' 

format for subsequent processing. 

table 

An analysis by Clews(49) showed that, a.s might be expected, a 

file of reaction site residues contained a higher percentage of 

heteroa toms than the corresponding file of parent compound.s. It 
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was hence decided to use a different set of· screens for characterising 

the atoms and bonds in the reaction sites from the sets 

used for the atoms and bonds in the parent molecules( a subsequent 

comparison of the atom and bond centred screen sets in e:3.ch case 

showed quite marked differences: thus of. 239 screens in each set, 

38 atom and 50 bond screens were found not to be common to 

the tVl0 €lets). . .. 
~e have selected four different types of screen for assignment 

for both the parent molecules and for the reaction sites; the 

screens are based upon atoms, bonds, rings and molecular formulae. 

As these four types of screen are to be applied to both reaction 

site and molecular features in both the reactants and the products, 

a total of 16 different screen sets are ideally requirer'l. However, 

inspection of the ind.ex ent!"'! fragments arising from the ':lU~ 

analysis showed little diffe!"ence between the reactant and product 

fragment fre~uencies of occurrenc~j it wns hence decided in each 

case to use the same screen set for assignment to features on 

both sines of the equation. There are thus a tot~l of eight screen 
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sets to be assienea to each reaction: this is almost certainl" 
,) 

excessive in vie~ of the small size of the file but this is 

preferable to unc.erscreening which seems to have been a severe 

problem in a previous reactions SSS . developed in Sheffieli 

(100) • 

The t~vo types of molecular formula screen are easily 

obtain~d from the numbers and types of atoms in the parent 

molecules and the reaction sites. The screen is a single, 24-bit 

word record and contains entries for carbon, nitroeen, o~Jgen, 

sulphur, phosphorus and the halogens together with bits for 

general ~~logens and general heteroatoms. It should be noted t~~t 

these screens are based primarily upon chemical intuition 

rather than the methodology of Chapter IV; thus screens are available 

in the . reaction site. screen for the"presence of upto 6 carbon atoffi13 

whilst the sulphur screens are restrioted to 1 or more than 1. 

The ring screens have been obtained from two different sources. 

The Crossbow record permits the easy identification of those 

rings present in a mo1eoule which have been explicitly delineated 

by i'ILN and we have used these descriptions as the basis ror the 

molecular ring screens. A maximum of three levels of description 

has been used, the first and second of these being the ring 

size and the number of heteroatoms. If the ring is not carbocyo1io, 

the third level describes the atom types present in the ring but 

if there are no heteroatoms, the level decribes the number of 

extra-ring connections. To explain why this differentiation 

should be made, consider a carbocyclic, six ring; the first two 

integers in the string will be 6 and 0 and nothing that we put . / 

in the third po si tion can add any 1'urthur inf'ormation about the 

rine chnr[~cteristic~ if the inteeer perb.ins to heteroa tomic 

data. ann a different type of data is hence encoded.. The heteroatolJs 



ni trogen, o:x;ygen, sulfur.) and phosphorus are assigned. the arbitrary 

values o~ 1000, 100, 10 and 1 respectively and the third level 

description is obtained by summing the values for all such 

a.toms present in the ring. Thus the two monocycles shown in 

Fig. V.1 val1 be described b, the strings (3,1,100) and (6~0,3) 

whilst the ring system will yield the string3 (6,0,2) and (5,1,10). 

As an implementation detail we should note that the second. integer 

in the string has 50 added to it. Consid.er a ring giving 

the string (6,0,3): in the course of the screen set generation 

program this "'ill be decomposed to the one and two integer strings 

(6,0,0) and (6,0,0) which cannot be differentiated. Rewriting the 

<'o~igina.istring as (6,50,3) gives rise to (6,50,0), a carbocyclic 

six ring, and (6,0,0) which is simply a six ring. 

It would be possible to obtain analysis ring screens, that is 

descriptors of the rings that have been changed in the course 

of the reaction, by a comparison of the rings of the r~~cting 

molecules using the Crossbow record in much the same way as we 

have for the derivation of molecular ring descriptors. This has, 

. however, been carried out already iD. the course of the WLN analysis 

and the non-common rings are included in the analysis ~ragments 

for each reaction; moreover, these fra~ents include the 

synthetically important ring carbonyl fUnction(though the presence 

of this feature' could easily' .be deduced from the Crossbow . 

record if the \7LN analysis had not already been carried out). 
)' 

As before, three levels of' description are used in the construction 

of the integer strings, the first two being the ring size and 

the number of heteroa toms. It'or carbocycles, the third integer 

represents the saturation which is described by the presence, or 

otheI"\'1ise, ~f a T symbol immediately prior to the J ring delimi ter 

in the fragment ~~ symbol string; if the ring is saturated, 
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the thirc1 inteo"'er is 1, otherwise 2. !t'or heteroatom'; c . ... r~ng3, 

account must be taken of thp. following sev'Sn ·• .. LN symbols: V, 

0, S, N, Ill, K and P. These ere assigned the arbitrar'J v~lnes 

1, 10, 100, 1000, 1000, 1000(since all three symbols d.escribe 

nitrogen) and 10000 and the second level integer is obt~ined, 

as before, by summation. For both hetero and carbocyclic 

rings one million is added to the third integer if the rin3 is 

fused, i. e. has @ as the first symbol in the fraement character 

string. If the rj.ng is carbocyclic, the second integer is set to 

99 for the reasons given above. Thus the ':lLN analysis fr3.ements 

@T6 J.V DVTJ, @L6J and. T6 ,PJ.1 BSJ will be describec. by t~1e strings 

(6,2,1000002), (6,99,1000002) and (6,2,1100)( though the e.ctual 

screens assigned will, of course, depend upon the actual strings 

that have been chosen for inclusion tn the screen set). 

The actual ano.lysis ring screen set was obtained from a list 

of thefraements obtained from the i'ILN analysis; it shoul:1 be noted 

that the resulting screen set is probably nifferent from the one 

tha t would have been obtaine~ from the actu1.1 file of 5226 reactions 

uset} in this work since many of the ','lLN-an'lJ.yscd reactions were 

not processed succe~sfully by the Crossbow progran. Fn.ch ring in 

the list of analysis fragments, i. e. each strine commencine 

with T, L or @, Vias processed symbol by symbol, to produce a 

three integer strinf; as above and this was then vrri tten out to 

tape for strinB curnu18.tion end, sub~equently, screen set !jeneration. 

The cho~en screen ~et size wa.s 46, i. e. bro bits less th::m two 

computer words. On~ of these bits VT.::!.S u~c.'l O~ D. conflatn'l. n~re"'n 

symbol R, since t:lis is not :lml~n'lble to thp. inteGer ch:lr·: ... ~teri5:l.tion 

dencribed earlier. 

'1'he moleculJ.t' )~ine; screen s''3t, on the other h:.n·l, '\';,'13 maclc from 
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a list of' r;)11 of the cliffm:-.-mt -'nNs in the file of 5226 reo.ction~ 

use:'I. for this r;ork. After thG elimination of (lu=,licut~ ",",'1l'T3, a. 

tot3.1 of 8939 Crossbow b.ble3 \';ere prod.uco.:1 an,l thc:'1'} ~.'lere 

process,'3d to prod.uce the n.::,proI'lria te tl1!'e3 inte~p,r strings. Also, 

after conversi:m to redW1(lant adjacency matrices u:>in~ a proeram 

~·.Ti tten by the author, these tables were employed. to produce the 

in.!;eger strin~s which formqd the basis for the molecub.r atom 

ani bond. screen sets. The preparation of' th':lse h'.ls been 

des~ribe1 in Chapter IV; suf'fice it to state here that the 

ma.riI!lurn length string~ considered were six :tntegers for bon~l

centred fraement~ and f'ive integers f'or atom-centred ones 

which corresponn. to the substructure[3 illustrated in Fig. V.2. 

For each molecule on the 'tape'. of' 8939 compoUnds, all p03sible 

rins, bon.:1 ana. atOr:l integer strings were genera ten at the higheflt 

l~vel of specificit:;r. For each strin~ ef a given fraGffient type, 

a ch8ck was mc.a,/3 to ensure that an identical s trin~ h:ld not 

already been written out to tape for th:lt compound; this was 

done to ensure th:lt the cumulated fragment frequencie3 referred 

to string incidences since the re3ult'lnt screon setR were all 

to '!Je assigned on rn inc:V!.ence b'lsis. The connection ta.ble 

ans.lysis program W2. c; written in Algol68-R PJld the single po.S3 

of the 8078 compounds on the t'lpe for which redundc.nt adjacency 

me.trices coulrl bp, produced, required 1267 seconds of pp~ time, 

this inclUl'ling the a:ij~.ccncy m'!trix eener3. tion ann nIl the re:l:l E'.nd. 

,;,:ri te access es to four magn'3tic tapes. The resul tine integer 

strings were su"se::lently procossecl to prod.uce scrotm sets of' 

23::, 239 and. 4·7 menbern for the bond., D. top, :;.n.l rin,3 fWlturen 

re<;;'8~t:tvely: in 0:::.oh cc-so, the missing bit "':;'5 used as a conflo. t~ll 

scr·.::en. 

~he final ~cret'!n sr-!ts to b~ cliscu~np.d :lre those u3ed to 

c::~s.r'lcterise the :c to)"1S and ben)::; in the rfuf)tlon sites. For tl-is 
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purpose, et one i.n thr88 sampl8 of the conplete d"'.t'l b'lS~ ':'['.3 

i3nlnt8rl. For each reaction in this subfile, re:iundant adj:lcency 

matrices were producerl for the reactino:; molecule:; and. these 

ma tricC3 were then cOI:lpareCl. ll:;in~ the graph mat'chin;~ algori thrn 

of Chapter ITI. Integer strings were then created for all of the 

a toms and bon<ls in the reacting molecules but only those . 
relating to substructures entirely contained within the derived 

reaction sits were written out to tape for subsequent screen 

set ~enaration. Thus for the reaction shm'm in Fig. V.3, only 

the atoms and bonil.s in the partial structures sho',m in the 10\v~r 

half of the Fig. were cnnsidered. Note that although the central 

feat'lre, atom or bond, is contained within the site, the integer 

strings may well, in the later integers in the string, describe 

features outsid.e of thesitej thus a certain amount of 

environmental information is automatically encoded. 

As described in Chapter IV, one measure of th"3 effecti ven'1SS 

of a screen set is the rela ti va entropy, this bein3 1.1 mea.sure of 

th~ equifre'luency of the screens in the set. How13var, the sets 

were obtained from files different to that to which they are to 

be assigned, i. e. the search file, and thus. the relative 

entropies quoted in Fig. V • .1I-, which are based upon assignment 

to the appropriate source file, would probably be somewhat 

o.ifferent if search file nssierunents ',vere considered. The 

source file deuenil.ence is mado manifegt by the relatiVe entron'r .. .. .. 
of tht3 analysis ri.ng screen set which is m;~rkedly different 

from the correspol1(Jinc mo1ecul:'lr ring screen set. ':'he 

difference is presl.unubly due to the fact that the S011rC'3 file 

for the am.lysin rIn;: scr0en ~et, a list nf the · ... U! an3.1ys'is 

t}'\'~ rre3ence of that frasm(mt 30r:l9·,'ih3re in thl1 filo of 7h15 . 
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The entropies in Fie. V.J .. are based u?on non-reriun(lant 

assi~~ent, th~t is if a s~reen (6,50,2) is assiened then the 

parent screens (6,50,0) and (6,0,0) vtill not also be f>'3t. For 

a search system, however, thi~ adriition1.1 coding must be done 

to nermit easy eeneric searchinc and it is henca of soml3 inter~~t ... 

to see the extent to which the equifrequency perfori'lance is 

desraded as a result of these additional assienments. In fact, 

assi~~ent of all possible ~creen3 to the source file for the 
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three molecular screen sets prod.uced relative entropies of 0.929, 

0.786 and 0.923 for the bond, ring and atom screen sets respectively; 

this entropy reduction in all three cases in noticeably less than 

the increase v/hen compared with the in! tial sinc~le integer strin3s. 



V. 3 Creation o~ _~~.: .. ~_.~.c::~ch __ ~i-1~_~_nd Q.~e~_~~coiin.;.L~.:~chniques 

A proerarn has hgen "Tri tten to process the f'ile of 5226 

reactions mention~1 &hova in section 2. It is in three main parts. 

The first segment ta.kes a Crossbow connection table and converts 

it to a redund'lnt adjacency rnqtrix, at the S3..'lle time assioling 

molecular rinlj screens to the compound using data in the Crossbo ... r 

record; the procas s is rGpea ted for both of the reactine molecules. 

This routine is incapable of handling Crossbo·,., tables derived 

from spiro or brid.ged ring system-based compounds and is thus 

able to process only about 90% of the reaction~ in the f'ile. 

In the second sezment, the tV!O matrices are compared using our 

structure matching algorithm as described in Chapter III. 

The final section validates the a.nalysis, assigns molecular 

a tom ani bond and analysis a tom, bond. and. ring screens to both 

molecules and then vJ!'i tes the bi tscreens, 'YLNs, ':1LN analysis 

fraements and biblioeraphica1 details out to t~pe. 

The program contains about 900 lines of Algo168-R code ani 

has been run in 125K words of core on the University of Sheffield 

ICL 1906S computer und.er GFDRGE J+. The proe;ram required 2428 

seconds of 9PY time to process the file of 5226 reactions, t~t 

is just over t'.70 reactions per second, ani the results of this 

computer run are given in Fie. V.S. Those figures are very 

similar to those obt::lined f'rom the sample file.J and shO\m in Fig. 

III.10):J.n that circ.:!. 93~ of' the reactions on f'ile are processeri 

by the structure matchine algorithm; by extrapoh.tion from the 

samY'l~ file it m3.Y be expected, that about J,,? of the an'llyse:; are 

in error in some woy. The subtota.l of 37 detected. failure~ in 

th~ Fi~e corr3sI'Onris to those reaction3 in whtch all of' the 

reactant or prorbct atoms wer3 elimim.te·'. in the COtU'3e of the 

ma tchin3 proce:lure: such an ocaurrence should no t take place if 



valid mappings h'lve been identifier1(see, e. g., the reaction 

of Fig. III.20). 

The time rS1uirall, about half a second for each reaction, 

is about seven times th3.t needed for the correspondine ','lLN 

analysis. Hm'l'.wer, the t'NO tim-tng fieure~ are not clirectly 

comparable for at least three re~sons: 

(i) real magnetic tapes were used as against the GEORG'E filestorc 

Multifiles(207) which were employed for storing the results and 

the data for th9 ~~ pro~am; the latter procedure is very 

much faster. 

(ii) thA Algo168-R compiler used here produces object code 

which is about t1l10 thirds as fast as that prod.uced from a comparable 

COBOL sourC9 proer~m. 

(iii) the program needs to be use<i with full run-time overflow 

checks to encompass those reactions in which the atomic property 

values become too large for the computer word reservei for them. 

It should also be noted that the actual degree of program 
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complexi ty was considerably less in the earlier proeram, the majority 

of which consisted of MOVEs and comr>arison~ of various typos. 

An annot3. ted lis ting of the Algo168-R: progre.in is 'i~61uilea "in; Appf'mdix II. 

The file of 4388 reaction analyses v~s then use1 as the 

source file for the reactions substructure search system. 

The software that has been developed to search the file of 

reactions is, of cour~e, in large part identical to that use1 

to characterisn th8 analyse~. In particllltl.r, bi tscrcens are 

a ssicnwl usin'" a co:mection table as the nrimor-.r inl")ut ouer" ... (..) v .L J.. _ .J 

structure representation. These tables I·~.re processed. :i.n 

just the same ~"Tay as the 2t1jacency matrices of the reactins 

molecules to proluce i nto3€'r ~trin3s ';';hich r.l::ly then be m1tch~:-l 

for a search strin'!, at the m3.ximum level of iiGscription, the 



query represenb.tive is shortened by one intec;cr usine righthzmi

most trllncation :mri the assiGnment procedure, a binary search 

routine, called aeain. The process continues until a m~tchin~ 
- <..) 

string is found, wh~n the appror:riate bits are set in the quer'J 

bitstrin~, or the conflated screen is assigned. 

The in9ut connection table must be complete, i. e. not ~ve 

any unspecified connections. As the majority of querie3 involve 

substructural features, means must be fou."1.d to satisfy the 

unspecified attachments. Since the atom, and hence the bond, 

screens are based u~on the units values of the atoms under 

consideration, such unsatisfied valencies in the query may be 

fill e1 by the us e of' a dummy El. tom wi th the units valu e?, a 

symbol not use·i in the Crossbo'N system. This beine so, not only 

will no m:ltch be obtaine,i if vIe search such an atom against a 

screen set but also we will not assign screens correspondin~ to 

substructura1 feat'lres larger than toon that explicitly delinoated 

by the query. To explain this point, consider the query substruct'lre 

sho-.m in Fig. v.6 in vrhich ? represents an unspecified atom. If 

vre consider the carbonyl oxyeen atom, we wish to assicn screens 

correspon::ling to the circular substructure shol'1l1 at (a) in the Fig.; 

and no larger. Such a sub5tructure vTi11 be described by the first 

four integers in the atomic property string, the rernainine one 

dencribine a substructure that contains the dummy atom •. Since 

the eY..3.ct demarcation point at v/hich .the required feature ends 

can anI] be detcrnined. by some form of path tracin:3 alcorithm, t!1c 

full, f1.V3 inte,!':')!' ~trin:: must hI') gencruten. D.nll searche~ c.eainst 

the c-.·mro'0rio.te scr~,:m set; hn";mvcl", the rresencc of th0 ? 

units v~).lu·3 causes (;. contrihation to the m:Y;3cn atom's fifth or:i:1~ 

pro::,"Jrty v'11ue ·:.'hich on:mre~ t!l~t a match will not be nbb.ine·i 

wi th t!1o screen s et at t!1-ts lovel of substructul"ill descriptio"1. 

Simil::.rl."r, no n:! tG!1 c-~n possibly be made for the nci(l carbon a tom 
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exco:>t at t.he firi3t Jnvnl n.ne t" the a.njacent r1ummy ato!!!. Rnti.rl'lly 

a.n3.J.oe01l3 c.r':U'Tl~nb ~p!lly to t.ho assienmcnt of bon(l centred screens 

since these are ·derivr)(l from the a tom centred. property values. 

As well as atom, bonn, Ting Rn~ molecular formula searches, 

provision is also made for ~~ string searches of the analysis 

fragmentsj it would also be possible to include string search 

facili ties for the parent ~,VUIs but this has not yet been 

implemented. String sear:ching is only carried out after an initial 

bitscceen ~atc~ to cut dovm on search times and these are 

£urthur reduced by the use of a minimal requirments sta~ement 

which is set at the fror.t of each analysis and query. This' 

statement is a 'single 24-bit vlord and give:J details of the nuzaber 

.of atoms and rinzs in the reaction sites and the number of rings 

in the reacting molecules, th!lS permitting the rapid elimination 

of many certain non-hits prior to the bitstrlng and ','lLN matcrins. 

The search proerllm is based on a simple.~erial search techniquo 

(1) in which the entire file in matched against the queries, one 

record at El. time. The set of query st·3.tements is held in core 

together ~~th ~ series of associated bina~ hit vectors, one 

of which is assigned to. each of the queries; each bit on such .. ~ . 
a' vector corresponds to one of the reactions in. the file. Each 

.' 
rea-otllon wMoh'matche:s ,a particular statement ks .. the approprie,te 

bit set in the vector corresponding to that query statement. After 

the 'whole file ms been traversed in this wa.y., the 10eic2ol 

operations are read in and the hit vectors merged accordingly 

usine AND, OR or NOT 10Bio. The t9.pe containing the search filo 

is then rewound and se~rched u~p.in5t the hit vectors: if a 

reaction is roo(l whosn bi t h~s been set in ona of the vectors I 

thn '!fL!'~~ of the rp.uctine molecules and the bibliogrt'-phical 

reference are Out7Jllt to th"3 lineprintp.r tor.;eth"3r with the 

.' 



number of the query that has retrieved the reaction. For many 

of the queries searched, the lOGical operations required were 

minimal and thus the seconcl pass of the tape somewhat redunclanti 

the adopted approach does, however, mean that the logical 

operations need to be considered only once, rather tha.n ai'ter 

every reaction in the ~ile, thus saving upon computer usage if 

many logical manipulations need. to be performed. Search times 

were generally about 20 seconds :t'or up to'a dozen 'luery statements. 
. . I 

these including a variety of bi tstring and \'JLj:i; requirements. 

The que~ encoding routines vdll be described primarily 

by exnmples, the first such query being shovm in Fig. V.7. TIle 

query will be coded in two parts, corresponding to the two 

possible reactant reaction sites, and then the potential hits 

will be ORld together. In both the cases, all of the atoms sho\7n 

may be expected to be incluneQ in the reaction site and hence 

we need to search·only the reactant and product reaction sites 

without any simultaneous inspection of the molecular bitstrings. 

An arbitrary numbering of the first reactant reaction site is 

shown in the lower half of the Fig~ together vdth the accompanying 

connection table that is input·to the search program. The ~irst 

line, C 2 5, states that a connection table is to.be input(C), 

that the reactant reaction site screen set and bitstrings are to 
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be used(2) and that there are ~ive atoms in the connection table. 

After this initial card, each subsequent line in the Fig. corresponds 

to an individual atom, ai' in the que~ substructure; the first 

four integers give the numbers of the atoms that are attached 

to a
i 

and the 1'ollo1ring symbol, ?, Y, Q, C or Z in this cas e, 

is. the units value of ai • There 1'0110'1713 a spaoe, the oonnecj;ivity 

of ai' which is compared vd th the number of a ttache:l a toms as 

a check on the coding, and a true or false val~e depending 



upon whether ai is, or is not, in a ring of some sort. A-\nD.logou3 

connection tables for ths alternative reactant and the product 

reaction sites are producefi in a similar "ray •. , .' 

Although such connection table descriptions are complete 

in themselves, these representations may be made more precise 

by the inclusion of 7TLN strings in the query. These symbol 

strings may then be matched against the ~~ analysis fragments 

of cmy reaction which sa tisf'ies the bi tstring requirements. 

In the present case various ~ symbol strings could be used 

but, upon the basis of the ranked fragment frequency lists 

mentioned in Chapter II section 4, the following changes are 

used: 

/CN --~> /1Z 

and /Hrn --~) /1Z. 

The complete deck of cards used to searoh for this query are 

shovm in Fig. V.B, the first card being a count of the total 

number of query statements that follow. E9.ch such statement 

is preceded by a MIN card which contains certain min1.mal 

requirements that must be met before a. bi tstring and i','LN search 

can be carried out; the six numbers refer to the nlmbers of 

~eactant and product molecular and analysis rings and to thG 

numbers of a.toms in the reactant and product reaction sites •. 

This record is coded in a single word at the start of each 

query ancI: file ·record bits trine and is of most value where 
I 

ring changes or large numbers of atoms are involved in the 

reaction; in the present case, few reactions will be eliminated 

from subsequent search. The W 2 and VI 4 cards describe reactant 

, the 2,· and product, 4, YlLN fragment searches; to date, no . 

facilities are provided for searching the reactant, 1, and 

prod.uct, 3, WLN strings. 
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Each query statement is terminated by a semicolon and the 

deck completed by the logical requirements that must be perrormed 

upon the individual hit vectors; the initial LOGIC card gives 

the number of sets of operations that are to be carried out. 

For the first, and in this case only, such card, the string of 

integers 1 1 20 states that query 1 has 1 logically related 

query, that this is query 2 and that the relationship is OR, 

i. e. the hits from the two queries are to be merged before 

output. AND and NOT logic are also ava:i,la:ble. 

The second reaction is shown in Fig. V.9 together with the 

quer,y coding used. In this case, the connection tables input, 

C 1 5 and C 3 5, refer to the molecular reactant and product 

substructures respectively and correspond to the requirement for 

an unchanged ring carboxyl function. The R 2 cards denote that 

a reactant \/LN a.nalysis ring string follows ",~nd. this is processed. 

to produce a three integer string as described above; also, the 

W in column 21 of the card specifies that a subsequent ',7LN 

string search should be made to ensure an exact match. The two 

ring strings obtained will be (6,1,1) and (6,1 ,1000001 ) for the 

reactant and product rings respectively; however the analysis 

ring screen set will describe both by the bit corresponding 

to (6,1,0), ,i. e. any monoheteroatomic six ring, and thus the 

'wur search will ensure a more preCise query formulation. The 

MIN card should prove much more effective in this case due to the 

various ring requirements. The logic is carried out in two 

stages; firstly, the two possible rings are ORed.together and then 

the resultant hit vector intersected with the hits resulting 

rrom the connection table search. 

In ma~ reaotions involving ring changes, specification of 

these alone may often be suf':t"icient, especially if a 'tlUl search 



is also possible. An eu~ple of such a que~ is shovm in Fig. 

V.10. 

Apart tOrom connection table, ring and. WIN string based queries, 

molecular formula requirements may also be input. These are 

normally calculated from any input connection tables but they 

may also be stated explicitly if a table cannot be used, e.g. 

if there are a variety of possible units values for one of the 

atoms in the table. Also provided is a U, that is units, 

facility which is employed if a single units type, rather 

than an entire connection table, is to be specified. The 

search program sets up the appropriate atom integer string 

and then zero fills all but the lefthand~ost element; the 

string is then searched against a screen set in the normal ,vay. 

Both types of query encoding are illustrated by Fig. V.11 

where the prime requirement is the change of one oxygen a tom to 

a. nitrogen or sulphur atom and this is encompassed by the first two 

.'oarrl sets ..... An M card contains a number, 1-4 as before,. specifying 

the type of screen that is to be set and then nine integero which 

give the minimum numbers of carbon, bromine, fluorine, chlorine, 

iodine, nitrogen, oxygen, sulphur and phosphorus atoms respectively 

that are required. In this case, the two molecular fomula 

change statements shown would be ORGd ,together and then ~~~ed 

with the requirement for a reactant ana~sis, o~gen atom 

contained within a ring. This is specified by the format 

U a bcd where U denotes a units card, a the screen type(1-4), 
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b the number of values which follow and then b pairs ai' characters ,0 c.nrl d , 
the first being the units value and the second, T or F, depending 

whether the atom is, or is not, contained in a ring. In the 

present case, our rel],uirernent would hence be described by 

U 2 1QT. The query may be completed, although this is not 

shovm in the Fig., by a series of U cards for all of the possible 



units values of nitrosen and sulphur atoms in a rine; these are 

ORed together an~ then ArIDed with the hit vector resulting from 

the first three statements. In fact, this query retrieved. 

six reactions, four of which were relevant to the query. 



V .l~ EV'allla tion 

In this section vre discuss the eV'alua tion of' the reactions 

SSS in terms of a set of 102 c1.uerios which were searched. ae;ainst 

the file of 4388 reaction analyses de::;cribed in the preV'iou3 

section. 

Three main sources were used for the compilation of the set 

of queries. The first of the3e was 3'-1-· real queries supplied by 

the n.essarch Information Departr.1C~nt of Pfizer(UK) Ltd.,,; 8.n 

ad.di tionu1 3':querie3 were taken from CD.mpbe1l (100) who s t3. tes 

9) 

thn.t they h"l.d been providec'l by chemists from ICI Ltd. (Phc'1.rnmceuticn.1s 

Division). The secona group wns the 18 queries used in the 

Derwent - wur comparison ot' Append.ix ill. The renninine; '+7 

que3tions wern culled f'rom a variety of' literature sourc(~s, 

all of which contain i1lustrl).tive reaction types that shoulrl 

be elJ.sily search.l.ble in Fl. reactions documcnta tiol1 serv:i.co(?6 ,27, 

52,76,203). 

The queries were coded up as cle3cribod in Section 3 and. then 

batched up, f'our or f'ive at a time, f'or senrching against the 

file of' analyses; run times were typically 18 seconds inclu:3ive 

of tape transIJUt although one run, which containod a total of 

27 difi'erent ":I'LN f'ra~E'I1.t3 f'or s tringl3 (>..!3.rch, ref).uirefl. oyer 35 

seconds. 

In toto, of the 102 queries searched, 75 producea. no output 

at all) \'lhilst the remai.nder t.,'Uve rise to a total 01' 61fo3 retrievals, 

indi vidual queries producing bet;veen 1 and 113 reA.ctions. We h:'wc 

evaluated these results in terms of' precision and screenout. 

Precision is widely used in doc~~cnt retrieval experiment3(209,210, 

211), normally in con,junction Vii th recall, but screenout is a 

much more useful parameter for chemic3.1 retrieval experir.lent3 

since the relationship bet"leen th(1 fo~ c.nJ. tho contcn·t of the machine

readable' representation ensures perfect recall o For {l file of 



N records, n of which are retrieved in res:!?~nse to a query, we 

define the screenout, S, by 

S = 1 00 (N-n)/N. 

Thus S represents the ability of' the system to reject de1'inite 

non-hits if the query encoding has been care1'ully carried out. 

Using this de:t"ini tion, it may be seen that the lowest screenout 

obtained, i. e. the largest number ot' retrievals (113), was 

9704% vd th all but 6 of' the queries having screenouts or 99% 

or greater. 

The determination or precision rigures is somewhat more 

di1'ric~l t if' performed. in the absence of user relevance judgements. 

In principle, an assessment of' relevance may be made by an atom-by

atom search for an exact match with the query substruoture but the 

figures obtained may be misleadingly hieh if other, concQrrent 

clw.nges have ta.K:en place in the course of' the reaction(as defined 

by the set of reactant and product structures). We have.henoe 

considered as hits only th6se retrievals which exactly match 

the query am tement and in which no other changes have taken 
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place. Thus the reactions shown in Fig. V.12 \'1ill both be oonsidered 

as fa Is e drops :' for ,.th~ ",q~ery shO\':!1' iri t!.~c upp er pa~'t' ;~f :th.e Fi'sure. 

: ,I.' . With tb.e 'proV1.so"tho. tthe qu~t~d" p;~~;tsio~ yalues I, ': ( >', " 

represent a lower limit to that which might be expected in 

practice, the results oi' the searches t'or those 27 queries which 

retri eYed some material llre sho'.'m in Fig. V .13. In this Figure, 

we sho;" the query number together vd th four number3, these bein8 

the number of reactions retrieved, the number of hits, the 

screenout and the precision, the last two being expressed as 

percentages and rounded to on., decimal place for the screenout 

values. Although the figures for queries retrieving only one or 

t,vo reactions are somewhat misleading, it can be seen trot 

the system effectiveness is quite hieh vdth 17 of the queries 



producing precision figures of 50% or more; 336 of the 61,.,3 

retri evo.ls VlGre consi·:'l.ered as hits, an overall precision of. 

Only two of the queries, nos. 19 and 24, resulted in noticeo.bly 

poor retrieval; the Q.ueI'1J re'luirements which produc ed 20 fo.ls f3 

drons out of 20 and 61f- false drops out of 69, are sho"."l!l in Fie. v .14 .. 
and it ~dll be seen that both correspond to very general enquiries 

for which a minimal amount of query encodin~ is possible. 

Such reactions could be more precisely searched if an exact 

molecular formula change could be specified since at present, 

the two reactions oan be searched only by stating that there are 

at least two carbon and one nitrogen atoms difference respectively 

between the reactant and product molecular formulae. Thus all 

reactions in vrhich these minimal requirements are satisfied 

will be retrieved irrespective of the other molecular fo~ulo.e 

cho.nges: at present, this problem can only be overcome 

" 
by a series of NOT cards to remove all other possible molecular 

changes. 

The distribution of retrieval set sizes "is similar to that 

Siven by Adamson et al.(212), the majority of the queries 

producing little or no material at all. Such queries were often 

very s~ecific in cho.racter, requiring the formation of specifio 

rings or the reaction of quite complex functionali ties; most of 

the queries in this class were from the group of real industrial 

questions. Conversely, a foo of the . queries produced a 1.:1.1"30 

output both in terns of actu!ll numbers of re.:1.ctions retrieved and 

in terms of the numher of hit:;. Such reaction:; are g('!nerally 

qui te simple in ch.:1.racter as noted in the "lLN analyses (see 

Fig. II~41) anil by earlier work0r3(139,140); e:-:3.mplc3 of such 

querie3 arC3 sho';m in Fie. V.15. 



V.5 Conclusions 

The high average screenl)ut and precision figures obbinecl 

for the set of qun.ries inclic~].te3 the effectiven8ss of the scr0enin=>; 

system in provioin3 rapid ani. accurate access to the data for 

a very large fraction of the substructur:ll reaction querios 

that might be expected in an operation~l environment. The 

results may also be taken to shr:m the abil! ty of the structure 

matching algorithm to characterise the reaction sites within 

the pairs of molecules involved. in a reaction. Moreover, the 

entirs process of raaction site detection, scre~n set generation, 

screen assienment and search is fully automatic with manual 

intervention required only at the query codi.ng stage. Even 

here, significant savings of user effort ha.ve beel1 achievei 

by th9 use of a connection t:3.ble as the prim,':!ry input query 

me<lium. The tables are subsequently processed to produce 

a tom, bond. and molecular formul,'l screens wi thout the need for 

the coder to h:we any idea as to the contents of the various 

screen sets. In this res?ect, the system is similar to that 

developed by Feldman(149); inieed, the search mechanisms are 

ideally suited to online us~eo via an int~ractive gr~phic3 

terminal. Useful additions to the screE'lnine sys tern Vlould be 

an exact molecular formula change faci1ity,as described earlier, 

and a stringsearch capability for parent molecule 't,'LNs; thi.s 

la tter utili ty wO'lld be primarily useful for the ra.pid detection 

of steroids, penicillins ani other ch:lracterbtic rin~ nuclei. 
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Substructures described by: (i) a 7 integer atom string centred upon "atom a(of which only the 

final 5 are considered - see text) and. (U) a 6 integer bond strinG centred upon a and b. 
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Only the bond.s indica.ted. will be considered. f'or ana.lysis bond screen set generation. 
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Bond 

Molecular Rint7 
0 

Atom 

Bond 

. Analysis Rin" 0 

Atom 

Number of' ;;-J_ Screen Relative entropy Relative entropy 

strings us ed . set size of' single integers of screen set 

171804 240 0.603 0.967 

19584- 48 0.420 0.802 

.160294- 21~ 0.798 0.953 

16127 240 0.708 0.977 

·1052 48 0.703 0.942 . 

21044- 240 0.822 0.956 

Generation statistics for the screen sets used'in the reactions SSS. 
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Reactions processed 

Adjacency matrices generated 

Successful analyses 

Overflow' 

No atoms matched 

Detected failures 

5226 

4729 

4388 

8 

296 

·37 

Creation of the search file for the reactions substructure search system. 

~ • \.J1 



rt 
I 
z· 
l 
o 
1 

0:.(.) 

I 
(\.. 

~ 

3 
:r 
2 , 
o 
I 

0=0 , 
(\I" 

v.6 . 



cH 
,/ 

- C-H 

.1. 
?-

" cN 

2.. ;/ 

C\-t 

1 

0"'" 

" '-' 

or 

s 
c...:;.. N 

~JPical query substructure and 

correspondine connection table 

",OH 

- <: l-t 

" CH.NO~ 

C 2 5 

2 0 0 O? iF 

1.- 3 4 oy 3F 

2000Q1F 

2 5 0 OC 2F 

I/- 0 0 OZ iF 

> - C~ 

"-

0\--1 

" 

~\-\:2- N \-\ 2.. 

<:; 
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2 
Mnr 0 0 0 044 
C 2 5 
2 0 0 07 1 F 
1 3 4 OY 3F 
2 0 0 OQ iF 
2 5 0 OC 2F 
4 0 O· OZ iF . 
C 4 5 
2 0 0 O? iF 
1 3 40,Y 3F 
2 0 0 oq iF 
2 5 0 OL 2F 
4 0 0 OM iF 
W 2 
/eN / 
vV 4 / 
/iZ . , 
MIN000064 
C 2 1 
2 0 0 O? iF 
1 3 4 OY 3F 
2 0 0 OQ iF 

. 2 5 0 OL 2F 
4' 6 7 O@ 3F 
5 0 0 00 iF 
5 0 0 00 iF 
C 4 5 
2 0 0 O? 1 F 
1· 3 4 OY 3F 
2 0 0 OQ iF 
2 5 0 OL 2F 
4 0 0 OM iF 
~r 2 
/iNff / 

VT4 / 
/iZ . , 
LOGIC 1 . 
1 1 20 

Complete query deck for the substructural change sho~~1l1 in Fie. V. 7. 

V.8 



3 
MIN 2 1 1 0 0 0 
C 1 5 
2 0 0 O? 1T 
1 3 4 OU 3T 
2 0 0 00 1F 
2 5 0 0') 2T 
4- 0 0 O? 1 T 
C 3 5 
2 0 0 O? 1 T 
1 3 4- or] 3T 
2 0 0 00 1F 
2 5 0 01 2T 
J+ 0 0 O? 1 T 

· , 
UIN 2 1 1 0 0 0 
R 2 

opened whilst a ring containing a carbo~l group, 

L6 AVJT J .," 

· , 
Mn~ 2 1 1 0 0 0 
R 2 
@L6 AVUTJ W' 
• , 
LOGIC 2 
2 1 30 
1 1 21'. 

Query deck for th3 reaction shown at the tol' of the Figure. 

. v.9 



1 
MTIi 2 2 1 1 0 0 
R2 
@T5 J.JAJ vr 
R 2 
@L5TJ / 
R 4 
TB AV BM EVUTJ \IT 
• , 
LOGIC 0 

o 

> 
o 

Example of a reaction in which rin:3 statements are sufficient 

to define tho quer.y. 



MTIf 1 1 1 1 3 3 
U 2 1QT 
· , 
MIN111133 

---> 

M 2 0 0 0 0 0 0'; 1 0 0 
M4000 0000 P1 
· , 
MIH 1 1 1 1 3 3 
M 2 0 000 001 0 0 
M 4 0 0 0 0 0 1 000 

· , 

Use of U ann. M c:.lrds in queI"lJ forr.lUl::!.tiol1 

V.11 



. V.12 

> 
(in any environment) 

> 

~ 

J.A Cl!.. 0 ~ t-lVt '(0'-( C~h .. C4oI1. NH ~ 

MtO~/ 
O~.t. 

Examples of reaction'3 jude;ed as fals e drops to th3 q"..lery sho'.'!Tl 

at th,') top of th9 FiSllre. 



V.13 

1 1 0 100.0 0.0 

2 1 0 100.0 0.0 

3 1 1 100.0 100.0 

4- 2 0 100.0 0.0 

5 2 1 100.0 50.0 

6 2 1 100.0 SO.o 

7 2 2 100.0 100.0 

8 3 2 99.9 66.7 

9 3 3 99.9 100.0 

10 4- 4- 99.9 100.0 

11 5 1 99.9 20.0 

12 5 5 99.9 100.0 Retrieval results for the 

13 6 3 99.9 SO.o 27 queries that retrieved 

14 6 4 99.9 66.7 some material. The first 

15 7 0 99.8 0.0 figure in each set'is the 

16 7- 1 99.8 14.3 query number and this is 

17 9 0 99.8 0.0 followed by the number of 

18 12 11 99.7 91.7 reactions retrieved, the 

19 20' 0 99.5 0.0 number of hits, the screenout 

20 44- 24 99.0 54.5 and the precision. 

21 41 .. 28 99.0 63.6 

22 52 3'+ 98.8 1.65.4 

23 58 4!) 98.7 69.0 

24 69 5 98.4 :7.2 

25 73 61 98.3 83.6 

26 92 ' 56 97.9 60.9 

27 113 50 97.4 41 ... 3 
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- 0 C N\~ :> - D \-\ 

26 

- C\-t-:::..c...H-~ - CI-t2. - CH,2. -

- NO:L. --~ 

25 

, 
C .. ::: 0 

I 

27 22 

-;> 

Examples of queries which produced. large numbers of reactions. The figures 

beneath each reaction are the query munbers in Fig. V.13. 
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VI Conclusions and sugges tions !~or futur~~~ 

In this thesis we have described two methods for the 

automatic indexing of' chemica.l reactions • Although designer: 

for dirferent types of' structure representation, "!lLN and 

connection tables, and with dif'ferent modes of use in .mind, 

ma.nual searching of printed. indexes and mech!lnised. searching 

of a serial bitstring file, they are based on a common principle. 

This is the iclentifica tion o:t" substructures in the rSA.cting 

molecules vrhich are as large as possible given the sole constraint 

that they must correspond to features present on both sides 

of the equation. Once these areas have be"m noted as common, 

the atoms or TIL.~ symbols contained therein may be flagged in 

some v,ay and the process repeated using the unmarked parts ot' 

the molecules until no further COIT'mon ar8f..LS may be foundj the 

remaining portions of the molecules' will the~ c.orrespond .. to 

the reaction sites. In the connection table approach the .. .. 
common features are circular'substructures which have been 

judged to be isomorphic using an approximate graph matchin,s 

procedure based on an adaption of the f.forgan algorithm; in'the 

second method the identification of .identical ,\fLN symbol strings 
~ 

is uS9<l to determine the common fell tures after the applica. tion, 

of a multilevel fragmentation proc9(lure. 
I :~ 

The use of' ~I implies a characterisation of reaction types 

on the basis of symbol, rather than substructural, diffe~ence3 

but in many cases there is found to be a c'lose correspondenoe' 

bet~een the two. This is due to the especial prominence given 

by the notation to those features which are of prime i;!rportnn.~e 

in synthetic work and thus an analysis based on 'WLN may be e;cp~cte(l 

to give a simple and precise result for man,Y reaction ty!?es. 
'" 

.. . . 

In other cases, however, there !!lay be little or no similarity' 
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between the react:>.nt and product notations even thoup"h larp'e 
o '-' 

parts at' the molecules have not been changed in the course of 

the reaction. Also, the fact that a f'evi symbols may represent 

quite large numbers of' atoms and bends implies beth that 

a change ma.y be described in some'Nhat generalised terms anrl 

too t quite complicated symbol lJanipulations may be requir!:ld in 

the course ef the processin;s_ Desr,>ite these limitatiens, the 

abili ty to previ fle char~cter' representations of the ~~1.b3tr"J.c·tur".)o 

involved allows one to produce printed indexes of reaction3 

at ver-J little cost which could be used in a manner similar 

to permuted "7lLN COTn.?ound lis ts. 

The analyses resulting from the connection table approach 

are only searchable in a. wholly computerised system, access to' 

the file being via a range of' bit screens which allow the 

specifica tion of a vlide range of query requirement3 :t'or both 

the reaction sites and the parent molecules. The need for 

comput'~rised search i3 compensated :1"or by the ability to 

carry out simultaneous subst.ructure sea.rches for both reacting. 

and non-reacting features, by the variety of' access modes 

provided, by the high degree of reaction site localisation 

and by the simplicity of the processing. The first of these 

104 

features, dual access to both reacting and non-reacting substructures, 

is not available from the WLN analysis where the initial means 

·of access is ~ the analysis fragments_ 

It is found that the two types of analysis are complementary 

in their coverage of' the reactions in our file. Both methods 

deal sa tisf'actorily with a wide range or acyclic trans!'orma tions" 

but ring changes are processed quite differently. The ',VL!"'f 

analysis has been ,designed to isolate complete monocycles 

involved in a reaction whereas the cor~ection table analY3is 



identifies .just those individual ring atoms involved; the form'3r 

approach is ideal i'or ring f'orma tion and cleavage reactions but 

insensitive to small changes within an individual ring whereA.S 

the converse applies to the latter approach. As ring changes 
I 

account for at le~st 20% of' the file studied, it can be seen 

that both analyses are needed if' a compreh,ensive retrieval 

service is to be provided. The ring change information could 

be obtained using some f'orm of ring perception algori thm 

but such techniques may prove quite expensive in terms of 

computer time whereas the \'1LNs of' the ring systems in the 

. reacting molecules, if available, may be processed very rapidly 

due to the fac t tha. t the smallest set of' smallest rings has been 

previously isolated in the coding of' the notation. The 

presence of the ~1N sy~bol strings also provides a second level 

of' search :t'or those reactions which match the initial query 

bit string; such multilevel searching is corr~on in industrial 

substructure search systems. Accordingly, the experimental 

reactions retrieval system that has been ueveloped U393 both 

types or analysis to charac:erise the reactions in the search 

file. The initial bit strin~ descriptors are gener3:ted f'ram 

the connection tables both of' the reacting moleoules and of the 

observed reaction sites~ this permitting searches for highly 

specific changes. 

The 1'ragment screens used f'or the bit strings are obtained 

by the application ot' well. established methods :t'or textual 

character string manipUlation to linear chemical substructure 

representa tions; this has resul tea in a method ot' screen set 

generation and assignment which is computa tionally inexpensive, 

requires minimal manual intervention even at query t'ormulation 

time and would s'eem to exhibit acceptable levels of retrieval 



I 

p ert"ormanc e. 

It is usual to include suggestions t"or f'urther work: arising 

out of that undertaken in the course ai' the thesis. However 

it is felt that there is little more that can be done in the 

present environment: the basic analysis algorithms have been 

shovm to ba practicable on the data available'and such searches 

as have been carried out have procluced acceptable results. 

Furth:3r d,evelopment and evaluation would only seem ~'rorthwhilG 

in the context of some specific external implementation. The 

screen set generation procedures, however, appear to be a useful 

tool in the'development of general methodologies for screening 

systems and work in this area is continuing. 
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22 

3 

J 

38=- _ 

40=-=--

~ . .L 
44-
4.5 
46 
47 
,8 
~ 9 
SO 
51 
5-2 
53 
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S5 
S6 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 
67 
68 
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.IRST INpUT TAPS RECORD l 'HOS~ FINAL WORD CON TAINS THF TOTAL NUM BER OF 
I N T E G eR S T RI' I G S SUB rH TT E D l' 0 PRO G R A M "s W-I MP R 0 G " ' c' 

'-I tJ T' KS : REAO CKS) J 
'I NT' S :~ 0 ; l ASTSeT-SIZE .= 0 , 
(~ 15 0) ' aYTeS ' TAPEijEC ORD ; 
NTRD(1;TAPERE O ORD [ O~ ) : 
'l-NT'- I1AX LENG TH lro; Cl~ BS ' TAPE RECORO [OJ>e3 ; 
'INT' T OTAL I N CI De~eE * ' ABS' lAPER8CORn[MAXlFNGTH+2] 
'INT' THR ESHO LD = TOTAL I NCIOE NCE '/I( 4t(KS +1» : 
' -I NT' KS2 ~ KS ... K~ , 
'f10PE;"I<E't" ~ 

, S 1 R IJ C T f ( , uh' S I Z E , C 1 r r4 A X L E N G T H] tI N TIT V P F. , 'PJ T' TOT A l ~ ~ 0 ~I RED 1I N I'> ANT) • 
C1 sKS 2J 'KEY' ALPHA~ILS : C1 ;K SPKEV I I(EYS ET : 'K EV ' CURR ENT' 
lRHF"I Nl" LI MtT KS = li OTAL ' OF ' Al PHAftLE £KS' : 
' RE F' tINT' TOT ALKS = TnTA l ' OF ' KEVSE T[ KS l ; 
' REF'rJ'BYTES' REC ORD = T APER E CORDrO = MAX LE ~G T H.2' 

'OP"e OUA I.S' ::; (' R(!PT]'I~T' A, 9 )f BOO L' I 

'BE GI N' 
ta oO L' SAHE := IT AIJE ' , 
'F OR' X 'T O" Upa' A t\JIII~e ' SAt'E 'DO' SAME := A[)( ) ::a sex] 
SA nE 

leN D' ; 

' OP" LESS1HANI c CI REF ' C] 'I NT' A;S ) '900L' : 
' BEGIN' 

' ltlY ' X P' 0 ; ' gOO l' SAME J= 'TRUE' J 
'T O" UPB ' A ' ~~H IlE' SAflE ' 00 ' ( X ' P Lu S' 1 : SA MF. : = AfXl = R[Xl ) 
'I ~' A[XJ < a[)n " THEN 'IT R'IE ,t ElSE "FAlSEI'Ftr 

'E ND ' , 

'OP"S AA ' ~ ('t NT ' I)t nvTEsJ : 
(' BVTES' B. IQ ' BVTES "C OO E:' 

'PRoe, FI ND PARE NT c ~rI N T~ M) I 

/1 'E nOe B ) 



.. , ~ o;:oo..~~ ~~-=- _ :..;; __ 
24 

,J 

14 

3b 

3& 

4.1 

42-=. 

44 

46 

I\. 

5v 

~2 

'70 
1,1 
7'2 
7'3 
14 
75 
7'6 

7' 
8 

79 
o 

81 
Z 
3 --
It 

8S 
&6 

7' ----
-~8 --

9 ~ 

90- -
-- -9 -1 . -~-

9Z ~-
93 ~~-~.:.; 
Cl .. -

9' 
54= 96--tJ ., ~~ -;-- .~ 

56~ 98 -
9tf =-=-

58:-=-- ... ~ 00 -
~-~'10 1-·· -~-

50--'-= ' 02-· 
~ -=' -0-3 '-:. = 

62-- 1.01 -....:=:::- -_. 
- --

64- ::='-- = 

'BE GIN' 
.C' DOES A BINARy SEARC~ ft F T~E ~LP~AORDEREO SCREF.N ~eT OBTA I NED 
AT THE EUn Ol!! THE PREVI OIIS ITERATION let 

, I : ~ T ' L : = 0 , R ::# 'C A S T SeT S 1 2 P. ... 1 , J : = ' E III T t ER' ( ( L + R ) I 2 ) 
'INT' FOUND 1= 0 ~ 
' RE F' tl'HlT ' A = (TYPE ' OP ' ClIRRENT)f1 : M' : 
' IJHI1.E ' J iJ l" 'F> O 

' REGIN 
' REF '[J'l NT ' lAFJ ~ TYPE' 1F' ALPHAFILE(J] : 
'IF' A IEQ IIAL S' TAF=JC1aMl 'THE N ' FOUND := TOTAL ' OF ' 

ALPHAF IL e rJ] ; L := J 
'ELSFt A , 'l~SSTHAN' TAFlJC1: l ll 'THEN' R p: J 

J :~ IE NT I~RI«L+R)/2) 
'ELSEf l := J =- J 2= 'e NTIE R'(CL+R)/7) 'Fyi 

, END ' 1 
, IF' FOUND PI' TOTAL 'OF' CURREMT > THRESHOU) 'T H E ~J ' 

KEYSETfS 'PL US ' 1) := ClIRRE 
, F 1 ' 

'END' : 

'P ROC 1c' REF 'Cl' KEy' ; 'PROC'(IREF"KEV ' ; 'ReF'IKEV'~' BOO L') OQD~R 
= SH€LLORDER IAS' eAOER : 

'P ROOI AUXORDER =! (lRtF"K EV ' ,) , 'J) 'BOOl' : 
'B eGIN' 

'K EY ' l4 ; 
'I~l 'rOTAL ,OFt u < TOTAl. ' OF' v 'THEN' W := U 

'T R~E 'feLS E " FALSE"~I ' 
fEND' , 

, PRO C I ALP 11 A OR D E R ~ C r R E F ' I K E V' U, V) , BOO l' : 
'BEGI N' 

'K eY ' \.1 - ; 

.. 
U := v , " 

, IF' T V P 6 ' 0 F' 11 i L E S S T H A "J' T V P E I (\ F' v 'T HeN ' j F A L S r , 

I EL SE' ~ I =< U J ~ J :" = v ; V : ~ W J , T R U F I , F I , 
tE ND ' ; 

'P ROCI SlZEQR D(!R = l'REF"KEY ' U,V>' BOOL ' : 

:- W 



2 ___ ==~';.-::~;;.:.-=; -_·7--

-::::::::::? 1-QJ.:-=--= 
4--::;:", 1o.06=-:;=-
~.oJM::-=- -. 

6--'.c~ , -=-cfa"'-- ;--
=",_1Jl~-_ c.._ 

8:::: c= 1 (-0-.:-
_ "_t.,, ._ 

, 0==--!-,-.w
2 

.:-
t == -f ::-~ _ - -:--=_,_ 1.3 _=--. 
2 - 1-1 4-=--== c= 

_ , 1.. 5. 
i~~---1-16- -

;-"'-.. 117 
1 G ='-~ -1':l 8:: --

l8 6Gl. N ' _ 
JKE-V ' H , 'IF' !H 
LJ ,1::. 11 i U t = V j 

fe- No ' ; 

2 ' OF ' U < SIZE ' OF ' v 'T HEN t'f AlS E"EL~FJ 
i~ U ; 'TRUE'IFII 

' PROCi MAXLE HG T HPR6S~nT ~ 'INT' I 
'BEGI N' 

, HH ' HAX p :: 0 J 

' POR i X ' TOI L A ~rSETSIZE ' DO ' 
~ 11Ft SIZe '0,., A LP liA~ILIHX] > 

i lAX ,= SIzE ' Oft AlPHA FILE[ X1 
f<lAX 

teNu' ; 

t-.1 A x 'T H e ~I , 
, F l' , 

::;:.--- -1.::1J! ", ---::. ' Ft Roe J U P 0 ATe A Udi A fi I L E = (' 1 N T' sell E E N L E N G T H) I V 0 ID ' , 
18~:"'~ 1~2 0 =-~- -- , BEGI N' 

.- '21 - =-----=-- 'C ' AT THE E ~[) OF THE SCREENS OF A GIVEN LF. NG T~ I THE PO~S t 8lE NEW 
2(, -=.- t 2.c2= . --= _. se Ft E ENS I N 11 ~ e ¥ SET" J\ RE' 1 ERG e I') WIT H T H F SE,. 0 B T A I N E 0 A T TH e END 0 F T H F. 

=- 1 U - - LA S 1 S eRE e N ~ L HJ G T ti , r N 11 ALp H A F I L E Il , A N I') 'T ~ E t4 E \.J SeT • I A S T ~ ~ T S I Z E 
22_ -. 1"24'-=-=-----=---= LARGE, IS SORTED INTO D&SCE~H>ING FREQUF NCV OROFR ' ct 

=- -=.1 2-5 _ J B n 0 LI B I ~ ' T RUE: " ; 
2':~=·-"26 --::. ' nH' LSS 1= LAS TS ETSIZE : 

. ---1 t 7 , ~ 0 R' V 'T 0 , S I\.J H r LE ' L S S < K S 2 'DO ' ALP H A FlU: r L ss ' P L US' 1 1 pll 

2E.; cc 1-1-8 K E V SET [V l , 
- ~'29 OHDeR ( ALPHA~lLIH1 iLSSl. AL PIIAQRDER ) ; 

28~ = 1 3" 0- I I HT' SCREENSDF.LE"fIED p: 0 ; 
-::: 131 - ' FOR ' X ' TQI L SS ~'f ' DO l 

30 .:-:::::-.: 1-:3 2 , IF' S I 2 E f 0 ~ I " L P H A F 1 L E [ X J = S C p e E N L E N G T H 'T H ~ N , 
- 1 ~ 3 ' REFItKEYf AX = A LP HA FtlE[X] : 

32- 1 3 4 ' I UT' SAX 1'.2 SI'1.E ' OF ' AX + 1 J 
- -135 ' I UT'T p : TOTAL ' OF ' AX J 

3-1 = -= , -3 6 , I N T ' V I I:! )( ,.. '\. : 

- 1..3 7 ' WH ILEi Y ~a LS S ' AND ' SIZ e 'OF ' ALPHAl=tLerv, III SAX 'nn ' 
36··· - "--1'-! 8 ( T ' f1 J NU 9 ' "fI (} TAL I 0 F I ALP H f\ F T L F. [ v J : V 'p l US j 1) ; 

-,-13.9 V trHNus' 1 i 38= -.:;;-_-__ 

40_ 
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34 

36 

38 

4C 

42 

44 

4 

~ 

s 

~ 
,,~ 

5~ 

,,0 
141 
142 
143 
144 
'45 
146 
'41 
'48 
149 
"0 , " -
152 
-1 !J3 -

'5' -155 
156-
1-51 = 
158 
159 
'60-
16-f 
16l_ ,-
1t3-- -, ~ . ---
tit 5~ -=-."- -, 
-1 

- , 
w·",,·~ , 

- - 1 
5S= = 1 

62=~_...::.c __ 

~---- -=-

' C' OFFSPRING SCREE NS ARE OELETEO ONE aV ONE , I N I NV FRS 
FREQUE NCY ORD6R , UNTI L THe NONR EDUNPANT PARENTAL FRE QU ~ Ne V 
RISES ABOV~ THE THRESHnLD l e ' 
'IF' TOTAl. ' OF' AX <:; THRES HO LI'> 'THEN"FOR' :z 'r: RO ~" x ' TO ' V .o oi 

TOTAL ' 011 1 ALPHAF-ILEtZJ ps 0 
' ELSE ' 
H!!I IL E' T <= THRE SHOLD ' DO " BEG J N' 

' PH' S ~'A L LES T ,::; 1 ; ' UN ,:2 99999 
'- FOR ' 2 'F R ml ' x ~ 1 'T 0 I V ' D 0 , 

jlFI TO'AL ' OF ' ALPHAF I LE[ll < MI N ' TH~N' 
SH A L~6ST : ~ Z J ~ I ~ I ~ TO T ~L I OF' ALPH AFI LE[Z 1 ' FI ' , 

T Ip LUs, HIll ; 
TOTAL 10Ft AC PHAFI LErS NA LlESTl := 0 ; 
SCReENSDE' LETED 'PL IlS ' 1 

tE ND' 
I FP 

, F If; 
ORO E R(ALPHAFIL~r1 i LSS),4uxnROER) 
S 1111 NUS r s eRE F. N S " E LET e D , 

'C' SET LAiTSFTSIZE WH ICH GI VES THE SCQEEN ~ SET SIZE AT THE 
END OF THIS ITEAATIO N l~' 

LASTSETSlze 1= 
'I F' LIHITKS > a 'THE N 

TOTAL ' oFt ALPHAFIlECSJ 
IE~SE' S ,= KS : 'WHILE' 

S • F I' I 
S t = Q : 

S : 'T O' KS IWHILE ' 
= LtMITKS ' DO'S 'P LlIS ' 1 , S 
OTAl 'OF' ALpHhFllE[~J = 0 ' DO'S ' MINUS ' 1: 

ORDER(ALPHAFILEr1!lASTSET~IZEJ , A LPHAORDEQ) 
END' ; 

'PROCf RELAT I VE Erln~oPV = I REAl. ' 
tBEGIN ' 

J 1 UT' 
~f)R' 

' BE 

1-1 ,:; 0 
Iro ' Lt.S TSET SIZE '~ O l 

IN 



2=-

1-1 
4 f7'tJ 

11:t 
6=, 1"'8-
_ -1~~ 

8~·· '::: 18il-=: 

=.= 1&-1.= 
10=,-= ,Bc-

=- 183 
12-::::: ,84= 

-1 85 
14= 186 

18'1 
lE 188 

189-
18,,- 1~O ;:: 

1..9 '-
2u - - 1-9-2 c;c 

193 
22~_ 194--

_ 1 ~S 
24 c: , 9-6 

191-
26= 1"18 

28 
199 
200 
20'\ 

"o=-:c - 202 
lO] 

32 204 

3-t 
205 
206-
207 

36~ - 208 
~ 

38--

40~~~ ~-

42 -~- --:,. 

, Re F ' f .~ E V' A X "" ,i L pH A Ft LE l Xl ; 
, 1Ft S 12 E I tH , A X .( f\ A X L E ,J G T H 'T ~ EN' 

' R.E F,'I Nl ' 1< ;; NONREDUNDMJT ' OFI A)( 
'I NT' SA ~ a SIZE 'OF' AX + , ; 
'l UTl FI R~ T = (Type ' OF ' t'X) [1] ; 
' SOO l' B != 'TRUe' : 
'FORI 'f tr.;j~Ol l' X.., 1 '1 0 ' LASTC;ETSlZF q .JH ILEI B 'D O ' 

'BeGI N 
'REF"KSVt AV = ALPHAFILE[ V] ; 
'IF' SI%e ' OF ' AV = ~ f'X 'THE N' 

II rzi (TYPE ' OF' AX)(1 :SI ZE 'OF' AlO iEQ UA LSI 
(T Y RE' 0 F' AV ) [1 : S I Z F • 0 F. A X J I THE N' T ' M I NI"' S ' 
orAL ' OF r AV 'ELSE' B ,= 'F ALSe, 

, F I , 

'F 11 
'E ND' 

, F I ' 
tE NtH : 

'F OR' X 'T O' LAS TS ETSIZE ' DO ' 
IIF' SIZE ' OP t ALPH AFILerX) = 1 'THE NI 

' PL US ' TOT AL ' OF' ALPH AFILeeX] 'FI' ; 
'REAL' J 1 = 0'. 0 i 
',. OR' X 'T OI LA!; TS ETS l ze ' no ' 

' BEGIN ' 
IJ fJ T ' T j( X I; tJ 0 iJ RED LHJ 0 A I>J T t..H' ALp H A F I L F. r )( J : 
J 'PL lJ~;r 

'1Ft TKX • 0 'T HEN ' 1:0 
, E L S Po ' , Ft E A L fI n :; T K X I T () T A LI N C I [) E t.J C E : rH L N Hi) I F I I 

, E r ~ 0 ' ; 
'e ' Z 1ST HE N U f 1 A E R U J: 11 ~ J ASS I G tJ e /') F Q A G MeN T SI ": E . T Io! E r: ~ A G M F N T S 

OR ~H IC H NO BIT S WOU LD ae SET USING THE CURR FNT SCREF N ~ET 'C' 
lI NT' Z q TOTA [ I NCIDEN CE ~ N i 

(J ' PLu s'tI~J Z ~ 0 'T HEN ' 0. 0 
'ELSE"~EAll M = Z/TOTALI NC IDENce : ~ .l N ( M )'PI')/L N ( lA~TSETSIZE+1) 

lE ND' ; 

-:-:----::==- ---- - -
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20= '- -

3:2 

~2 

4~ 

'PROC- READ SC REEN ~ 'VO I D' I 

'B EG IN' 
M T R D(" R eC ORD C 1]~ : 
'P OR' X 'T a l 11AlC LE:'IG TH ' DO ' 

(TVP E ' 014 ' CURRE jH5 [ x] :~ ' has ' IHcaRO fX.1 ' 
S IzE ' OF' CURRE NT : '= ' ABS ' REC)RD[~A)( L EN GT II + 2l : 
TOT A l. ' 0 F' CUR R HI T< : = ~w I1 ~ P. D U ~H) AN T ' 0 F' CUR R HJ T t ' = 

LA BS ' HECORDtMAXLENGTH +3J 
'e tf D' ; 

SE T = "10 1 1) ' : 

PRI N T( ~DeSIR E D SC REEn SET SIZE = » , KS +1; NEW lI HE , NeY~ I N ~ ' 
KC A L CU ~ A T EO THReSHOL D FREQUE NCY = " ,T HRE SHOLn, NEWL I NE » : 

' WH Il. e ' ( READ SCREE "l = SIZ E I OF ' CIJ~REN T = 1) "'~ O ' 
tIF' CTDTAL 10 Ft CUAREI1 T > THRE SHOLD) 
'A ND ' (S < KS ) 'THENi 

ALRHA Pl l..Ets 'PL lJS" 11 := C" RRe ' IT 
, F r i : 

~ ASJSETSI ZE :~ s ; ~ i = 0 : 
'FOR" X r p;:tOf=l' LASTSETrSIZE + 1 '10' KS 'no ' TO T AL ' OJ: ' AL p HAF I, ' EfX) r= 0 : 
Q ROE R ( A L Pll A F l LE C1 : 'l A S 1l SET S 1 Z E J I ALP HA 0 R £' ER ) : 



2-=--

=_ 2-'5 ----;: -:-- 'F-DRLX ' FROtl t 2 t Tor IlAX LENQTIl I Q)f ' BEG I Nt <= - "246 --=-=:...:- -' lJlfII.E' ( REAOS CReSN , SIZE t O~ ' CURRENT ;; )( ) ' no ' 
=- 2 ' _7 - - -,:- - t I F r (S ~ I< S ) 
6~-- 2,g- '" ' MJD ' ( TOTAL 'oF' CURREWf >. l'HHESHOUl ) 'T HEN ' 
= __ - 2./t!J --~- - _: _ F I N 0 PAR E tJ T ( .lC "'! 1 5 

8~-=:...=2"5-o - --- 'FIt; 
=-=-2 5: 1- - up n ATe ALP H A F 1 LE ( X et 1 ) 

10;:;- 2~2 - reND I , 

=--253_ ' 1Ft LA S T SET S 1 Z E > K S 'T HEN I T RUN C J\ T E S eRE ENS F. T 
1 2~-"-':: l"54""C. ' ELS P' LASTSETSlle < I<S 'T HEN I FAULT ( lqNeOM PlETE SCREE NSETtI) i f: REF. 

_== 2-55= 'ELst;. s:= LAS TS ETs12e 'F I ' ; 
'4" - 256 --

= 25_'1= le ' THE FIRST lIi tlE OF THE OU TP UT seREEN se,. CONTAIN S ( 1) THE MAX I MUM 
ls;::;:.cc 2-58---- POSSIB LE sCR eEN LENGTH , (2) "rHE M AxtrW~ ACT UA l. SCREEN LE~J(jTH AND 

-- - 25:9- --- ( 3 ) THE N U i1 B It RaF D 1 F FER F. N T Q N E !I I N T 5 '''' 
18=--_ 26-~ - c=, PUT(SCRE !NSOUT-;MAXLfNGTH) J 

_.~61 _-, MA XLENG TH 1' = MA XLE NG THpRESENT : 
20 ·~2-=- ' Re=Al.j - r-' :~ RE LATIVE e n TROpY : 

-'-::" - 2.6:3 " = - PUT ( Se R E ENS 0 u 1 , ( S , n A x L E N G T H» • 
22 == ~4-~ =-.~ t-1 A X-l e i'J GeT H .. ~ 0 , 

==-: 2:65 -.. - '" - le' WE NOW D € T e rH-I I N E TH E NUN IH R Of DIFFe REN T 0 t~ E ~ I N T S ~ T H ! S WILL 
24;-; - = 26 6~' - nET It E S I Z e 0 fi r. H E I N D E X T H t\ l' I S R F QUI R E j') TO SEA R C H THE ~ eRE EN S ET' C ' 

~ - 2. 6. 7 ' FOR lX' l' 0 , S t D 0 t 

2~~-" 2-68 =- - - IIFi SIz e ' OF' ALlHIA':I'LfCX] = 1 'THE N' MAXlENGTH 'PL US ' 1 'r:y' : 
- - 269- PU TC. SCREE NSOU Y; MAXLENGTu 5 , 

28=.00 2=-10=",- -~ PU T(SC REENSOUT;(Ty pF. "OFt AlPHAFIl~fS])(1 n : ' C ' I.JR IT E OU T TH~ FIRST 
- -- a ~k I N T E G eR 0 F THe FI N ALl N T e G E R S T R I N G lJ H J CH I S US E n I N nl E AS S, G N MEN T 

30 '-' ~'1'2 PRO GKAt4 ' C' 
2.1'.3 - ' FOR' X ' T 0 I S r DO ' PUT ( S eRE E ~J sou T • l NEW Lt NE , S I l E I Q F' ALP H A ~ I l ~ r x ] , 

32 "- . 214=-- TV P E 10 F' !\ LP H A f r lE [X] ») : 

--,"21-5--= NEXT LI NE <SCRE ENSOU T) :-
34==~16_- PRI N T«( NEU LI N e; NEWL I N E;"F H~A L RE LATIVE ENTROpV = ":-M) : 
=-2 77-- - M A X L e N G T ti :-= Q I r P, 0 R t X ' T 0 , S ' [) Q I M A X l E N G T H i p L U S 

36=_~- 2t8 - - --"'£NONR8DUNb AN T . OFt AlpHA F ILEC X] , 
==.cc l-l9.-= - ", c.P..RJ NT ( HEY LI .NE ; NEW LI _NE. 11 TOT A L .AS S I GNM E NT F R Ee UE NE Y :I ", MA x lEtJGTH) , 38 ==-==-....:c--", ~~ :=_. ~ __ .- __ _ 

0= 

2 ~-'''--



r,---

280 
la, 
282 

- 283 
284 
285 

_ _ 286 
3~=-~~2 87 

G 
288 

38 

tC' 

'L 

14 -

D'~ 

PRIMT« NEW LI NE; NEW(I N6,P UNA SSI GN ED ~RE Q UENCV = " , TD'AlJNC ID EN~E ~ 
HAX[e NGT H)) i 

'T OI 1S ' 00 ' NexTLI NE ' STANDOU T) • 
FI NIS I 

HTEND (1 ," CL OSE") 
'SKIP' 

lEND' 
'FINISH' 
•• ~t 
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38~_-

40 

4.4 
= 
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.~ --
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56-
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8 
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10 
11 
1 
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'L4 
15 
16 

- 1 

1 
19 
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1 
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23 
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'Cl AU TH OR peTER WILLETT , PGSLIS , 1977 ' Cl 
'C' THIS pROGRAH CARRIES OUT AN AUTOMA TI C ANA lYStS O~ A rHF MJCAL 
REACTION USI NG CONN ECTI ON TABLE STRurTURE REpR~SEN T ATIVF~ . TT I ~ 
IN THREE MA I N plRTS . THE FIRST ONe TAKE S A "CROSSBO W" ~nN N ErTJO N 
TABLE AND CONve RTS IT TO A REOLJ NDA~I T CON ~Je CTIVJTY t~ATRI)( " THF 
REACTAN T A ~O P~ODUC T HA TRICES ARE TH EN COM PA RED , USI NG AN A P PRnXIMAT ~ 
STRUC TUR e HATCH ~ NG PRO CEDURE BA se D O ~ THE MORGAN ALGORtT 4M , TO 
I DEN TIFY cE RTArR AREAS COMMON TO THE TWO STRUCTUReS . TH F DIFF FRFNCE S 
ENGEnOE RED BY TH E CH ANGE ARE OB TAIN ED BY SUBTRACTION : I N THE FI NAL 
seCTION , A VARIeTY OF BITSCREE NS ARE ASSIGNED TO CHA RACTFRISF RO TH 
THE UO LeC U~ES INvO 'LVED lU THE RE ACT I ON A/JO THE A N ALV~J S TTSE LF ' r. ' 

ANAl;v sl S RE ; OPEH C( ANA LV SI S 
: OPE NC ( MA TRIX OU T, LIN E 

rr , PP ERCEH T : 

AI L IIRE ,lI ~E P RI NTE;72 ' 
PPJ IJTER ,1) : 

'CLEAR ' PPERCENT ; 
, ClEAR ' FDA I NPUT ; 

FDA I NpUT e= "tSI CONN TABlE" , 
OA lIilpuT ::1 1" : 
AOU TPuT J 'CL EAR' FDAOll TP UT 
FDAOU TP UT ;~ ~RE A CTIO N P I L~" : 
DAQU TP UT := 1 I 

'~~QCf EXCEP := ' VOltl ' 
' BEGI N' 

, IF' e J 0 Ft f1 T H IJO R D 1 1 = 2 
'T He Hl P R I H T« N!WLrijE I~**~ ND OF INPUT TAPE* *" 

FD AI NPUT) i ~GO TO' fI Ht S 
t E l. SE' PR t N T ( C N ~u Ll N e ',' " ex e E PT I ON It I M T H WO R n 11 ) : 

FAULT(HpROGRAM TER HI NATED q) 

DSC ' OF' 



2 ~__ _, -----:

==35 
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--- -ll~ 

6::;';':;;':'- 3 S-=-
.32-s;.:..=: 4~--

~ IH= 
10=. -- 4-2 

12 

16 __ 

18 -

22 

?, 

2Ct 

..,. ,-
36 

38-_ 

1. _ 
44== 
45 

6 
It7 
48 
49 

0 -
1 

S2 
53 
54 -
.S5 
56 
57 
58 

9 
o 
1 
2 
3 
4 
5 

40 :.:_ =_;-'="=== _ , 

, F 1 ' 
l END ' ; 

MTDEF(1, O, O,PP AI NpUT;eXC EP,1) 
M T D EF(ZI,, ! 12~PD AOUTP UT ,EX Ce p, ~ ) 
' I NTf REAC TIONs f~ 0 , 

I N T~ GENERA TED AD jAC ~ NC Y TABL E := 0 : 
'I NT' nVER FLOWt NMATCH := 0 : 
'I NT' suc c ess f. 0 , 
'INT' tlONA iCH :- () :' ~LU1A TCH := (\ : 

'I10 DSflS CREErP III ' STRUCT 'C' HJTt SI2 E,[1:6 J ' INT I TV PF ) ; 
MO OEifI NDEX ' = 'ST RU CT'(' IN T' TVP E, HAXS II E,FI RST, lA ST) ; 

'CHA RpU TI BO" D~ILE~R I ~GF IL E7A T nH FIL e ,A NA la OND F I l E , ANA l R r NGFIL~: 
ANA LAi OJlr: ILE J 

f 1 ' R EFl , C H A R PUT I C P = ( B 0 N t> F 1 LE, R I >J G F I l E , A T 0 ~1 F I LE , A N A L B 0 N 0 F I LE: A 'J A I. R I N Ij F I I ~ , 
AN ALAT Orl FILE) I 

[1:6lII NTI INOEXLI NYT , . SC REE NSE'1'SI2E , M A X P()S S l B LF~r.R F. F. N U:NG T f4 , 
~IAXACT UA LSCREe~L p.N GT.Il : 

'FOR' x ' TO ' 6 ' 00 ' O ~ EN C( C P[X] , FILE RE~nER , X ~ : 
'~ O R ' X 'TO' 6 ID O' GeT(CPCX),( MAXP OSSIBLESCRE EN LE NGTH£Xl , sr R EF N~ ~ TSIlFr x ] 

, M A X A C TLt A Lse iU~ EN,: e N G T H [ X J '; I N I) E X Lt M I T U(1 ) ) 
[1~SC R EE NSE TS I le[1 l1 'SC R EE N ' B n NOSCREE ~ J 
C1 JSCREE NSf TSI2e[2n 'S CRE EN' R[NGSCREE N , 
t1 :S CREE NSETSlze[3l]IS CR EEN ' AT OM SCREE N ~ 
f' :S CREE N S E TSIZ~(4 l "SC R EE N ' A ~ ALB ON DSCREE N 
[1rSC R EE N S E TSI2E[5 ~ ]'SCR E E N I ANAlRI NGSCREE N 
[1:SC R EE NSE TSlzeC6~"SC R EE N ' ANAlATO MSCREE N 
[1 : J ND EXLI ll ITtU]'I ND EX' BON DHJf)eX J 
[1:I NDe XLl llI Tt2ll' nJ D~X' RI NGI NOex J 
t1IIN D eXLI II ITt3]1'I ~J DeX' ATO flI NDEX. 
[1 I I N D E X I. P H TT I.] J , I 'I [} EX ' A N A La 0 N D I HOE X 
[1: I NOEXLI ll ITtSl l ' I NDEx' ANAlRtNGI NOEX 
[1II ND eXLI M ITt61JrI ND ~X' ANALATOM I NOEX 

_[1 : SCREE NSETStze[1 ~4!1 ';1 : 6] 'INT' BO NOPAREN T 

42=:::O'---,::":"='::--:-==-': >- -:::::'-:::'-::-



70 
1 

7 
73 
74 
75 
76 

3·::.. 7'7 

.- - -'la 
36 = 19 

33 
ao 

1 
to"~ =~l . -- Sl 

42_ 
84 
8 5 
86 

- 8 7 
8 

89 
.is _':.:/~ O 

=-91 -

44 

- - 2 
50 =-""-;;- -= 93 

- 94-
5;::-_ .Q 5 

54=;.c~=_~;~-:-___ ~ -

[1:SCREe NSE TSIZE[2].1~1 :31'I NTI RI NG PARENT : 
[1:S CREE"SE T SIZE[3~ +f ~1 ~ 5 ]'I NT' AT0 MPARE NT : 
[1 : SCREE NSE Tslze[4l.171 : 61'I NT ' ANALBOND PARE NT 
[1:SCREE NSE TSlze[S'.171 :31'I NT ' ANA LRtNG PA RENT 
[' : SCREE NSE Tslze[6~.1;1 : 5J 'I NT' ANALA T OM~ARENT : 
[] ' REF '[ J II N~ EX' I NDE~REF = ( BONDI NDEX ,RJN GI NDEX , ATOMIMDEx.ANAIBON " l NDEX , 

ANALR I NG I NO EX: ANA LA10MINbEX) f 
[) ' REF ' C]ISCREEN ' sCMSeNREF = (B ONnS C~~EN , RINGSCRE~N , ATOM~~RE~ ~ , 
ANAL90NDSCREEN . A~Al~INGSCR EE N , ANALA T OMSCREEN) ; 

C] ' REF '(, l 'I NT I PARE~?REF = ( BONDPARENT,R f NGPARENT,ATOMPARENT: 
A~ALaO~DPAReNT,ANALQINGPARENT I ANAlA T nM PA REN T) : 

CLEAR' BOtJO PAReN? i ~CLEAR' RINGPARENT , 'CL EAR ' ATn HpAREN T : 
LCLEAR' A~ALBOHDPAR~Nl ; ' CLEAR' AMALRIN~ P ARFNT : 'CLE AR ' ANALATOMPARE ~ l 

, S T.R U eT ' cc 1 I 1 1 , R Y T £ s t LENGTH, [1 : 1 1 ' BI T S' M I N If4 1m R F. Q U , RE t1 ENT S , 
[1 ; 4 ] ' BIT S' 110 L FOR t1 BIT S , 
[1 : 4 ~. 0 : 1 ) I B 1 T S ' R HJ Gill T S , t, : 2 , 0 : Q l ' e J T s' MOL A TO H BIT S , r1 : 2 , 0 ! Q J ' B 1 T S , 
140 I.. B () N D BIT S , r 1 , 2 , 0 : 9 J ' BIT 5' A N A LA TOM R t T S , r 1 : 2 I 0 : 9 1 , Ell T S' A N A I B 0 N f) R t T S , 
t1 : 400 l , CH A R' th H F RAG l·llE N T S , C1 I 200] I C H A R I W l N, [1 : 20 1 I C HA R I 
B t BDETAItS ) OUTPUTBu~FeR : 

IRE. F { I a ITS' 1..1 HJI r,w M = UlI N HI U 11 R E Q U J ReM F N T S '0 F' 0 IJ T pI J T R I) F f F R) r 1] ; 
'RE F J r 1 J C"H A'R { RW L N • ( I I L N '0 F I 0 IJ T PUT B U F FER) (1 , 1 001 , p w L N = 

= (M L/II l OP ' OU TpUTnUFIi ER) [101 :200] : 
(-'L-ENGT H ' OF ' OurPUTBUfiFER) [1 J ps "003V" , 
tS-1 R_U eT' (C 1 : 1 ] , B Y T ~ S , L E fJ G T H , r 1 t 2 3 0 0] I C H A pIe R 0 S S ROW) B lJ ~ FER 
fREF'n' CtfAR ' C = CROSSBOW 'OF' BU ff FER 
I UH ..I - P A i- le'· p 0 !rJ T E ~ T 0 nl E C R 0 S S eO W R E COR I) 'C' 

56 ~-- _9 B ~ =-. ( 1-:.-=_1 00 l • 1 HT. ' Reo N N e r. T r'J I T Y '; p CON U E C T 1 v 1 TV 
==--=~9 ..::' [1:-1 50 ,1 121 ' I ~h I R IHHJlh A B LE I P B 0 N Cl TAB lE : 

58 =- d -O 0 =~ t., 1.91 ' 1 N T' RHO Ut 0 R M '; P 11 0 l FOR H : 
:---=f01 - , t-Nl' R 80 t~ D C OUH'T I P QOr~ [) COUNT : 

50 ~2 ===-..:C 1+1 0-0 ]1 CH A R' RAT 0 H U S T , P J\ Ton Lt S T ; 
:.----H) 3 ·-=-JTNT~J RATOfiCOU tJT , PAf, O!·ICOUNT 

62~~4 ~~- l1~100 11 .4l'I NT ' RAOJ~CENCV , PAOJACENCY 

54 ~==-=:- =.:_ -::== =- --
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= 11.5-
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= 111-
16:0- -118= 

1 1 g ~_ 
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12.1 
20~- 1 2l 
=- 12.J -

22--' =, 24"-
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2'~c.::: 126-
127 

25 ~ ,. 2 S-
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1.: 

36 

38 

129 -
- 130 

131 
132 
133 
134 
135 
136 
131.
, ~8 

_13.9 

40=-==-___ _ 

{'~~O O] ' BOOL l RP! L6TEU , PDELETED : 
C1:1001'1300L' RRitHiATO ltTEST , PRINGA TO MT FS T 
C1:100l ' CrIAR ' RUNITS '; PUNITS : 
'aOOl t ReACTA~T ; 

-
f-OP"l' IIOFOUR' = <' RFF"INT ' X)'I NT' 

'BE GI N' 
'I NT' Z :~ X '/!=~ 24 : 
'IF' Z:; 0 ,TH EN - Z ::: 24: X ' IHNUSf 1 lp' 
Z 

lE ND ' ; 

' OP " EQUA LS' :: ('R P~q],INT ' A, B) ' AOOl ' : 
'B EGIN ' 

I 1 t4 T' X : = () ; ' B 0 0 L ' S A 11 e ::01 'T RUE I : 

, Y 0 ' I U P B' A ' l~ H I Lt ' S A ~ 1 E ' D 0 ' ( l( 'p L US' 1 
SMIE 

'E ND ' ; 

, 0 p' , G RE" T ER T HA N I ~ (" R E F ' [ ] , I ~l T' A, B) , BOO l ' % 

'BE GIN' 
'HH' X t= 0 ; ' eOrH ' SAf>1E r= 'TRUE' : 

SA~f := Afxl = n[X1 ) 

1 TO ' , U P B ' A ' \.J I1 I L ~, S A ME ' DO ' ( X ' p L US' 1 : S A MEr = A [ x' = B [ X, ) 
'IF' ACX] > B[X] !THEN 'tTR UE " E LSE"~A LSE ' 'FI' 

'E ND ' : 

'OP"L ESST HANr a (' RE~t[J 'I N T' A, B) ' BOOl ' : 
'BE GI N' 

tI NT' X := 0 : ' ~OOL ' SAME .= 'TRU F ' : 
'T O" UPB' A ' WH tLE' SA ME ' DO ' ( X 'PL US ' 1 : SA MF := Arx' = R[X' ) 
'IF' ACXl < SCX] ?rHEN'JTR UE " ElSE ' '~~ISE"FI' 

' ENb' ; 

'F OR' X 'T O' 61DO"SSGIN' 
'C' REA DS IN A SCREE N SeT AND SETS UP TH F INDE~, lE A LI~T OF 

12 ~ --::-::---:::-~ ---
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34 

140 
141 
142 
'43 
144 
145 
146 
147 

36'--=-"" 1 48 
= 149 
~ 150 

38=-~ 1 51 

10 . - 152 
~. 153 

12- 1..5 t. 
. 155 

14 

:5 

\.A 

o 

! 

156 
15 7 
158 
159 
160 
161 
16 2 
16 3 
164 
165 
166 -.-
167 
.,16& ~=--.-
169- -=---

=...c t~c-=_ 
=.:"-""-=' 171 

-=- ' ~=---f-. ., 
2= ~ 114 

S.! '~.:===-

THE ONE ~I N TS TOGE THER WITH THe A~SO CI ATeD MAXIMUM LE NGTH POS SIRL 
N t> THE R M~ Gel) F S eRe E N 1I U I·' B ~ Il S j: 0 R W HIe H T HAT 1sT H E Ft ~ S TI N T E (j E R 

(T HIS DATA 1s USEO TO Ll t' I' THE EXTENT OF TH E ~lNAR v SEARCH)'C' 
' RE F" CHARPU1' CPX = Cp[Xl J ' RE F'[J'SCREE N' SCREE N ; ~CRF~NRE~rX] 
' RE F' [] 'I Noe X, IN~ E X = INDEXREF[X] : ' lN T' MAXSCREE~ SIZE = 
HAXPOSSIO L EsCRe~N( e NGTH[X] J ' RE F'r,1'INT' PAR EN T = PARE ~ T RFFrx' 
' PH ' LE NG TH :- 1 , NLJ~1BER 1= 1 : 
'I NT' ON EI HTS 1= 0 : 

.G e T ( C P X I ( ~E W L HJ E ',' 5 I Z e '0 F' S eR E E N C 1 ] , (T Y PE' 0 F ' S eRE E N [1 J ) r 1 : 
iAXSCRE E ~sIZE] )l : 

' nH ' SSS ::I ' UP9 ' SCREEN : 
'F ORt X ' FRO H' 2 'l'fTO ' SSS ' DO ' 

' BEG I N' 
' REF "sC REEN ' SX = SCREEN[X] , Sx1 = SCREE N r X ~ 1] : 
'I NT' J = (TVRE ' O~ , SX1 ) [11 , 
GET ( CPX , CNEW LDHE ,S IZE ' op e SX ,(TVP E ' OF ' SX)r1 : MAXS CRFF NS I1F J » 

• UE SCA N BAc~ THROUGH THe SCREENS TO DATE TO DETECT THE 
AHTECEDe NTS OF THE CURRENT SCREEN , T~E SE MOR~ GENERAL ~CRE EN ~ 
WILL BE ALLocATED AT THE SAM E TIME AS THE CIlRRENT ~CRE~N T0 ALLO W 

R HORE GFNEAIC SEARC HES ' c' 
' REF "I NT' SS~ = SIZE ' OF ' SX : 
'IF' SSX > 1 tTHEU' 

[1 :Ssxl'I NT". COpy :1:1 (TV PE ' OF ' SX)C1:SS XJ 
' REFerJ'INT' PX 1:1 PARE NT[Xl : 
' IN T' Y 11= 1 : 

c O pvr s ~ ')( ] : = () 

'FOR' Z 'P RO ,,, X .. 1 ' RY ' .. 1 'T O' 1 ' WH ILE' V < SS X 'no ' 
• IF I ('l' V Pt' 0 F' se RE E ~H Z J ) r1 I SS X J ' E ~ U A L S'C 0 P V ' T H F. 11 ' 

copvrssx- v] ,= 0 , pxrv 'P LUS ' 11 := Z 'Ft' : 
PX[11 J:~ v .. ~ 

, F I I : 

J I fl J 
IND EXt 

HUMB 
' ELSF ' 

' END' ; 

(TvpE ' OF ' SX)[11 'THE N' 
NfHI TS 'PLUS' l' := (TYPE ' OF' SX1H1],LE'J (' T H , ~f lH1BFR / X) 

X : - LENGTH I~ 1 
' OF ' SX > LE~JGTH 'THEN' LE tJGTH !:; SIZe ' 0 ,:' SX I FI' 



=- 17.5 
4=--~ 1-76 
- JU-

6:: -'78 

I ND EX[ ONEltJTS 'PLU S ' _ 1] ::= «T VPE ' Of' Sr.R F. EN[sss])[1J.I.F: Nr. TH, 
NUI1BER , SSS,..1) 

, EN D ' I 

-- 4-lc9- =-
B~_- 1 - , PRO C' S fA R C H ~ (I Q E r=" ( ] , I f~ T' Que R v S T R I N G , , P E F ' f ] , I N D E )( ' 'N f) F )( , 

IREF'[,]'I NT' GE NERrc ,I REF 'C" SCREEN ' SCREEN,'REF"l'AIT~' R'T~) 
'BEGIN' ~- -18~ 

1 O~ - - - 1 8-2 
183 

12:::..: __ - 184-

1 as 
14-~ - 18 -

1ti 

113 

1 8 7 
188 
189 
190 
1~1 

20 - = 1~ 

_ 193 
22~_ -=-1~ 4 --

195 
:>.L- - ., 96 

26 

28 

10 

32 

1': 

.J 97 
198 

- 199-
2no 

0' 
20 2 

0 3 
20 4 
2 0 5 
2-0 6 
2DZ 

36:' 108 
_ 2Jl9-

38 

- --- ~-- ,~~--

40' .::.:: -2:._..:.=:.~=~ ~:-=-

12L~- - ______ _ 

'C' THIS SCR EEU LOOK ... UP PROCeI)U~F. WORKS I N 2 STA GES : FT RSTLY , 
THE SCReEN~seT ItlOEX IS seARCIIED TO FIND TIfE LONGEST PO~~I B l E 
SCREEN GIVEN T~e FIRST I NTeGER OF TH E QUERY S T ~I N G . IF THIS LFN GTH 
I S GREA TER THAN 1 WE THE N SEARCH TH E SCR E E N ~ SET JTSELF U~I N G I ~ F nR M A T 
ION I I~ T B E HIO EX E ~JT R V TO Lt ' It T T H f W lOT It 0 J: THE SEA R CH t F THE se R r E 
IS NO T FouNo I N THE I RDEX , TllB NU LL SCREEN IS AlIrO MATTCAI -LV ALL OCATE (I 
\IITHOUT ANY FURTIlUR AC TI Ot~ 'e' 

, 1 rH' L 0 \-I E R I = 0 ',' U P PER : = ' IJ pe ' l N D e x + 1 , 
Cl U e RV : = QUE R V S 'r R t N G r ,] , F 0 UNO ::: 0 , " I I') PO I N T !

'E HTIER' U l.O WFR-titJPPER) / 2 ) J 
' 1.] 11 I LE' '-H tl pO I NT 11 LO\-JER ' [) 

' BEG IN' 
'UJT' TJ 1:1 TY RE ' OF" I NDEXr fl I()P OIN T] 
, IF' QUE R Y a 1:.1 'T HEN ' "0 U ~J 0 : = LO W E p :::; M I n p 0 I III T 
I IH S Ft 0 U E P. V So T J 'T H E rp L 'HI ER: = M I f') P () HI T : 

lI IDP OI NT := ' EN TleR'«(LOUeR + UP ~ ER )/ 2) 
'ElSEI UP PFR i= MI DPOf HT 1 

/11 0 PO J N T I = I EN T I ER' ( ( L () ' J e R + U P PER) I 2 ) '~ t ' 
'E ~~D t ; 

FO UND =;; 
'1Ft FOUNf) > 0 llTHEN ' ' RF. F'lJ NDE)(' fJ:: I NOExrFO tHJ D] : 

IF' HAXS I ZE ' OF ' IJ ) 1 'T HEN' 
' BEG I N' 

'C' SE A ~cA MA I N SCRE EN SETUSYNG LI/IITS FRO M T H~ INnFX FM TR V' C' 
' Itn' SlouflD := 
'F OR ' )( 'F ROM ' HAXSIZE I OF' tJ 'RY' -1 'T O' 2 ' IJHIIE ' F()I INl' = J 

ID Of iS EGIN ' 
'R E ~'T"INT' AX = QU ERY ST RINGC2 : X] : 



:; 

'I " T' L :: ~IRST ' o ~t IJ - , , R 1= LAST ' OF ' TJ , 
J 1= 'ENTIER' (L+ R)/2 ) : 

I \JHt L~1 J' tI L '[)O"BEGPP 
'~EF "S CREEN' SJ = SeREE~[J] 
JAeF'[]' I NT' SJX • (TYPE 'OF' SJ)[~:XJ 
, .,. r:' ( S I Z E '0 ~, S J = )()' A NI'> ' (A X 'E 0 U A L!,-\' !\ .1 X) 'T H F! 'J ' 

f:OUNO :::; L := J 
J~LSP' SJX 'LeSSTHAN' AX ' THEH ' 1 := J .1 ,= 'E 11 T 1 F R ' 

(Cl+R)/2) 
r~LSE' R := J : J != ' ENTIER '(l+R)/2) 'FTi 

'J=Un' 
'END' : 

'CI ALLOftATE THE ONe ~I NT SCREE N JF A LARGE~ ONE HA~ NOT 
BEEN TRA~jD IN THe BINARV $EARC~ ' C' 
'I- Jl f FOUND # 0 tT~EU' FOUN!'> 'ELSF' J:IR ST ' OF' tJ I ~I' 

'E ND ' 
ELSE' FIRST roP' IJ 'FI' 

'ELS E"Yps' SCREEN + 1 'FI' 
, PRO C} SE fa I T :I (t R F. f: • , I N T I X) : 'R E GI N' , I IJ T' 11 'T wo~nUR' X 

C"R E F ' r BIT Sf sF = BIT S on : s ~ : = M 's ET' SF 
l E1~.!) ' , _ 
, C t IlE ~l (HJ 

J RE} , Cl ' 1 N T ' 
' FOR-' X 'TO' 

·~eND'L 

SET THE aIT FOR THE CIJRRENT S~REE N AND FO R IT~ PA RE NT S 'Cl 
G5 = GE NERIC[FOUN Ol ; SETBIT(FOUND) : 
G~r'] 'DO' <' IN T' I : c GF[X+11 : ~FTBIT(I) 

rE ADJACENCV TABLE:: ('REF'C , ]'tNT' AOJACE~J CV;BOt~D TA BIF=, 
2313_ _~ 'R.f FILl , HH I CON tJ E C T J V I TV, NO L pO RH , , R IH ' t TNT' A T 011 C 0 U N T , 80 N 0 C 0 U N T .-

139-:- ~ lR t~f[J' AOOL I RINGATONTesT,'REF'[PCHAR' WLN,UNITS,ATOHLIST)Ie OOt' r 
~24~ _ tSeGlN' 
~i41 '"". = 

50::-_- =-2-1t-2-_.=... - _ .. ==:;c 
"2"43 ~ . 

'C' 
THIS PROGRAM co~veRTS A CROSSSOW TABLE TO A REDU NDANT AT nM -B nND 
cO NN ECTION TlRLE: THE CROSSOOU nATA HAS SEE N 62 "=:-: --Ut 4 = 

-- - --- -

64 . ____ -==- =- -



10 

12· -

, 4 

16' 

18 

STORED I N THE AAEn ~Cn, THE eXACT POSITIO N 
tJI1ffIN THIS AT AIIV TI ME BEI NG GIvE N BV THE VALUE OF "p" 
"P Ail IS IJSEO TO fI"RK THE DEMARCATION POI NTS BE TWEEN THE vAQ t ()!lS 
SECTIONS of THE CROSSeOI} RECdRD . THE SECTIO NS ARE 
<1' UN ITS; 150 CHARACTERS 
(2) CONNecTlnN tRANSFERS : 40 3 ~ nIGtT NUMBERS 
(3] RINGS I ~, 4~CHARACTE~ STRINGS 
(4) RING CONNEC TIONS : 2~ 3~OIGtT NUMBFR~ 
(5) 110D IF IERS : 01 CHARAC TERS 
(6) W L~ I 102 CAARACTERS 
(7) RINGSCRERN : 150 CHATACTE~S 
f e' 

'I NT' P 1= PA J 
'I NT' FAIL := Q9 ; 
t~TRI Na ' FAILURE : 
'aoal ' o~ := 'TI~ lIe l : 
'ItH' ATOlltWt1 : 
[1 : 40] 11 NT ' CO UNTRAN : 
[1 :2 0j l I N1 ' R I NGCOI~N : 
Le l. EAR' CON N T R Atv ; I C L E 1\ R' R H~ Q C LHH~ ; 

BOO Li nCVCLIC ,!= '~ AI:SE ' , 9 :C 'T RUE ' , 
, R E FJ [ ] , B liS' RSa 1 T = 'I j:' REA eTA ~J T 'T HEN ' (R l UG BIT S I 0 r: ' 

OUTpU TBU FFER)[1] ' erSE ' (RI NGs IT S 'OF' OUTpUTBUFFFR)['5] 

I PROC i STR M~Gefl TO r'l = "l'VOlO ' : 
( OK := 'FALSE' , ' GOTO ' EX IT) 

, Ft' 

.et I NPUT INT~GERS ARE WR ITTE N ON TAPE AS 3~ D t GIT CHARACTERS 
A"D TH IS pR OC~DURE CON VERTS THEM Tn INTE GeR FORMA T FOR ~ I IBSE QUFNT 
11 A IHJ P U LA T IO N l e ' 

IPROCi I NTEG ER ~ fI N T~ : 
I BEG HJ 

'I NT' VALUE :~ 100*'ABS'C[P) + 10.'A~S' C[p+1] + ' ABS ' C[p+2J 
P 'P LUS ' 3 J 

40 - -~~~-~=~--=-__ ~-=-:_. 
42 ~ -.:- . _ .: __ - f- -==-, - .~ ;-=-_ .. ;.. -: 



2~-:~:-~:::·-'::--- ~ .. -"'--. 
--..-- --.-- - -;::---::"-"'---=, -: 

~~ 

2G 

.:.8 
l BO 

81 
282 

VA LUE 
'e N() t : 

30 2- 8 3 , C' SET U P UN T T S SEC T I 0 t·.l 1 E It f} 0 T ... Pl.O T " S V M R 0 I. ~ ' c' 
2B4 ' UH IL E' C[Pl # " ~ ' fia r P 'P LUS ' 1 , 

32 - 28 5 'IF' p =, 'T REN' PA IC IJRE : :;1 It l1 tSSI ~ G ~E CO R t> .. : STR.HJGF.A Tm1 '~ T I : 

_ 2B6 _= IC ' ON LY MO LECUCES cn N TAI ~ I NG 4 100 UN IT S A~E PERMI TTFD ' C' 
34 ~ - 2--8 7 - ( I I N T i t1 ~ P " p A j 
-- 21lA.,.. - - t .H' U :> 1 00 'T HEN' J; AI LU RP- := " TOO t<UN V A TO H~!I : 

36:"'_--289 = S1~MI G e A T Ot1 ,eL SF ' UN ITS r1 , M3 : = C[ PA: P- 1l 'FI' ) : 
-- 2.9 0 -= t C' :e R EA 0 I N co IJ NE r. T 1 0 N T RAN S F F. R S • THE F I R S T NUM R F. R 1S T H F. AT 0 '-1 

38 = 2 9--1- - -=--- -::. - AT U HIe H e\) I~ NEe T I V I T V I S B R 0 j( F. N AN D TH E SUB S E 0 U EN T 0 N F T HA T ~ T 
-2.92. =- q If I C- H 1 l' I 5 RE S Ut l ED . 99 (') I S A D E M ARC A T I ON S V M R 0 L B E ~ 0 R F 

40 .. 2~3 - c. THE FINAL 3~ O I G D T ST RI NG WH IC H IS TH E TOT AL '~UMBE R OF Ar o ,1S 

. 29 4 _ IN THE 1'1 0 l Ee U l e ' c , 
42,-., - 29 5 ~:.: P := PA = ~-PLust 150 : 

_ 2..2 fL ' FOR' X _fT Ot 4D ' HH TlE' B 'DO' 
44= -29 7 ' IF i c t p] :; 11 ,I IT He~J ' B : = 'F ALse ' 
~ 2 9- 8 '" ' E. LSE t , R E F ' tIN T I e )( :: C 0 'J N T RAN f x ] : r X ~ = I N T E G F. R : 

4b 2 Q 9 -=- :- ' "1 Ft ex ::; 0 '" ~ F t1 ! F A I L U RE: = I1 Z E R () f NCO N N T R A 1'1 " : S T RAN G EA T 0 M 
3 0-0 _ - JElSE '· ex = 999 'tHEN ' ATOtiN UM ,= IN TE GER: B := 'F AL s F "r:,. 

~F , --
. 30 1 = - J F-f f ; 

3 0-2 
5 

:,..; 

=-3 0 3 -'._- ' fF--' Ai OtHWM > 96 'T HeN ' FAILURE : = "T OO MAN v A T or~s " : ST RANGf:A TOM ' F I ' 
3 0 4 -- - t 1-t--AT01-!NLJI\ ,1 : AT orWUr--1) f! iN T' CO NN ECTI ON TAB LE 

-"3 0 ; _7 -.:::. --' , Ife-r: ' tl ' I N T ' C TO fj E = C 0 ~I NEe T I 01-J TA B l Er , 1 ] : 
54- . ~D.6 ----:--=:-;.~ 'CI.E AR ' COlH~ ECTt ON TAB u ; - ; 

~:O-7 - -:.-=-: 0 -

55' ___ c3 0a =..:.....: _ 
.- 3 09 

- J j 0 -= 
5~ .- :J:f'f ::'-:- . 

~ =d-' 2-",=--6~ ~-=- =-= = 31-:! -= 

(;~ ,--.:.' =---:-=::: 

, C ' AS WE I G NOR F " H E- r10 f) l F IE R S S EC T ION I ~ J T Ii E 1 C T PRO G R M1 • T H [ S 
pRO Q R At4 0 N L Y H M1D l EST H EA T () " S C ~ 0 s p A ~I D H A L . UJ A 1I M 1 T 1= 0 R 1\ t.J G E 
.1F VA LE ~ C E STAT~S • AN Y OTHER ATOM /V ALENCE TVPE S CAUSES THE FAIL 
ROU T1 Nf " sTRANGeATOH " TO RE CA LL ED , ~ , 

'p OR ~ X lTO' AT OllNUI>i ' nO ' 
' BEGIN ' 

f 1 UT UX = ' Ans-'l NI TS[X] : 



2~--=- -

::;.-.315. 
a- 316 

311-: 
5 __ ~1 gc-

J19_ 
8=' ·~·3 2 0 
=::-:~321 

10::~--3 2""2 
323 

12:=, 324--
- -=325 

~= - -326 
::!-2..7 

16 ___ ~ia=-

~12-:9_ 
18~':.=:-330_ 

= -131:::-
20..= ~ ~32-'- -

:=.=333 
22. _ ==334-: _ 

---:=335 ~ 
24~ =33~ 

331 
26= ~38 

- - 331) -
28, -- -=:-340 

341 
30=_ 342 

32 
343 
34 4 
345 

3~;.;-~ 346 -
- -3 (. 7 

36~_ 34S 
--.=3 49 

38::::::--=_ 

--- ----

'IF' AU X < 12 ' THEN ' FAIL URE :~ "STRANGE AT O'" DETEC TED" ; c:TRA IIl GFATO M 
IEl.S E t~C liARr J ::: A T OM Ll s" [X~ := 'CA SE ' AUX .. 1 1 I tN ' 

" C " " ... " " N " - " ... " ..... " •• " ... u "'It" " N" " *" II P 0, I, P 0' " ... " " ... 11 .. *" 0, * " to .. " ' '''- , ' ff' " ''' ' , , , , , ,,,, , , , 
~.a ,~. · ,". " , "S",~N" ; "*"."p","C",~c","e"'"~ " , "G" , "* " ," I" , " NU , " N" , 
tIC" rdH "N" · "O" "P" ' '' 0'' "." "S" tIC" "C" "*" "S" "e" "C" " N" ,. J'i , • • I , , , , . , • , , , . , • 

1ta,p~q, ft*" ."* ", ~." 'ESAC' : 
'I F' J = q.u 'TH~N ' F AILUR~ := "ST R A N G ~ ATO M DE TEC TEn" 
STRA~JGeAT nM "FI' 

, F I I 

' END' ; 

'C' "EQUIVAL~ N T~ CONTAI NS PAI~S nF OUPLICATE ATOMS ( FUSIoN pnI NTS) : 
ttMO~O CVCL E~ aON t AIHS THE I NITt Al AND FI NAL ATO MS AND T H~ StZ F OF E4C Y 
HONOC VCLE I ~ THE MO LECUL E ' C' 

[1:2S ;1 : 21 'l NT' EQU IVA LENT' ' CLEAR' EQUtVAL~NT : 
[1·:2S:::-1:33'INT' r·IONOeVC LE; ' CLEAR' HONO CV CLE; 
'REF'tl'l fl T' E1 = EQUIVA LEN Tf, 1J , E2 = EQU IV ALE NT r, Z] , 

!1C1 !; f'10 NO CVCLEf,1l , t·1C2= MrHlncvCLI:[ , :n 

'PROCi HAKEeONo ~ (itRT' A,B)' VO ID' : 
(CONNEC1 ION TA BLErA 7B] :g CONN ECTI ON TABLE[S,AJ != 1 ) 

'PRO CI ERASEBOND ~ (!~ H T' A, B) 'V OI D' : 
(c'lFJ A ;:: 0 ' OR ' R ::i 0 'T HEN' FAIL IJRF ,= "FR AS EBOND FAIUIRE" 

ST RANGEA TO H ' ELSE' 
CONN eC TIO N TA n l etA , S ] := CONNECTIoN TAALEr B , Al != 0 

JFt' ) : 

, C ' THE NE X T SEC T I ON REA 0 S HJ T H F R I N G S S FE r. T IO N () T T H F C Q 0 S S 1\ 0 IJ 

RECORD ( sEE ,c ~ PA MPH LET FOR fORMAT DET AILS' : THI~ AI l OWS T HE 

1 D E UT I FIe A T I ON 0 F ALL t1 0 HO C veL E SA N D R nH; S v S T F H S P R F ~ ENT 1 N T H E 
110LECULE 'c. 

-I NT I e- I:; 0 ; ' C ' ~ COU NTS TH E NU!-IIlE R OF ATO MS TH AT HAVE n EEN 
COU UTED TWICE I. e. FIJSI ON ATOMS 'ct 

11 N T' R I n G C 0 U ft1 T H~ 0 ,. le' C 0 U ~JT S T HE NUM B E R 0 F 1'10 N 0 eve L Esp R F ~ E p.JT ' C I 

40¥~ .:.~-:- __ .. _-__ 

42 =-

44 



2'§#;;: ~- :~-;~~-=~.;.; ~ _~~ =.~ 

~t. -

~6 

23 
350 
f51 

352 
53 

32~ 3.54 
- 355 

340.: :35 
357 

36-···-3~8. -
=~59 

38=-- ~60 
- 36 1 -

40- 36 

4~ 

46~ 

) 

! 

6 

€ . .i! -c::= .- --
=====-- -=- - - ':-

'UHt X I~ 0 ; 
t1:2?]'l NT' RS A I RSa ARR4VS CONTAIN THE IIIIJMB F ~S Or : 'C I THESE TWO 

THE FI RST AND 
t10 LEO U LE ' C , 

Rsa : 

LAST ATOMS OF ~ACH RING ~VSTFM I ~ TH E 

'CLEAR' RSA; 'CL EAR ' 
, I N T I R S :'= 0 i 

'Cl tl R I ~G 
RI NG START 
11ARKS l'He 

'STRUCT' (' I NT' 
B := 'T RUE ' ; 

SVSTEHq is USED TO oeTeCT 2 '~ D laIT ( ONE ~ - DIGrT 
AND 4 SING LE - DIGIT RI NGStlE ) STR I NG S I N SUCCE~~InN 
END oG =ONE RING SVS'EM AND THE STA RT OF ANO T HEo 'C' 
LASTONe , ATO HCOUN T) RyNG S Y~T EM := (1,99Q) : 

101 N T I R 1 N G S TAR T , 
P : = PA Lp L US ' 1 20 : 
'TO' 27 ' WHI LE' B 'no 
- ' flEGIN~ 

' CHAR ' CP ~ C[Pl ; 
X IPL US ' 1 J 
fl~1 CP # " ~ 'THEN' 

It NT' V 7 RI HGS)ZE : 
'lFHABS' Cp <= 9 'T HEN ' 

tI NT' ACP = lIBS' cCP+33 : 
RINGS TART :- DHTEGER : 
p 'PL US ' 1 i Ye' 4DVANCE "P~ TO START OF NE XT 4 -CH AR ~VRtNG 
'IF' LAS10 HE ~OF' RING SYS1E H = x - 1 'T HEN ' 

R S B T R S ' g LV S J 1] ,= A T 0 tl C 0 U N T I 0 F' R It~ G S V S T F= t'l I r:: J I ! 
RINGS I2F. : 11 I ~F I ACP = 0 'T HEN ' 

'ELSF' ACP 4= 9 ' THEN ' ACP 
'ELSE ' ACP - 24 

JJ;I' ; 

V := RINGS!lE + RINGSTART - 1 
n I tI G S v S T EH :;i ( x , V) : 
HONOCVC lE[ RI NGCOUNT ' PLUS' l' i = ( RI NGS TART , V, RyNGsIZF, 

'C ' CREATE ~lHG ~ CLQSURe ~ONO I ~ , 
HAKEBQND (V.~l"GST ART ) 

'ELSF' Cp = Up " ' OR ' CP = " 9 n 

THIS 

, C I 



2=-'-==::~=--

;= - 3BSc:.: 4= 386-
= 38_1 

6' =- --388-

1.8..9.=.: 
8~ 390 =-

391 
10:;::, =392 

=.:: 39. __ 
12= 3'9Ji'= 
-- 3:95 -

14_ - 39 6= 
_ 397-

16=- 39lr= 
-J~9 - ._ 

18=' -4:00. - ---
It (}1 

20= "'""/fil 2 
- 403-= _.=-_ 

22-- - "4:04 -=- ==: . 

- 4-05 _ -= 
24=" = 406 - .- -

__ t. 0_] 
26=_- 4'08"""-

I.QQ 
28 -=- - 410= 

411 
30 412 

413 
32 - . 414 

-- 415 
34-_ 416-
--.1.17 - -

36 =- 41 
4-19 

38C= - =-

'THEN' FAILURE := ~cnMPLEX RING SYS TEM" : ~T~ANGEATO M 
'ELSF' Cp = "S" 'T HEN' 

IC' SPIRO RI NG PAIR 'C' 
P 'PI.Us' 1 i 61[E 'PL US' 1] := I NTEGER : P ' PLUS ' 1 : 
R S B [ R SIP LU S' 1] : = AT 0 H COLI HT ' 0 F' R I N G ~ V!\ T F t1 : 
sare] pi ItneGER 

'ELS E' P 'PL US' 1 ; EQUIVAL.ENT[e 'P LUS' 1J := (RINGSTART:' HJTEGFR) 
p 'PLUs' 1 i SaU IV ALEN Tr e 'PLUS' 11 := ( V , INTEG~R ) 

I FP 
'~ iSEf B f= 'FAlse' 
, F I ' 

'E ND ' , 
'IF' LAST-Ol4E fOF' RING SYSTEM ::)( '" 1 'THEN' 

RSB[RS 'P l US ' 1] .= ATOM COUNT fOP' lUNG SVSTF. M 
RSAr RSJ := RINGSTARi 'Ft' ; 

rc' CHEC~ TO S~~ WHETHER THE MOLECU LE IS ACVCLIC 'c. 
'1Ft X :; 1 'THEN' AC VCLlC := 'T RUE"FI' , 

~ IC' SET UP RING CO~MeCTIONS SeCTION OF TAB LE 'C' 
P. ._ ~-;: t? A 'P L US ! 1 Q 8 : B ::: 'T RUE' : 
'fNTL RC 11::; 0 1 'C' POINTER TO POSITIO '" IN R T NGCO ~JN ' e' 

- 'T O' 20 !\-HU LE' C[P] " "" 'OO"SEGt N' 
' R6FJIIN T' RCRC :: RIHGCONNfRC ' PLUS ' 1) r 
RCRC = ~~ I NTEGER J 

- ' IF ' ReRC > ATnM~UM 'T HEN' ~AILURE := "R CRC FAILURE" J STR6N GEA TOM '~t' 
, E ~io ' I 

, C' K NOW I N G T ~ ~ I NIT I A L AND FI N A L A T O'" S 0 F EA C H 110 NO c: veL F , A ~J [) A L S 0 
HE ENTRY AND eXIT POIN TS FR) ~ EACH R J ~G SYSTE M, WE C:A N nE TE ~MJNE TH F 
INITIA~ ATOMS I~ EAC .I RI NG SYSTEM, AT THE SAME TI ME C:HEC~ING THAT 
IF AN ENTRY IN "RSA" CORRESP) ND S Tn A OUPLIC .~TF Ar OH, TH ~ LOIIE R 
~UI 'IBERED Al.TERNATIVE IS CHOSE N 'c' 

~ S IPI 0 J 
'IF' RC > 2 '1' HF.N "r; o~ . J ' BV' 2 'T O' ~C1!!1 '/) O" BEGUJ ' 

I I N T' R C J :: R I N G C Q ~ I t-I r J] , R C J 1 • ~ J N G CON N [ .J ... 1 , 
! IN T! I1 =3 'I F' R C ~ :: 0 'T HEN IRe J 1 

40="'~':;"~- __ =:.:- --:- - - - --
:::....--=--;..==--~-=- -- "=-":-.:---: 

~ :::~--= 
~ .... - .-.----- ---



~==.:... :=~-. -:.- -==. -":-?::.:.. =- --":'" -:..-

!6_ 

42-0 
421 
422 

30 423 
(,,24 

32:-.:;c 4=~5 
6 

34=- ~427 
._ ~",-8- ~ ._. 

36:...:: 4o-Zl} _:=-== - -
1.-.311 =-: 

38-=-7 '01 m=~-~ 
432 =_~.-

40~:·'.: jf-33 -=--

- 414 -
42- ~f5 

4.3 
.14 ::' 4'37 

~6 
1.-38 
1i-39 
1.-4(l 

>is=-- 441 

" 
442-
443 
4-44 
445 
1t{'6 

J~ -:: 447 
448 

n -, 4k9 

'>" 

(> 

450 
1.-51 
45. 

- 453 
~54 

67~ = 

54 ::;;--::.:- =" --=-- -

J el-SI" ACJ1 = Q 'T HJ:!N I RCJ 
'eLs~1 qCJ > RCJ1 'T HeN ' ReJ1 'ELS E' RCJ ' FI' 

1. ItIT' l. : = 0 ; 
'R EF ' tl 'I NT ' MC = tlONOCVCUH ,11 : 
' AOOL ' B ps 'T R-Up' l 

: 

, Tt)' R I III Get) tJ UT' W nI L e ' R 'D 0 ' , q E G I ~, ' 
l. 'PLUs' 1 J 
'I F' M < HO rlJ 'THE N' 9 :~ 'FA LSe ' : L ' M t NU~ ' 1 
' ELSFJ M = MC r Ll 'T HEN' B :c 'FAlS E"F t ' 

EN p t; 
_RSALRS 'PL US ' 11 :.:1 (' IN T' ~1 C L • Mr, [Ll : ' ROO L' Ft 1= ' F=ALS~ ' 

q O f E [ \JH IUP'NuT' n '1) 1) 1 B t= ",Cl = F 2 (L ' PLIJS ' 1] : 
'1 Ft B .. lT HENI E't[ L] ' ELS E ' fl CL 'FIt) 

LeND ' 
L£Lsel RSACRS 'pL US I 1'] := tIC1t1J 'FI' 

'~ROC' RI NG SCREE NS = , tRE F'[l' lNT ' MC) 
'BEGI N' 

r = 0 : 

IC' SET UP RING SCREEN S FOR ReA CTI NG MO LF.CU L F. S 
OF DE SCRIPTI ON :-

THE rH ARF 3 I FV E I S 

1 RI NG SIz E 
2 NUM BER OF "ET ~ ROA TOH S + 
3 TYPE Qp HETEROhTOMS UULESS THERE ARE NOT ANV I N WHI ~ H rASE( lE A 
CAR BOCVCLIC RING) ~HE RI ~ G IS DEsCRI BED RV THE TOTAL NUH~ER OF 
EXTRA~~I N G C ONN ~CTIO N S rC' 

[1131JI NTt Ri NG : 
l eVTES' NO SP ~ q NOS P~ ; 
'l UTt HE T ," 0; ~lC := 0 , EXTeRN~1. 1= 0 
, FOR ' 11 'F ROM' M c f 1 1 'T 0 ' ~1 C [ 2 J ' 0 0 I 

' BEGIN ' 
'C HAR ' AM Q A10H LlST[ Ml ; 
'JP' A't1 = tl('!B 'THEN' eXTER llAL ' PLUS' 
_ 'C A SE'(' AeS'f\llN ITSt t~ l~5')'l N ' 1" , 0 , 0 , 0 , 2 " ' OII T' 0 ' FSft.C' 
, E LSE t , JfiT i V ! = 1 J 

, lJ H I lE' AM B V 'E LE fll NOS P , /') 0 f V , P LU S ' • • 



2 '"= -

,." 
.,~ 

38 

4O-"~-~-~--:-:- --=-, 

HET 'pL us ' '&O t(V~1) , ~~ e 'PL US ' 1 'F I ' 
tE NtH : 

--cc_ 'IF' Uc. eO 'T HFNT HET := F,XTER NA l 'FI' 
RI fI G ;':; ( r~ c r 3] , Ne of; 50 , HET ) : 
SeARCH(RIN~ , RIU6InDEX,RINGPARe ~ T,R JNGSCRfEtl /~S RIT ) 

- 1:ENt)l • 

'F OR t M ' 10 ' RINGcnu A? ' DO' ~I NGS C H~ENS (MO N OCV C L ErX]' : 
( I .iN T.1. P == I IF' .R E A C l' I ~ I T 'T HEN I 1 I F. L SF' S ' F I' ; 
!lP - ~ -nHi C OUN T > 0 I TH F.N " FO~' )( 'F r.{QM ' P 'TO''1Ft RTNr.C OUNT>2 'THFN ' P+1 

, E L S El P 'F I fl DO ' M t tJ It1 U t1 : = X ' S ET' M I N I M U n 
'FI') r 

IC' PA IS ADvAN~eD TO THE ST A~ T nF THE WLN STR I NG S~ T PPJ ~ G T H ~ 
}IODIFIERS SeCTIO N : THIS P ROGRA~ WIL L ONL Y HANnLF FULLV rOVAL~~r 
~1 0 I. E C U LE S CO N T -A NJI N G A LI M I T e D N lj MBE R n J: AT CH·1 TV rES TNT H E I R ~ I 0 R "I A L 
VALEliCE STA T E ~ ~C' 

P := P i\- 'PLUSf 151 , 
- 1= J't'R UE' ; 

'CL TWO CONSEcuTIVE SPA ces SIG NALS THE END OF THE WLN SR TNG 'e' 
'T Ot 102 ' YHIL E' B 'DO ' 

'IFt C[P] =!,." IU~ !)I C[p 'PL US ' 13::!! 'I ' THE N ' B := 'F A 'S~i 
IELs 6 ' P 'PLUS' 1 'FI ' : 

(II NTi M ;~ P~PA : 
.IF' M > 100 tT HE Ni FAICURE c= "T OO MANv A T OM~" : ST RANG EATOM 

'ELS E ' W ~ N [1 : M ] '~C r(P A:p " 11 '':1' ; 
, C' T ~ e I C I PR O G R I ~1 PR OD U C E S A ~4 I NCO P R E C T TAB L E lF THE I N t T t A L W l'.l 

SYMBO L IS ~R" ~C ' 
'IF' WLNC1] 9 ItR" 'T HE N' FAI LURE := "I NITI AL BEN ZE NE" : STRA NGFATn !1 'F t' 
P := PA 'PL US' 102 i ?C' ADVA ~ Ce Tn ST~R' Of I CI RINGSCREE N 'C' 
M := 0 : 'F OR ' x '':R OfP P 'T O' p+ A T or~NUM e1 ' DO ' ' BEGI N' 

'C HAR ' ex = C[~, t RINGATO~ T ESTr ~ 'P LUS ' 1] := 
LI~' ex ~ "0" JOR ' ex ~ "0" 'T HEN 'IF ALS E' ' ELs E"TR UE ' 'Ft' 

lE ND ' ) ; 

2~:_~~~ ___ -: ~"--- -" 



~ 

~6 

l. 90 ~ , PRO CIF Q R 11 CO N NEe T 1 0 t~ TAB LEe N T R I E S = 'v 0 ID' ! 

2::1- 491 ' BEGIN ' 
492 ,__ 'c' 
493 ~- THE CONNECT I ON l RANSFERS AND RING CO NNE CTORS INF ORMAT I ON ARE 3 

694 USED TO DETER MI aE THE ATOM AT TH F TOP OF THE ~ONOING-STArK _ 
495 "LASTATOM" - Aa D BONDS ARE TIIEN ~ADE BFT WE EN THIs ANn TH~ CURRENT 

32 

_ 496 ATOI1 DENO TED 9 V THE stJBSe~IPT 'I MII. 
34 == 4-9 7 ~-- - -- TWO EX C E pT I 0 t~ S A Tt E ,., A 0 E TO T HIS R U l E 

=---- 4 9 8 ~ - -- -= - --. ( 1) IF! l. A S TAT 0 N " 1ST H E E X I T PO l N T r:: R 0'., 0 N E R t N G S V S T E M AND " ~1 I, 
36 -_ 49~ CORRE S PONOS TO THE FIRS T r-1 EHDER 0 F A SECO ND 
~ 5 0 0 ( 2 ) 1 F "L A s TAT 0 r1 n 1S T H e FI N A L A T OM I NON E t1 0 "J 0 eve l E I N A R I N G S Y S T H1 

38~ - 501 :: OF IIOR E THAN 2 RI NGS AND UN " TilE FIRST ItJ A SF:I'!O rJD MONO r.veLL 
--- 502 'C' 

40-,- 50"= ' Hn ' OOt~ E I~ 1 ; LAST A TO ~1 e= 1 , eT := 1 , RC != 1 ; 
-50 4 KS : :; 1 t 
5 0 5 'F OR ' 11 'r ROH ' 2 "TO' A T O ~INtJ~' 'DO ' 

42 

44 _ 5 06 ' a E GIN ' 
- 5 0 7 ' ~ e F ., BOO L' HI R I N G = R I t.J G A ,. 0 M T EST r t-1 ) 

OB ' IF ' 14 = 11 C 2 , (1 Q ~J e J 'T HEN I j) 0 rI E 'p L US' 1 ' F I ' : 
- 509 HAK Eao'i~ O(M , LASTATO ~ I) : 

4 

5 1 0 , 1 F ' t ~J R I tI G ! AND ' RC> 1 , ~ N D' (I A S TAT 0 t1 = R t 11/ G CON ~~ r R C .. 1 1 r 0 R I 
11 If : RSArR S]) 'THEN' ERASEBnND ( ~,lASTA T OM ) : MAKEBOND (RT NGCON ~ [ R C] . 

51. 2 L.A.S TA T OM ) ' 1\ I ' ; 
51 3 -=- - -.:... , IF ' I N R I ItS C l' AND I 00 NE > 1 ' A NO' LA S TAT 0 r~ = " C 2 r DON E ... 1 J ' A N D I 
511. fJ tI RSA C ~S) ' AND ' 
515 ~-- ('I NT' J= ,.1C 1[ OONE - 1l : ' tNT' Z t= 1: 'T O' E- 1 ' WH tll=' J # F1[Z1 
516. _-. ____ -:- __ -- - ' DO ' Z ' PLUS' 1 : f'1 fl E2 CZ]) 'THEN' ERASEBOND ( F-1 , LASTATOt") 'FI' 

11 c:_---""": LAS TATOH : 
51 B ~-:: ' I F f ~1 = R S 11 ( R S J f THE r~ , 

1-9 .::. - --. - =- - -- -=-- - - - , lt~ T' J = R l UG CO N N re RC' P t US ' 2) - 1 J ; R S ' P l Us' 1 : 
::..;l 2.0 -- - - - , 1 F' J M 0 I THE N' J 'e' lET HER EA R E S E PAR ATE F. ~J T ~ V AN/) E X I T 
-'521 ~- - -- POINTS FOR THE RING SY !;T E'1 ' r.' 

2 --==-==-- lElsFt M fI CONNTRANfCTl 'T HEN' M ' ELSE' 
i ~- - C C N N T R A H [ ( eT' P L U S f 2 ) - 1 1 • F 1 , 

fELs ~t M t4 eOtHHRAN fCTl 'THE N ' M ' f:LSE ' CMHJTRANflCT ' PLUS ' 2) -1 ) 

64 _ .;;"':"' __ :::;.-.;-..='=::' ___ ~_ 



2:0=-

= 52 :)-::::..-=c--
4=- ;:26~= 

:=;:--~~ --
6-""'_ 528-=----
= 5-2--9 -

L...f I' 
tE H'" 

, EN n ( ; -

8 ==-= 5' J:(): :.- , P RO (}l NOTE () U P L I CAT e AT 0 r·, s = ( , HIT I J ' : 
=-_ - 53.1 -_ -"-- - , B E Cit N , 

0' __ . 5 j2~--- - - t_ C I 
;;=.=::c 53..3===_~__ T HEcom4 EcTI O~t l ,\ B '~ E I S SCMJqED ROW BY Ro t" FOR NON -Z ERO ~ N T RIE C; 

12~_- 534 - -- ---,... 'lH ILST DU PLle A"T~ AlIOf lS ARE NO TED BV EN T ER I NG A ~OND ORD F I? 
= 5.35 OF 9 AT TH e S TA~ T OF T HE APP .R f.l PR I AT E ROW AN D CCH lJ t-1N f) f: THE ARR AV 

I~== = S36::::": .=--::-=----- t' COffNEOTIO N T ASC E " AND THEIR CO~Ne CTT O N S AR E T R A I~ SFE R RE /) Tt) THFJ 'l 
_ 53 7- __ - _ - , - E QUI V ALE N TAT 0 MS : 

'6~~ 538- --: -~ 'C' 
5..3~ _ - - -- - , RE F ' Cl' I N T' M = E QU I V ALE N T [ J ] 

'8 -- 54=0-- = ---- , I N T' A : = t-4 t n ': B : = tH 21 , 
541 _ _ __ -"- ' FOR' BA T 0 fI S f TO' AT 0 ~1 N 0 1-1 f DOl 

20~-54z_=_ -=- - - ' BEIJ I N' 
-= 5 4:3~ - - - - I RE F ' t l I I N T' eT 1 :; CON ~J E C T I ON TAR LE [ e AT 0 MS J , eT 2 ::; CON NE (" T I ON 2") -- --= 
--~ 544 TAD Le[.BAT OHSJ ; 
_-54ch q F I CT2[B~ 11 0 'T HEN ' CT1C Al := CT2 r Al := 1: CT 1 rR) .:: n 1n l 

24::::- 546 -- ---"--'::;- 'E ND ' : 
547 _ CTnNEfB ]:= 9 

26== 548 - , E ~H} t ; 

__ 549-
280= 550 

:<c 
551 -
552 
553 
554 
5~5~-

34= 5 

557 
36 - 55"8 

_ 559 
38~-=-

40==- -:c_~-=,,-:=-_: ---

'O RM CONNEC TIO N TA SLE ENTRIES: 
'F OR' X 'F RO Ill E I RVJ - 1 'T O ' 1 ' 1> \1 ' Nt)T F !)UPllC AT E ATOH S ( X) 
'F OR' X 'T O' ATO HNI IM fi DO ' CO NNE CTI) N T ABL ErX,Xl := 0 

, C ' 
A REDUN DANT ADJl c ENCY LIST IS BU I LT UP FROM THF c o NN ECTI ON T ARL E 
A V 0 I DI N G THE f) U ~ Lt CAT EAT 0 MS. 4 T TH E !-i At1 E T I "'1 F " B 0 No T A ~ L F. " I ~ 
CRE ATED WHIC H LD STS T HE CO N STIT U~N T ATO MS O ~ ALL BOND ~ I N T HF 
n OI.Ec ULE NO N!"I RE{5 UN DA NTLV • 
T HE ADJACe NCv TIBLE CONTAI NS A 4-ELE MENT VE CTO R, p R E V I O U ~ LY l FRO 



.-- .- ~ -

s 

J:i~ 

j-

34 

36 

38 

~o 

4_ 

14 

'!t 

~2 

5~ 

5 

62~~ ~ , 

6 .. 

lLLED, F-OR ~l\cA ATO t-l I N T ~e ST~IICTUR E: THE NOhl - Zf= RQ E LFMEN TS rO NTA I ~J 
THE NUI1B ERS OS: TilE ATTI\CH EO ATOMS. THF nOrJO TAIHF CONTATNS TWO 
E l. E r \!HH S ~ 0 R F. A C H a 0 ~ I D PR E S E ~I1' AND THE v A ~ EFl L l ED BY T H F NUll B E R S 

F THE CON S TIT U E! tr TAT 0 ~1 SIC' 
'I NT' OUPSDONE .= 0 : 
BONOC OtlN T := 0 J 
' FOR ' ROW 'Tu l ATO MNUt1 '01'1' 

'B EGIN ' 
'R EF '[l' INT I cl ROW = CONNECTION TABLE(POW , ] ; 
'1Ft CTR OW [1] fI 0 .'t HEN "I NT ' ECOUN T := 1 , i\R ~= 0 , R ! = RnW .. n IJPSr>flNF: 
ATO ~ll.I S T[Rl ;~ ATD IILIST[RO IIl ; 
R I N GAT () ,.1 T ~ S T t R , : i! R I N GA T 0 t I ,. eST r R 0 '" ) : 
U flU T S [ R ] L= U 10 T S t R 0 lJ ] : 
' lP' ROW >· R 'T HeN ' UN ITSf ROlr/] 1= tI " 'FI' 
, R EFt [l , HI f , A D J R o ~ , = A 0 J Ace N C v r R, 1 : 
, FOR' COl. U rt N , T {) J AT 0 H N 0 t·1 I 00 ' 

'IF' COLU~1N ;:: e2CECOllN Tl 'THE N ' ECOUNT ' PLUS ' 1 
' ELSF ' CT RO\HCOCIJMN] IJ (I 'T HEN ' 

'I UT' 0 = COLlJiHl .. ECOIJN T ... 1 : 
'-rI" AR 11 4 JTHE t~ ' ADJRO W[ AR 'PL US' 1] := ('I 

IIFI D < R "'THEN' BOND T A8 Le[BONDCOU~H 'PLlIS' 1] != (O,R) 'FI' 
'ELSE' FAI LURE := qAR = 5" : STRANGEATOM 'C' THE I~J PQ OGRAM 
SO~TIWES GIVES RING FUSI ON ATOMS AN ADDITIO NA L SUBSTTTUE NT'C' 'F I ' 

, F l' 
'ELs e ' OUP500NE 'PLUS' 1 ' FI ' 
'&: ~40 f : 

TOMCOtJNT ::1 A T Ot"N I H1 ~ E : 
x 'TO' ATQHCouN1 ' DO ' 

'SeGI N' 
'C' seT UP MOLeCULAR FORIIULAE ' C' 

' INT ' J = 'c ASE 't( lABS ' ATOML J STtX] ) ~34) ' IN ' 
1~O,Z;3~4;O,5,0,O,O,O,6,1,a,O,O,Q ' ESAC' 

MOLPORfttJ} 'PL US" 1 
'END' t 



.., ==-- -::-.==: ~ -L=-- -::.-

=- 595-- __ -:. - .1. FORI )( ! T (1' A TO '" CO IJ rJ T ' PO I 
4=_- 596 - - :...~-- I BEG I N 

=- 597 =- -- - IC' OeT ER~1I Ne ATOtlIC CON NECTIVITY VALUES 'c' 
6::::'-"'~5-98 · =-='::=-~-'----- I-RF.F ' lINT ' - CX!= CO tJN eCTIVITVrX~ , rx ,= 
= -599=-=--=-· ( J J tH' M : ILQ J 

8:-_ ~6--O0"" '" :;:=--:-.:.-:. - ' REF-' Cl ' Oh' AX = AnJACENCV rXl I 

==.=60 1 ~ __ -=:--. - t~oRI Y 'TO ' 4 IWRILE ' A)([V] !J 0 '00' 
10---':-'002- -~-. - IIIP AXtVl <= A'rO ~100UNT 'T 'H~~I ' M 'PL US ' 1 

6 03:- ' E I. S E'F A I L U lH : = If N IJ MBE It I N G P A I l U R Elf; S T RA N I'a: A T 0 ~l 'F I' ; M ) 
12"" 0-604-' ,iIF' ex = 0 "HEN' FAILURE: := "ZERO VAlFNT AT OM " r STRANGF=ATO t1 'F I ' 

6.QS ' EN", • 
.. ::.. -606 

6n7 EX-IT; 
16 608 == OK 

6-09 ", _1 E.N D ' 
18=- 610-

_ .611 -
20= -tr1 2-

- 61 3- I P.:R Q Cl M ATe H S T RUC TU RES = 'B 0 0 L 
22~ -~ 1 4 I BE"o-tN ' 
.,. 
~~ 

2£ 

2fl 

3~ 

3E 

615-
616 
/,17 

18 
19 

620 
.621 
-622 
623 
624 
625 
626 
627 
628 
629-

38 

fCI AU THOR : pETER WIL LETT , pGSt Is , 1977 • 
THIS PROGRAM ~A~RIES OUT AN HeUR ISTJC ST R UCTURE~ r' ATC ~ I N ~ OF 
-YO AD JAceNcy HJTR IC ES US I NG AN AOAPTI0~1 OF THE MO RGAN AI~ORtT HM 
THE PROGRAM Jn~~TIFIES PAtRS OF ATOMS , 0NE I~ THE REACTANT ANn 
ONE I N THf PRODUCT , QH IC H ARE THE MOST 5 I MtLAR ONE - TO-A NOTHFR 
THE RAD I US OP St l1lLARITV , AS DETERMINED BY THF NUMBER O~ 
ITER AT IO NS O~ TRE MORGAN ALG OR IT ~M FOR WHICH THE ATO MS HAV E 
IDENT ICAL PROPE~TV V ALUE~ , IS ASSUMED TO BE InE NTICAL ANn AI L .Tn MS 
IJITHIN THESe TWO AREAS MAV HE~CE BE DELETED FRO M FURTHUR C ON~ I ~ 
ERA TI ON: THE P~OCEDURE ITERATES, MA TCHING SMALLER AN D ~MALIF~ A RFA ~ 
, EITHER UNTIL AN AMBIGUITV IS DtSCOVEREn OR UNTIL THE MA TCH RAOI US 
~ALLS TO aE LOw j lE TWO BONDS DISTANT ' C' 



! 

\) 

!8 

32 

39 
3'1 
32-

633 
63.~ 
635 
636 

34=- 6-l'r 

36 
63B 

9-
.641) 

38=- 6 4~1 
642 

40=-"-, 643 
61.1. 

45 
646 

7 
,_ _ 6 .48 
~'j= 649 

42 

:4 

_. 650 
~&= - 651-

652 
~v:...:: - 6 S3 

54 
,.! 

",4 

64====:::=::::::::;;;: ---

'BOOLi OK :~ 'TR Ue' j 
'LONGitU~'1" ZERO ~ 'LONG' 0 , TW O ;l 'L ONG ' 2 
'STRI NG ' I IATC~~AILURE : 
'PRoal MATCHPAILRO U Tl~ ~ q 'vaIO' 

IOf GIN' 
PUT ( Mt A l V S I S F A I L U It E , ( N E \.I L I U e , R 1/ L N , NE", LI NE , P W L N , N ~ \/ Ll I~ E , M A T r. H r= A t L 11 R F ) ) : 
o j( ,l= L FA LSE f : 

'~OTO' eND MATCH STRUCTURES 
'E ND ' ; 

'Cl SET UP J H 'T~ A L PROPERTY VALUES ' Cl 
t1 : RATOHCQUNT ,1,R ATOMCOUNTl' LONG " I NT' RA TOM PR () P : ' CLEAR ' RAT()M PR OP 
fREF'r]'L ON G"IN" R ~ ~ = RATOHPROPf,1] : 
[1 :PATOM CO UN T;1sPATOMCOUN TJILO NG' 'I NT' PAT OM PR OP I 'CLE AR ' PAT()MPR () P : 
!REF'C]'LOHG "I NTI PAR = PI\TO tIPROP[,11 ; 
'FOR' X 'TOI RATQ MCouRT 'DO' 
- RAP [ X l I~ :::; 'L EN G , ( 1 0 'I\' ( , A B S ' R 11 NIT S [ )( 1 - ~ 3 ) + R C Cl N NEe T I V I T V [ Xl ) 

'F OR ' X 'lO' PATQlIc ouNT 'D O 
PAP(XJ ,oe= 'Le NGI(1 0 J1!<' ABS 'P WJ ITS[XJ-33) + PC ONNEC TlVITV£ X] , 

fPROC' EXTEND ~ (I tN T· LEV EL)' VO ID' : 
' BEGHP ""'-

LC'THIS IS BAS!cnC LV THE HO RGAN ALG ORJT HM excePT THAT T HE 

1Nl 11 A l. PRO p eR 1 V V A L lJ EIS 0 E R I V E J') FR O M THe 11 I} ~JI T S 11 V A L U F RAT HER 
THAN JUST THE CO NHECTIVITV 'e' 
'Cl " RE VIVE" A~n "RESET RFR OR Tu AR~ IN~ L U DED I N CASe AN nVER~ l OW 

CC tJR S oURINn TR E CALCULATIO ~,J OF A p RO PRTV VAL UE 'C' 
' RE P' [J I LO NG" 1Nl' 

RAP Cl ) R R e N T = RAT 0 t·! PRO P [ , L EVe Ll , RAp = RAT 014 PRO P [, L E V r: l - 1 1 
PAPCURRE NT = PAtOHPROP[,LFVELl , PAP = PATO Hp ROPC,LeVEL-1l 

, La N G , , 1 N 1" S U ,. • 
' PROC l OV ERFLO u FAt LURE = ' VOID ' : 

I BeGn~ ! 

RF Low I NMA TC H 'PLlIS' 1 ; 
t1A TCliFAI\'URE t= "OVERPLOll SeT" 
~ ATe H F A I L R 0 LJ T r IJ E 



2'=='- --

9-
a=--670= 

671 :;-
10~ 61'2 

'3 
12~ L-~4 

S 
14_, "-76 

7 
16' 

- , L?a 
79 

18=. - 680 
1 

:'0: -' - 63 
- 6a3 

22 -= 684 
68 5 ,.-

4~ , 686 
6&7 

2f 6 3 8 
689 

2S:· -
690 
6~1 

Q2 
> 

693 
4 694 

695 
'1 .; 

696 
697 

36, 698 
99 

~8 -"-

--

lE ND ' J 
R' X 'TO' RATONCOUNT ' DO ' 

' BeGII~ ' 
' RE F'll.l NTI ~AbJX = RADJACENCv [w] 
3.ut I : :: Z e Rll : 
REVIV E(OVE RFl OWFAI LURE> , 
RAPCU RRENTfX} :'= TlIO *R AP[X] i: ('fOR' C 'TO' RCONNECTIVTTV[Xl ' DO ' 

SUf·1 'PLUS ' IUPfRAOJXCCl' : Sl IM ) : 

RESE T RI:POrn 
' eND ' 

'e ND ' ; 

eXTE ND (2) ; EXTENDtl5 : 
'REF'[l'LOH G" I NTI FJ~ S T R AP = RA TOMPROp( , 31 , FIRSTPAP :: PATOMPR0 p r , J] 
' MO DE" MATCH ' 1:1 'S'TR UCT '('UJT' II1Ax , NUr~ ,[1! O 'FL F.X q' nJ T' M ATC ~lI:") 

[4 ATC H' DlI PLIC ATes J 
t1 :R ATOMCOUN T] 'tIATCH' REA CAT Ofl , 
[1 : RAT OMCOUN T;1.PAT OMCnUN TJ'I NT ' 
[, : pAT 0 M C 0 IJ tl T 1 ' I N T i S r t~ G L E R P f4 A P 
, IN T! R L f= 0 , P L ,:: 0 J 

'I ~T ' M~XIMAL := 0 , 
~ I A Te H A R fU v : 'C LEA R I t1 ATe H A R ~ 4 V 
'~LE AR ' SINGlER PMAP 

(1 : RAT 0 11 C t) U N T] , J N T' R ~ EF T : [ 1 e PAT a /11 CO t J N T ] , I N T ' P L F ~ T 
[1 : RAT 0 tl CO iJ N l' , 1 : Z ] , I ~ T' t 1 ATe H P A I R : ' J N T ' fv1 P : ;; 0 : 
, I N T' 11 A X I 11 A L A Tot·, S I 

'B OOL' F OLlND IIAppH~G := 'FALSE' , 

' PROOI MA TCHAT OMS ~ '~ O I D ' ~ 



4 ---

tl 

34" 

~I) -

3B 

10-

12 

t 

- -- :;::-- ~-==-

' BE GI N' 
'Cl HRLE~Tn AN D "PLEFT" ARE ARRAvS CO NTAINING TME ATOMS NO T 
PREVIOUSLY DElE1 F.D • THeSE T\lQ SET S A~E HATC HEh AGA I NST I=A CH OTHFR 
USI NG TMe THIR D~ORDER ATOM PRO PERTIES AS THE I NITtAL ~ET_P ART 1TI ONIN ~ 
CRITERION 'Cl 

'I NT' J = RL ; K = Pl : RL := PL := 0 , 
'F OR ' X 'TO' K I ~ O~ 

(lI NT ' M = pLEPT ~i] i 
'IF' ' NOT ' pDELET~n[r1 ] ' THEN ' PlEFT[PL 'PL US' 1] := M 'FI' ) 

'FOR' X 'TOI J ' 00 ' 
('l NTl R ; RLEFT1~J : 
'IF" NO T' RDeLETEH[Rl 'THE N ' 

IREff[]lI NTr MA :;: f1ATCHARRAV!Rl : 
r 1 I P Ll ' I tIT' P 0 Ss: 
lI NT' POSSC OllN T != 1 '; H :F 1 : 

l>lAX ' OF'RE ACATOrI[R ] := 0 ; 
RLEFT(Rl IPL U ~ ·I 1] 1= R : 
'CJ THlS- LOOP MAT CHES EACH PODU CT AT OM (P) AGA n JST TH E CURRF.NT 
REACTAN T AT OU lRl ~ Q R AS MAN V leV EL S AS POSS IBLE _ TH F VA l UE 
" L S-V E Le O UN T It 1ST HeN c 0 HP ARE 0 WIT H " ,., It , THE f.1A X It1U M V A I 11 E F £H~ T H A r 
A T OU AN 01 F > = ~ W' THE APPR OPRIATE I N FOR 11 A T I ON S TO R El)' r: ' 
'FOR' Y 'T O' I)l ' 00 ' 

_ ' Sf,!; ItJ ' 
'I NT' ~ ~ PLe FTrVl 
'I NT' le = MA tp] ; 
'IF' Le> 2 'THEN ' 

. 'IF' Le ;; M 'T HEN ' po ssrp OSSCOU NTJ := P r POS SC OUNT ipLUS' 1 
LSF' Le > " 'T HEN ' POSSnl := P : POSSCOIJNr := 2 
l1 I. le' F J' : 

R EAeATOHt R~ := ( M; P OS SC OUN T~1,POS S[1 IP O SSr. OU N T·1') 
, F I , 

'HJD ' : 
'IF' MA XI MA \. <E H 'T HEN ' HAXPlA L := M ' FI' 

'FI' ) ; 
'F OR ' X 'T O' RL ' 00 



12 

14~~ 

20-

2;: 

31) 

3, 

3~ 

36 

38 

~ __ ~_~.:-_~ - (lt1ATCll' t1 • REACATQH [RLE~T[X]l : 
- ----- - '-IF:' ~' UM 'OP' t1 = 1 'A ND ' f~IAX ' OF ' M = MAXItlA L 'T HEN ' 

S lUG Le R P t4 A P [ C M A 1. C H e s '0 F'N) r 1 J 1 'P L US ' 1 'F I ' ) 
'E ND ' i-

IpR OCi DfL~TE ~ 'V OID" ! 

'Cl THIS pRoe£DU RE OPERA TES upo~ " M ATC~4RR A V" , EACH FlF ~ ENT OF 
HIC H CO NSISTS OF A REACTANT AND P~ODUCT ATOM THAT HAVE REEN 

JUDGED TO BE EQUIVALE~T AT A MA TC H RADI US OF MAXIMAL - 1 RONOS . 
ALl. ATOMS YITHIU THE 2 CIRCULAR SUBSTRlICTURES OF RAI)JIIS "l AXU1A I - .... 

RE DELETeD BV mTERATIVELV UPDA TI NG "DFL ETED REAC TANT " ANO 
"DELETED pR O~Ue l" 'C' 

'BEtiI N! 
[1,RAT OM COUNT]'AOOL' NBALLR , CURRFNTR 
C1 sP ATOHCO UN T] 'B OOL ' NBALLP , CURR EN TP 
'CLE AR ' NBALLR i 'CLEAR' N8ALLP ; 
' RE P'[l'l NT' HP1 =! f1ATCHPAtR[ , 1l , MP2 = f1ATC\oIPAIR[ , 2] : 
f·' A X tt~ A LA TO I l S ' t.1I tJ Us ' ~1 p : 
FQUNDI IAPPI NG :~ 'T RUE ' : 

.' FOR' X 'T 0 I f-1 P ; Do ' 
;'H~"LL R [ 1 1p1tX)' := NBA LLPC MP2CXJl := 'TR UF. ' 

'10 ' IIAXIt~ALI!2 'OO"BEGtN' 
' CLEAR' CU AREnTR ; 'CLEAR' CURPE NTP : 
I ~OR ' X 'T O' RATOMCOUNl ' DO ' 

, T r' N B ALL R [ X J 'T H E ~J , , R e F I [ 1 • 1 N T' A X :: P. A !) J ACE N C v r x , : 'F 0 R ' v 
'TO' Rr.ONt~ECTJVITY[Xl ' DO ' ClIRRENT R[AXrV'] := 'T RUl= "FJ' : 

' FOR ' X 'T n' ~ATQHCOUNT ' DO l 
'lP' NBALLPtXJ 'THE ~ "ReF'[JtI N T' AX :: PADjAcE Nc v r x , : 'F OR ' V 
'T O' pC ONNE CTIVITV[X, ' DO ' ClJRRENTprAXrV]] := 'T l(lIE "FI' : 

'~ OR ' x 'T O' ~I\TOr1COUNT 'D O' 
NBA LLR(Xl :~ NBAL LR[ Xl ' JR ' CURRENTRrX] 

'I!! OR ' x 'T fll P,\ T otlCQUN T 'D il l 
~ BA LLP[X~ :~ NBALLP [X] ' OR' CURRE NTP[ XJ 

'E NO l : 
· ~D R' X '10 ' RATOHCOUNT ' Dn l 

40~' _ --=- =-. 

--------.- - --
42~:;:. S:-. ~;:-:.:.- _ 



~8 

3C 

770 
71 

77 
73 
74 

RDE LETEP [xl I: ~DErETED(X] ' Qq ' NB ALLR{X] 
'F OR ' X 'T OI PAT O~CQUN T ' Do t 

pDELETEDlxJ := ~BA~LP[X] ' OR ' POELE TEOrXl 
'E ND ' ; 

3? ...='7 "-5 HAX H1A L : = 0 ; 
76 -- ( [1 : RATOttCOUNT1 I BOOL! RPO SS : 'CLE AR ' RPO SS : 

34~-:-=- "7; - [1;PATOMCOUN T)ISOOLf !'POSS ; ' CLEAR ' PPOS S: 
- 778 lINT' MAXPOSS I BLEMATCaRADIUS = (IIF' RATOMCOUNT > PATOHCOU NT ' THEN ' 

30,-- =;79 -~ PAT OM CO UtH '-ELSe' RifTOt-1COONT 'P I') .. 4 : 
_ 713D =-_ _ ' ~OR ' X ' TU ' IiA T OIICOU~T too I 

38:=:- :181 ---, IBEOPP 

= Z82.c ~ 'C' THIS l OOP DQES THE INITIAL ATOM - ,6TO f-1 r~ ATCHTNr, • FIR~T , !\ECO ~ I) 
4.0 - - i 8! '""--: ~ -, - - AND T H I R D 0 R D (; RAT 0 t'1 PR O pER l' rES H A V E A L REA DV BEE N C ALe U LA T E D f A 

- - 1-84- _ HATCH RAD IUS < 3 IS NOT CONSIDERED SO TH E I NITIAL CRITERTO N ~OR 
42~- 18-5 ---- - =.- MATClf "SET GENeR~TION IS TH AT T HE THIRD-ORDER PR OPERTY VAlUES ... 

46 ---

50 

54=-= 

ISOL ATED t U THE ARRAVS "F J RST~A P" AND "F I~ ST pAP" ~ ARE InE NTICAL 
1 F 1 li I S CON D I T IO N HO LDS , l' H E PR n PER T Y V A L U E S ARE I N r. RE '-1 ~ N T E f) - V t A 
THE PROCEDURE r~XTEND~ - ~O~ AS LONG A~ POSSIBLE. MAXlMAL I~ THE 
CURRE NT MAX I MAl MA TC H RADIUS FOR ALL AT OM S , M THAT FOR THE 
CURRENT REACT A N~ ATO r 

- ' RE"F · CJ'L-OtJG'lfNT" RAR = RATOHPROPfXl ; 
[1 : PAT OH CD UN T J , I iJ 1,' PO SS ; 'C LEA R' PO SS 

'- ' RE- F' Cl' IiiT' HA =- t1ATCHARRAVtXl 
J IN T f PO S S C 0 U ~J T : ~ 1 , H : = 1 : 

-- = HAX ' OF I REACATOM'fxJ ::: 0 : 
__ !FOR ' y JT O ' Pt~TOf.1CDUNT ' DO ' 

-=- ---- = • a E GIN ' . 
' REF 'tl' LONG 'PJ NT' PAp = PATOMPR OprYJ ; 
' Ir:' (l SOOl ' a ,~ 'TRUE' : 'POR' x 'ro' 3 I~JUILE' R 'nn ' 

B :: RARlX) :: PAPtXl , B} JTHE~' RPo s srx, ,= PPOSS[Yl := 'TR IJ F' 
If.lEGt~' 

~R E F ' U I LO N G ' , I tJ T I 
'I NT' Lt := 3 , LE 
tl Q' HAXPOSSlaLEM~ 

PAP. PATOMPRnp[YJ : 
E LCOUNT : = I. : 
CHRADIUS '~HILe' RA RrLCJ = PAPr,C1 '1') 0 ' 



2;"" "' __ - - -

~_~8()"§ "_ 
~==. ""' 806 :-"-

;:- .=a 0-1-
0:- -:;80S=---:'~ 

('IF' iJR[ (e VELCoU NTl = ZERO 'TH ~N ' EXTE ND (L FVE LrO UNT )'FI' 
U~V E LCOllNT := ( Le 'PL US' 1\ ... 1 ) : 

HA[vl 1= Le ' HINUS ' 1 : 
, l F! , Le :: t1 'T HeN f 

_ca 11 q"._ :=-:::- _ =~ possrDOSSCOU NTl 2= v , pnsscOUMT ' PLU~ ' 1 
8 a1 () -------"-" -"=-.- 'ELsF' Le > M 'TH EN ' POSS[1) := v : pOsseOUNT != 2 

H ;:. Le 'FI' 
'C' 

1;: 

-8 t 1 
12 

--813-:-
814=-
81 

14" - 816 

10 

18 

20 

817 
818 
8.19-
~O-C-

821 
2c 

823-
22=- 82 4=-

825 -
24""826-

2€ 

:F< 

:>0 

3:' 

82 7 
-828 
82.9 
830 
831 
832 
833 
834 
B35 

3'::.-"_ -836 
=- 837 

36"- =838 

'END; , 
REA CATOHCX] := ( H;POS SCQ UN T- 1,possr1 ~posscnU N Te11) 

t F l' 
'E ND ' J 

'IF' I1AX I MA l < t4 !'THEN' MAXI'-IAL := M 'FI' 
'E N D' : 

'FOR' x 'TO' RATOHeouNT 'D O 
'If' RPOSS[Xl 'T HFN·i MA TC A' M = REACATOM[Xl ; RLFF T (Rl ' PIU~ ' " r= X 

I IF' ~Wr., 10 r:' f4 = 1 'A N D' f1 A X ' 0 F I M = M A X t M A L ' T HEN' 
s I N G LE R P 11 A P [ t M ATe H E S ' 0 F' H ) [ 1 1] 'p L US' 1 1FT' 

, F I' : 
-' FOR' v 'T O' P ATOMCOU~T 'D O' 

'Jp IlPOSS[ V] 'T H~N t PLE~T[PL ' PLUS ' 1] := V 'FI' ) 

, I F I t1 A X III A L > ;: 3 I THE N ' t BoO L' e LI 1-, I ill ATE : = 'T R lJ E , , tJ H I L F ' F I I M J '11 ATE ' I"l () , 
I BEG .114 , 

' nOOL ' CHe CK ::: 'fi A LSE' ; 
'I NT' !lA :a 0 i 
ri AX I I~A LATO t1S :. 0 : 
UUplIC ATES 1= ( MA XI MA L, O, RLeFT ) ; 
' r:OR' x 'TO' RL 'D u " BEG I ~~ ' 

, C' SEA R C H T H ~ 0 U G H TH E RE I!A 1 N HI G ~ EAr T AN T AT (HI S A ~ I) N n T E 
THOSE HAVHJG A "'A TCH AT THe r"1AXI MAI ~ATCH RA I)I lJ!; ' e ' 
'I NT' RLX ~ RLEFT[X] ; 
'R EF- t ' 11ATCHI AARL X = RE!ACATO !1[RlX' : 
'I~' tiA X ' 0 1=' RAR LX ::; I-lAX I ~ 1 J\ L 'T HEN ' HAXH1ALA Tf/MS 'PL Uc;' 1 

'1Ft NUM ' () FP RARlX = 1 'THE N' 

38 =-~ 8.39 _ =- -=c_ "'-
-:::-:- ---- -=:.--_. -- - -

, I N T' 1 = ( UA T CH E S 10 J:' RA R l X) [ 1] : 

40~ _:. c _"'--'::" ~-___ "_- _ 

~--...".-----:::::-=-~ ---
42 - -,:,---";-'-~;.:.:.:,---,,:: ~~ ;:;. ~ _____ _ 
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2 

3: 

34= 

40= 

42 

44 -

46- -

4R-~ 

54 

56~ 

-8 

&4 :;:;:--- --
-- --------

'IF' SlNGCeRPMAP[Z] ~ 1 'T H 
·1"TC ~I PAlt R[t·1 P 'PLUS' 1] := (RL X, Z) : CHE CK 1= ' TRIIE " I=I' 

lE Ls e ' ( I ~A Te H ES t OFf DUPLtCA T ES )[ NUI1 ' OF' DUpLICATE S 'Pl llS ' 1) 
p~ RLX I Fil' 

'FI ' 
I END ' : 

't,; 1 l IP > 0 'T H~Nr DE L ETE: Hp ,= 0 'F I! : 
, C' J\ N V r 1A X I f1 A L REA eTA N T A '1' 0 f.1 S H A V H J G ~ 0 R E T H A NON E p n S S T R l E 

t-, A PP 1.N G ( THE S e fi ~ AC T ANT AT 0 t1 5 ARE S TOR E DI N n M ATe H E S () r; I)IJ P L re ATE S 11 ) 

ARe CHEC~ED TO SEE WHE THER AHV OF THE PR oouer ATOM S HAV E BEEN D E lET E ~ 
I N THE FIRST !;ET OF HATCHtNGS AT THE CVRRE NT MA TCH RADI"~ 'Cl 

f IF ' f I A X I r4 A l A TOM S > 0 'A N D' ~~ U f-I ' 0 F ' D U P LIe ATE s > 0 'T HEN , 
I RE F " Hh I It ;; ~W H ' 0 F' Q U P LI CAT E SI ' R E F ' Cl I Itl T' "0 ,., = 
( t'lA l'CHE S !OF' DUPLICAT ES) [1 : Hl ; 
'IF' CUECK LT WE~l "FOR ' X IT O ' t4 IO O" BEGIN ' 

I 1Nl" H := OIATCHE S ' OF' I}U P Ll r.ATES) [X] 
' RE F" MA TCH' RAM = REAC4TQM[ CMATCHFS ' O~ I nUPlICATE~irxJ' 
' R~F,q NT I 1l0DX = 04ATCHes ' OF ' DU PLIe ATES ~[ x l : 
' IFJ RD El F.TeO [ 11J 'THF N' 

HQ ox la 99 
' E L SE ''I ~ T'P := 0 ; 

'FOR ' V 'T O ' NUM ' OIP RM4 ' 00 ' 
flFII ~JO T' PDELET EO [C1 ATC HE s ' OJ=' RAI4) rv]] 'T HEN ' 

( H ATe Ii E S ' 0 F' R AlH rp' p l U S f 1] : = (rU T C H E S f O r: ' R MI) r V J ' Ft' 1 
NU 14 ' 0 ~, ~ A r1 : = P : 
' IF ' p a f 'T HEN ' ~A TC HPAIR { M P ' PL US ' 1] : = ( M .( H ATCHE~ 

' OP RAt~)t11 ) ; 
CHEer ,= 'T RUE' ; t·1OD~ := 999 ' FI' 

"=1' 
' END' , tI ~ ' MP > 0 'T HEN ' DE LFTE MP := 0 ' FI ' 

, FIt; 
'F OR ' X fT O I M ~f) O ' 

I 1 F ' 11 0 D [ X , iI t) t'> 9 • THE t~ , 
'REFlfI NT' ffOD~ ;: t-10f) on I 

'REF" MA TC H ~ RAKOD X = R~ACA TnMrMODXJ 

-~~----------~-~---~---.. ~--~--~---
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6. 

a75~ 
876- -=-=-
8Zl 
878 

- 87-9 ;::=- .=.: S= SB(} 
&31 

10 8R 
88.3 

12 884 
BBS-
88 

.. .. 
887 ,,, sa8 

, 8 
8-89 -
a~o -

8.91-0= 
20=- -89 

893-
2:=- "894--

8.95-
2.!-_ 806 

26 
897 
898 
899 

:~.' ~ Aioo 

9Q1 
10 '7 Q 0 2 

2003 
32~- 904'; 

- ~D 
3.! "'~ ~ "'906-

9D7-
36~·. 9~ 8 :;. 

9:09 ---
38-._ '-~ 

40--

12 ~ ~.. -~ . ...:. -'-.::!E:r.:--"'" -.:,,:c""::... 
___ . ___ r ____ ._ 

1 F' N U 1·1 I 0 ~, R A t-I 0 D X > 0 I THE N , 
, I N T' ,I : q 0 , N 0 ~ ~;:: N 11 t1 ' 0 F' R A 11 n " X : 
'Res:'O'IfIlT' r10 RX = MATCHES 'OF' RAI-l OI':IX 
[1=NOR* NO ~]'INTf ANALOGUES ; 
'e' THe NEX T LOOP CHECKS All RF MAINING M~XIMAL REA~TANT ATOM 
~~MOOV.~ AAVING MORE T ~ AN nNE PO~SIBlE MA PPI NG TO ~EE WHETHER 
THE V P 0 S S e S S THE S M~ E r lA T CH" !; ETA ~ THE C 11 R R ENT 0 NE'" ~, 1'1 () 0)( " - ~ 
IF gO , ~M OD V" IS STORED J~ TH E LI ST OF ~A N ALOGUE~" 'C' 
, FOR' V 1 Tot 11f DO' 

'BEGI N' 
R~F'?INT' MOD Y = ~ODtV) : 

, I ~, f10 D V (I 99 Q ' Mt D' MOD V 11 t!1) 0 X • T Ii Hi ' 
' REP 1f1ATCH ' ~AW)l'}V = REflCAT Ot-1[f..IOr>vJ : 
, I J:. r, (N U 1-1 '0 F' R A MOD 'I( :: NUM ' 0 F' R A ~, 0 DV) ' A NI') ' 

, Ft' 

'(I1ATCIIES 'OF' RAMODX)[1:N OR] 'F.()U AlS ' 
' HA 1CHES 'OP' RAMnDV)r1:N ORJ) 'THEN' 

MlALOGUeS[J 'PL US ' 1, := I-h11) V 'Ft' 

' END. : 
' C' IF 'H~ NUMR~R OF A~ALOGUES IS EQ UAL TO TH~ SIl~ " F THE 
/1 ATe H !! seT THE NTH ERE ACT ANT AT 0,., , ITS A ~J A LOG U E SA N [) THE 
HATCH~~£T ARE ALL ELIHl ~A TED 'C' 
'IF' J = ~nR - 1 'THE N' 

'F ORI 2 'T O ' J ' DO"qeGIN' 
'REF"I NT' AZ ~ ANALOGUES(Z] , 

ATe H PAt R [ Mp ' P L ' ,s' 1] : = (A Z , t·, n R )( r. Z J ) : C H F. r I( : := 'T R U F ' 
Ir:O~J x 'TO' M IO()' 

, r ~, fl () D [ X] :; ~ l 'T H F N' MO n ( x J e = 999 ,;: I • 
, E tJ D' : 

f-1ATCHI'JADR[flP 'PL IJS' l' := 04 00X , lInRX[ J .... 1n : CHErlC' := 'T RUF' : 
q:ORI X 'T O' t1 ' DO ' 

tu' AOO[Xl :; 1100X '1'HEN' MOn r x J := Q99 'FT' 
r F I ' 

, F l' 
, F I' , 



_6 

30= 

32 

"8 

'1~1 r,p > 0 'T H~hJl DELETE J l IP : = 0 ' FI' 
, Ft' ; 

le' THE A l G 0 R I T H ( 1 T E R ~1 I tl ATE S ElT HER 1FT HEr 1 A X I M A L t1 ATe H R A DIU!; < ~ 
i1R IF THERE ARE STILL REnAtNI NG ATOMS \.1 1T H T HF CtJ RRE NT M'\XIMAL 
(lA TC H RADIUS 'C I' 

EUHIIlATE PI 

I IF' 1'1 A X 1 M A L A T 0 H S ,'I 0 ' 0 R' H A X I M A L = 3 'T HEN I , F A LsE , 
'ELSE' 11AXlMAL := 0 : MATCHATOt1S ; 

' IF ' 14A Xl !~A l < 3 'TIIE N"FALS E " ELSE' CHECK 'PI' 
'Iq t 

'E ND ' 
F l' , 

'C' THIS ROUTINE OETECTS SOLIT ARY R~ACTA~T ATOM S I N THE REACT ION 
SITES lE TH OS~ WHICH ARE NOT ATTACHED TO ANY OTHER StTE ATOMS : IF n N 
IS POUND , AN ATTEt1PT IS ~IAl>e TO MJl T CH IT WI TH AN ANALOr,oUS PRI)f') 'JCT 
ATOll 'C ' 

'IF' F-OUNO flAPPING 'T HEfJ "FOR' X 'T I) ' R.l\ TOMCOlJra 'D n t 
'I f"NOTJ RDElETRbfXJ 'THE NI 

' R~F t[ ]IIHT ' RAX ~ RADJACENCVrX1 
leOOl J B i:: 'T RUE" : 
lF~R' ¥ 'TO' RCONReCTIVITV[X] ' ~H ILE' B 'D O' 

: ~ RD~Le1EDrRAX[Y]J ; 
'IJ:' S 'THE N ' 

' BOOl' ~IOj"iA TCH i = 'TR UE I : 

'CHAR' R I: RIINI1S[Xl ; 
tJ=OR' A ITa' PATOHCouRT ' WHI LE' NOf'lATCH '0 0 ' 

'IF" RO T' pnELETED[AJ 'AND' PU ~ ITsrA' = R 'T~E~' 
'REJ:'C1'INT' p",,:; PADJ AO ENCVrAl : 
' £moL' R := 'TRUE"" : 
'F OR ' c ,to' PCONNEC1IVITYCAl ' WH ILE' a 'DO' 

A r= PDE lE TE otPAA[C J] 
'Is;' B 'T~ HJ' 

ROE LP. TEDf X] :~ POELETEOCAl := 'T RUE ' : 
~ 0 '1 A 1 r. H ::: 'F A l. SE' 

--~ . - - - - -------



.., ~-

·~ 45 
4~ 9·46 
. 941-
6~ 948 
_-= .91.~ 

8:= 950 

= 951 -
'0:.. co 952 

953 
'2= 95"4 

9..53 
'4~ ~ 95'6 

9'7 
15~-::'- 958 

'8 
2S9 
960 
961 

20 9 
963 

22- 964 
965 

24.-:. 966 
967 

26:..._ 9.68 
-_. 9.69 

28-~ 9.10 

30 

'~2 

911 
J}12 
97J 
9-74 
9Z5_ 

34- = 9 

97:/ 
36 ~ 978 

I Fl' 
, F I j 

, F If 
, F l' 

, F I' i 

'C' CHEC/{ THAT .T 'LEAST ON E 11ATCI,f HAS REFN OSTA I NED AND THAT NOT 
ALL THE ATOMS O~ eiTHER SIDE OF T~~ EQUAT ION HAVE BE~N F"I MI NATED 'c' 

'lP' tJO T' POU ~lI)MA PPItJ~ 'THEN' OK := 'F ALSE' : Nor'UTc'H 'pL U<:;' 1 : 
I1A TCHFAIL UR 6 := "NO ATOllS flATCHE[)1I : M~TCHFAtLROUTINE 

_ 'E l S e i , I N T' LE F'r : ~ 0 : 
'pA oe ' SETATOHB ITS = ('INT' R) : 

' neG IN' 
rIF' LEFT > 1 'T H E N t'F O~ ' X 'FRO M' B 'TO"IP LEFT>8 'THF= N' (tFFT+?) 

' ELSE' (B.LEF1~2r'FI"nO' 
r1INlt·1Utt ;::1 x 'SET' 1-1 I tJ I HtJr1 

'ELSE' MA TCHPAIL URE := 'IF' REACTANT 'T HFN ' 
"LESS T~AN TUO ANALYSIS REACTANT ATOMS" ' EL~~' 
"LESS THAN TWO ANALYSIS PRDDUCT ATOM S" 'Ft': AlLMATC~ 'Pl U~1 1 
r1ATCHFA ILR OUTtNE 

'F! 
' END' ; 

'F OR' X ' TOI RATOHCOUHT ' DO ' 
'IF" fIOT' RDE L ETE~[XJ 'TH EN ' LEFT 'PLUS' 1 IFI' : 

SETATOnOlTS(Q) : RPtRCENTt(lEFT1t100)'/IRATOPI COllNT ]lP lUS I 1 : 
LEFl' := 0 ; q:OR' )( 'TO' PAT OM CO 'JNT ' DO ' 

'IF" NO T' PDELET EO rXl 'THE N' LEFT 'PLUS' 1 'Ft' i 
SET AT 0 11 a ITS ( 1 ? ) J pp ERe ENT [ ( LE FT.., 1 00 ) , I ' pAT 0 f·1 C () U ~ T 1 ' P L U S I 1 

, F l' : 

~ND MATCH STRUCTURES : 
OK 

'E NP ' 
_ 9~ 

38'-CC:' - ':::.._..:=_ 

40_ 



- --- - - .. ---- . 
4

1
--. - -.-...--

940 
'8= 98-1 

'P ROC' RIt~G NA lYS!S SCRE ENS = (' REF ' [J'BITS ' ARSBI T) 
' BEGl ~P 

FRAGI4e rJT~ OllT PUT I=ROt l 
10 

- 982 
983 
98_4 

~2=- 98 

IC ' THIS pRO~eD URe READS THE ANALYS I S 
THE IJ l.N PROGRAtl-:'" THE FRAG t1ENTS , UPTO 
AND THE RI NGS START WITH /J ,l,T OR R. 
ARE USED I 

1 0 I N NUMB F.R. ARE;70 CH.AP. LC'lNG 

986 "'-_ 
34 ~ =9.8/"= ~--=-::- ----=-
-~_9 

36 - - -989 

---11 9.~ . _ ~ _-:. 
38"-=" "9.1= .:::::- _--

~99 2 __ ". 
!O~- 9£3--

~ _ 4 ~ 
t2~~ 9Q:5" ':..:. 

- 29-6 
t4~ "" 9-9- 7 

-- 9" ,s=: -"-- 99-9 

1 QftD.,
:8 10(n-

1002. 
1003 

- 10 0 4 
2=_ 1005' 

't 00:_ '" 
"4 = , 0 0. 7 '" ""-

100:3-
~ _:-'- 1009 

. 0j1) 
)8= - 1 (ff-

6.\-=" 

1012-
1013 

014-

TH REE LFVELS O~ DF~CR I PTJO ~ 

( 1) S Ize 
(2) HUM3SR 0' H~TE~OATOMS . 
( 3 ) A U U 11 B e. R /) E S CRI B ItJ G THE H F. T E R 0 A T (' M T V PES 0 R I t F tl 0 I~ FAR E P RES 
THE SA TURA TI ON: I N EI THER CASE PLUS ONE MI LLI ON IF THE RING I~ 
FUSED . BITS AR~ A( SO SET I N ~INIMUM wC' 

11 UT' P 1= pA :. ~IFI REAe TAN T 'Ti1ENt 1801 ' ELSE ' 2001 'r:TI , 
'I I.J T ' RIUGCOU NT := 0 ; 
I p~OCt SE TRI NG9 IT = (·I ~ T' B) : 

IBEGI.N ' 
' rF' RINGCOUN'J' > 1 'TH£~J ' 

11INUWN 11= Ja+1 )'SE T ' HHJI /1UM , MI NI MUM 1= B ' SeT' ~4TNIMIJt.1 
'eLsFt RING~OUHY = 1 'THE N' MINIMUM := B 'SFT ' MINTMUM 'FI' 

I E HO I ; 

'T O' 1 HILE ClP] iI If , D/"\I 

I BEG HP 
' REF 'I CHAR' CHAR = C[Pl j 
'I F' CHAR = ~#q ' OR' CHAR = "r" tOP' CHAR = "LV 'T HFN ' 

f1:31 'I NT' RING f 
Cl ' CHARl HET = (" V" ," O" , ~S~ , "N" , "H" , "K" , "P") 
C1:71'I NTi FREQ ; 'CLEAR' FREQ : 
'I NT' PLiHIT ~ P + 16 , 
'WHILE ' crp] > ~9fl ' DO ' 
RI NG(1) r= ~ ABS ' C[Pl : 
P 'P LUS' 1 :, 

' PLUS' 1 

' WH ILFI t P < PLIMIT ' AND ' crp, = " ") ' nO"BEGIN' 
' Rool ' d := 'T Rue' : 
'REFtlcfJ AR ' c~AR • CCP ' Dl,.tJS ' 2] 
'~ORi X 'TO' ? ' WH ILE' a ' 00 ' 

'I ~ ' CHAR = HfTeX } 'T HFN ' := ' FAL SE' 

"J T, 



,= 1015 
~ = '-1016 
: 10 1 

6~ - 101 
_ -1 019 
8'-~1 0 20 

," -10 21 
"10~ -10l2 

:- -=1023 
'2~' 10 24 

10 25 
1·~_ 1026 

- 1027, 
16, ~0 2 8-=-

- 10 29 -
18 o:.1~030 '" 

_ t 03 1 
20~ f o-3"2 -

: - 1-033 
22" "' 'f0 34 

- 1 {1 
24, 10 

::-- \ .0 37 
26 ".0 38 

FRP,QYXl ' PLUS ' 1 ' FI ' : 
p ' PLUS T 1 

'E ND ' j 
FREa C4 1 i p LUS ' FREQrSl ' PLUS ' FREQ[61 FR FQrS] ~= r: REI) ['11 
' IN T' I 1= 0 I J ,= 0 , 
HO Rt X 'T O ' 5 ' DO' Cl ' P LUS ' FR EQrXl J ' PLUS' 

(1 0+ <X"'»)*F REQ [ X] ) ; 
R I t~ G [ ~ ] I. " I F ' I # 0 ' THe N' I ' F LSE' 9 Q 'r: I ' , 
'IF' I # 6 TTHEN' RING [3J := J 
'C:;LS E " \lH J L ~' O [ p] iJ IIJ" ' DO ' P 'Pl US ' 1 : P ' Mt NUS ' 1 

R~N G C3~ :~ 'IF' crp ] = "T" 'T HFN ' 1 ' ELse ' 2 ' FT' 
, F I' J 

'IF ' c HAR = "#" ' THe,.I ' R I ~1 G(~J ' PlUS ' 1 000000 ' Ft' : 
SEARCK ( RIN~~ AN ALR I NGtNDeX , ANAlR I NGPAREN T, ANALR I NG~C~~EN , 

ARss ln : 
RI NGCOUNT I~LUS ' 1 ; 

:= p A ' PL US' 20 
, E L SF' e H A It = 11 R I, ' T H E ~J ' 

ARSBI T t11 I~ 23 ' SET ' ARSB IT r11 ; RJ NGCO IHJT ' p LUs' 1 
' ELS E' P p:: pA 'PL llS ' '-0 'FI' 

ENO l 
, 'IF' REACT AN T "T HEN ' SE T R J NGet T( ~ ) ' ELSE' SF?TPJN(jsIT(?) 'r:I ' 

, E !~ D I J 

H) 3 2 • P RO C I A T 0 f1f~ ml DS C R E ENS = (' R E F ' r ] , C H A R' U NIT S I A T 0 '-I LIS T , I 1 ~J T' A TOil C 0 U tIlT , 
28 1 0 40 B 0 N 0 C 0 u, n , , R E J: , ni B .0 0 L ' R I N r, AT 0 HT EST I 0 ELF T F D, , R EF l , , 1 ' I N T ' A f') J A C 0 ' C Y , 
~,, 1 0 41., BON!> T Aa LE,' REr: ' (~ ' I~T ' cO'~tJEC TI VITY / 'RF. F' (J I RITS I "SBIT , AA~BTT,a~f'IT, 
., 1 0 42 AB Sa IT) f 

- 1D43 ' BEG I N' 
32 1 0 44 [ 1 16 3 , IN T' [) 0 NI') PRO P : 

1.0 45 [1= A1 1)11COUN T,1=? ] fl IN T' ATOH PRC'lP ; 
34 1 0 46 ' lR~ F' [] II ~ T' Ap 1 = ATOl1PROp r,1J , "P2 = ATf1MPRop r, ?l I 

1 0 47 - AP3 ~ ATOH PRO P!73J ; 
36 - 1 .0 4 8 ' RE F ' [ , J ' I N T I A ~ 3 '7 :: AT 0 f 1 PRO P r I :3 : 1 ] : 

1 0 49 ~- 'F OR ' X 'TO' ATOM COUN T ' DO " 8EG I N' 
38:"" --= _ ' _ _ _ _ _ 

o==--



6 

8 

o 

, , 

4 

:;0 

---- .. --64 = __ ~ __ .'='_ 

C' THe Ft 
ATOl1 Typ E, 
VA l. UE S ARe 
AP 1[ X) l iII 

ST THREE AT OM I C PROP ERTY VALUE S CORRES POND TO THF 
THe c oo R DI N ATE D AT O ~, A N I) THE B 0 N 0 e D h T 0 t1. S 11 B S E QU E N T 
C " L C l ft: AT E D 11 St ili G T H F M 0 R G A III A L G 0 R 1 T H M ' r. ' 

ASE"ABS' A T QM LI S T r Xl~ 32 ' I N ' 
, o; 2 3 , O , 5~ 7, 11 , O , 3 1 0 , O , O , O , ' 9 ,1 7 , o , O , O , 1 3 ' ~~AC ' r 

AP2 [ X] 
'E ND L ; 

,:: A t) 1 t X] ... C 0 ~J tJ E C T I V I T v [ x ~ : A P 3 r x ] ! = ' A B ~ , 1I NI T S r )( , 

' ~ O R ' X 'F ROIH /." " TO ' ' 00 ' 
f. SE{; I N' 

' REF' tl fI NT' ftp = ATOHPR Opr, X] , LA5TAP = A T n M pR O pr , X ~ ~J 

t e 

, t OR' V r TO' AT On COUNT I DO ' 
AP EV] ;~ ] *l AS TAP[V] + ('t NT' SU ~ e= 

ADJ ACEN CY( Y] 
' FOR ' e 'T o ' 

SU M 'P LUS ' 
S UP1 , 

o J ' QEF ' Cl ' I fl T' A. = , 
CONNe e T JVITvrV, , ~O ' 
LASTAP [ ACC1, ; 

' FtfR '- X ' TO' AT Of-t eOUNT ' DO" BEGI N' 
' Rff-' tJ tI NT I Apx = AP37 [ X ] : 
I P RI NGATO I" l e ST[ X] 'T HE N' AP1{X] ' P l IJS ' 1 00 ; AP2 r Xl 'PLU S ' 1 0 () 
-=ll P3TX] ' PLU S' 1-00 'F I ' : 

'C' SE T BITS l' rJ THE r10 LEC UU \R ~CREF N !; AND , IF THE ATOt1 JS H J 
TijE RE ACTI ON S ITE , IN THE ANA LYSI S SCR EENS AS WEL L ' Cl 
S£A R C H ( APX , ATOHINDEX I A T n M P A ReN T, A T O MS C R eE N , A~BIT) : 
' IF " NOT' ~ ELETED [ Xl 'T HE N' SEARCH(APX , ANALA TOH I NDFX, 

MJ A L A T O I1PARE tJ T, AtJA L A " o r1SeREHI , A ~ S8 IT ) ' J:I ' 
' EJ.JD ' 

~ J ~ () R I X ' T 0 ' a (J ~J D C 0 IJ N T I DO' ' B E G I t~ , 
' RE F' tJ r I NTI BT = BON DTAB l E[ X] 
' ~ E" F ' tl ' I N '" AV1 = ATOHPROP[ BT[1n , AP 2 = ATOtl p RO pr STr?lJ : 
' FOR' y 'T OJ 6 , ~ O ' BO UOPR OP[V] ~= AP1 [ VJ* A P~[V] : 
SEARCHC BONh PROP, BOHOI NoeX , BON DPARE NT, s nN DSCRFE N, BSAI T) : 
l ~ l THE ANA LY SIS BON D seREE NS ARE SET ON LY I~ Ao TH TH F AT OM S 

OH PRl SI NG THe SOH D ARE I " THe RE ACTI ON SIT ~ ' c ' 
'I F'' WQ T' t} ELiTED [ BT t 1 n ' M~O " NOT ' OELE TE IH BT C2]] "'H ~"" 



2 -

=- lJL~ -= - -
£> :; 1~ 

"" -~1 .oa9.-

SEARCH(BONoPRnp,ANALBONDI NDEX,AN 
aSSIT) ' ~ Il 

' EN D· 
' EN D' ; 

L ~ 0 N D PAR E IH , A la I 8 U N n S eRE F N , 

8'- -1 ()1) 0 'PRoe f MO L FOHI·1SCREE N = (tI NT' r ,' REP ' C1'tNT ' nO LFO RM } 
: - 1.09-1 

1 Q- '" -1{) 9""2 
- 1-.o.9~ _ 
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A 'rl;~]it.1tivc C\.ll·;l','lfison of h·.is·.·.';!ss~r Line Xnt.1ti.)l'\ 
d~S'Tiptors of l'l';·wtioIlS ;mu \the D.:-nJcnt ChC!lIIical 

Reaction Docum0ntation Service. 

D.1Vid Bm,den*, Trevor K. Devon, Frank T. J.1cKson and Sandra I. l-lood, 
(Pfizer Central Research, Sandwich, Kent) 

• 

and 

Mich.lel F. Lynch and Peter \~il1ett, 
(Postgraduate School of Librarianship and Infornation Science, 

University of Sheffield, lJcstern Bank, Shetfield, S10 2TN) • 
• 

T\vo methods of retrieving chemical reaction inform,qtion are comp3rc~d. 

One involves the generation of reaction descriptors automatically by an 

analysis of the Wis~esser Line ~otation of the reacting molecules. TIle 

other, Derwent's Chemical Reaction Documentation Service (CRDSr~ i~volves 

manual indexing and uses a bond-change code to describe the reaction, with 

Ringcode for structural description. A series of reaction queries was 

searched using both systems: the results were qualitative and indicative 

of the general nature of the descriptions provided. 

Both systems are found to perform effectively with queries involving a 

definite reaction site change. The WLN system gives greater precision in 

some cases, due to the varying levels of structural reqpresentation 

provided. CRDS is valuable where particular bond changes are specified, 

and could be valuable in synthetic planning: Neither system performs 

well with queries where no ~efinite reaction site is specified, and both 

would require additional. concept indexing for full effectiveness. The 

WLN system has a useful potential for producing printed indexes of 

reactions. 

*To whom correspondence should be addressed. 
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Intfuduction. 

nle provis ion of access to cheI~d cal n,.1C t ion i nfonld t i on h,15 hN:n a 

continuing problem for chemical inform~tion workers, ahd a variety of 

approaches has been adopted~J,2) One melhod involves the automatic 

ecn~ration of reaction descriptions from machine-readable representations 

of chemical structures. Such descriptions may then be searched by cOl:Jpulcr 
\ 

or ~scd for the production of printed indexes • This approach is likely to 
• 

be of particular value wi thin computerised chL~mical information systems. 

Investigations along these lines have been carried out for some years at 

Sheffield, using both connection table and Wis\,'esser Line Notation (t~LN) 

. f (3) representatlons 0 structure • l11is work has resulted in the development . 
of a method of reaction analysis based on m .. N~4) The WU\S for the reactant 

and product molecules are fragmented algorithmically, the fragments compared 

and duplicates eliminated, and the remaining fraements then recombined to 

give a description of the reaction site. The fragments consti tuting the 

reaction site are the main entry points to the reaction file: further 

information may be obtained by considering the fuller reaction site notations 

and then the original l~TLNs. In a printed index these latter staoes are 
• g 

carried out by scanning the entries under the appropriate reaction site 

fragment(s). In a computerised form, a string search procedure would be 

used on the reaction site notation and/or full WLN. At present this approacl 

to reaction indexing is at an experimental stage. 

A reaction documenta.tion system based on structura.l concepts is~ llowe\ler, 

commercially available at the present time. This is the Chemical Reactions 

Documentation Service (CRDS) based on a system originally devised by the 

. . • R' (6) 
Pharma Dokumentatlon lng. This system describes reactions according to 

a representation of bonds formed and broken, derived from the coding used in 

Theilheimer's "Synthetic .Methods" series. (7) Structures .of reactant and 

product molecules are represented by the fragmentation code developed by 

the Pharma Dokumentations Ring (Ringcodef~) The service is amenable to 

computer searching in batch mode, the reactions being searched by the bond 

change codes and Ringcodes for the reactant and product structures. It has 
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\ 
been proposed by Den,'(:llt that lhis s)'st-::Tn \vi 11 be m.1de ~v:lilable on-line, 

with added keyword indexing. 

A comparison of these two systems app~ars to be ~orthwllile in order to 

determine whether one type of reaction description is markedly superior to 

• 

2. Nethodolo1?,y 

'TIle'loe are major differences in the current state of implementation of 

the two systems. CRDS is a fully operational computerised system with 

facili tie~ for searching ~n reaction conditions etc., and allowing searching 

of reactant and product structures using Ringcode; the Sheffield WLN system 

is still at an experimental stage and has a printed index·output with manual 

scanning; thus, the provision for whole structure searching in the two systems 

is so different that, for exrunple, relative precision figures would be rneaningles 

For these reasons, and because the main objective of the study was a comparison 

of the basic reaction descriptions provided, rather than of overall system 

effectiveness, nO formal quantitative evaluation ~as attempted. Rather, the 

4 aim was to produce a qualitative understanding of the strengths, weaknesses . . . 
. . 

and potentialities of each method: quat:l'titative evaluation would only be 

appropriate in the context of two fully operational systems. Ease of use 

and other human factors were .not specifically examined, but had to be taken 

into account to some extent. Using printed tools, especially with a relatively 

small data-base, it is easy to scan a large proportion of the possible results. 
. , 

Some subjective judgement as to what would be realistic in a practical app1icatio' 
,~ -: 

J"J 
was therefore necessary. 

The data base used for the evaluation consisted of 273 abstracts, chosen 

randomly from each of volumes 22, 24 and 30 of Theilheimer's "Synthetic Methods":: 

.' this serisl'3 forms the bulk of the CRDS data base. Each one-step reaction 

from these abstracts, including all possibilities in the case of multistep 

reactions, was selected, giving a total of 582 reactions. The reactant and 

product Inolecules were encoded in fully expanded ~~N and a printed index· was 
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produc(~d for the set of reactions 11S l.ng the Shf'ffi e Id progr'-lrllS (4); this in:lex 

was scarchC'd manually. TIle CRDS f j le, ... :hieh inc1wles the se t of reac dons 

under consideration, \,,'as searched using pr08l"ar.1S ",ri tten at Pfi zer for that 

. purpose. The appropriate volumes of 'l'heilheirner ,,'ere also searched, both 

by the manual coding system and by the keyword inde,. TIle purpose of this 

• was to ascertain ,,,helher the kCY'olording or coJcs ,,'ouId be useful in an specific 

si tU:1 tion where the structural description did not perf arm wc 11. 

A set of 18 queries was then constructed which was intended to represent 

the variety of reaction searches which a general purpose system should deal 

with; both general and specific queries were included. Because of the small 

size of the data base there were in general few examples of each reaction type; 

this is to be expected from the known distribution of reactions(9, 10) and is not 

greatly deleterious to the qualitative evaluation attempted here. Each abstract! 

in the data bas~ was examined to detennine those reactions relevant to each of 

the queries. This provided the ideal rC!sponse sets against which the 

performance ,of the systems could be measured. 

, One example of the searching procedures is given here by way of illustration 
. 

The example shown in Fig.lc involves the replacement of an aldehyde by a cyano 

group. 

Relevant reactions will be analysed by the WLN algorithms(4) as 

-CHO ----~) -CN 

) - CH
2

CN 
'~'" .: • ... 1· ~. , 

or - CH
2

CHO 

. . . /?''1 - ;" ~ 
where the groups may be attached ibotllto ringso.nd:-: to acyclic substructures. 

" I 'I' .. 

Therefore the printed index was scanned under the reactant site f!agments 

*VH,/VH, *lVH and /lVH(4) and then the possible reactions checked by 

consideration of the reaction site notations. 

In CRDS the (formal) bre~king , of C-H and c==o bonds, and formation of 

a cs'N bond were encoded. 'The codes for aldehyde in the reactant and cyano 

group in the product were also included. The search output was the, Theilheimer 

abstract numbers. 

, , 
, I 



3. Results --_. __ ._-

Scv~n relatively simple functional group interchange reactions were first 

cOllsidered. TIlese are shown in Figure J. Both the WLN systems and CRDS 

worked \I.'ell on these eX:lJllples. '111e first five examples \.;ere searched 

straightforwardly and all relevant ans~.;rers found by both $ystt~ms. In 

exam~les f and g, one possibly relevant reaction was missed by the HLN: 

this reaction was of the form 

R- COCHBr --~ R- COCHD 

Because the WLN analysis algorithms produce the most detailed description 

possible of the reaction site(4), the analysis was 

-COCHBr -~~ -COCHD 

rather than the more ~eneral 

-CHBr --~) -CHD 

This is an example of the precision of the WLN approach. For a more 

general acyclic search, it is at present necessary to consider possible 

subsections of the reaction site character strings. Note that the reactions 

f and g require different coding in CRDS since·the latter requires specificatic 

of both the bromine and the deuterium: the WLN searches are identical. The 

manual Theilheimer coding also preved re~sonably efficient for these simple 

queries, although it involved a good deal of manual scanning. 

A more specific query is shown in Figure 2 which involves a consideration 

of "the reactant/product stru~tures. In the case of eRDS more specific 

Ringcoding than in the general case was needed; with WLN. scanning of the 

printed'" notations-was sufficient· - in a computerised system a stringsear~h 

could be used. Both examples were straightforwardly searched in the two 

systems and the relevant reactions found. 

Two elimination reactions, one with greater structural specificity, were 

tested (Figure 3). Both systems found the relevant answers for the more 

general case, and 3b was found by product structure search. 

Two somewhat more complex reactions were then examined, as shown in 

Figure 4. For 4a, the addition of methyls to an unspecified substrate, 
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the l:lck of .infoHlatiun l;:<'lde it impossihle to code oH\)' reactant or product 

structure for the CROS. The large out.put resulting [ram use of the rather 

80ncral reaction ~ode incluJed the relevant re~ctions. 111e re levan t ans,,,ers 

were found in WLN by scanning the full notations of those reactions involving 

the gain of two methyl eroups. In example 4b a. hTLN search was possible by 
I 

lookHlg through eX81':ples of formation of all .appropriate heterocyclic rings, 

t.1])ic11 retrieved the relcv2nt eX3nplcs. CRDS proJuced the relevant reactions, 

but \-Ji th many s1>urious ans\"ers due to the ill-defined query. 

~JO ring reaction queries were considered (Figure 5). The specific 

formation of a C--C bond within a defined heterocyclic ring in 5a presented 

no problems to either of the systems, both of which produced the relevant 

reactions f.rom a straightforward search. The same was found with Sb,where 

the presence of a carbonyl linkage in a ring in both reactant and product 

gives structural specificity. It is worth noting that in both these cases 

a search in the Theilheimer volumes via the reaction coding would be highly 

inefficient, since all the sections coiresponding to formation or breakillg of 

C--C bonds would have to be scanned. The CRDS'system allows specification of 

reac tant and product structure, whi le in the lVLN sys tern the reaction site 

fragments include the whole ring formed or broken. 

Finally, four more general queries were selected, as shown in Figure 6. 

These in general caused the greatest problems to the systems. 

In the first three examples the structural environment is ill-defined. 

For all of these. queries only acyclic WLN sea.rches were made since in cyclic 

st"ructures'the reaction· site fragments would comprise the whole lDOnocycle.s 

involved in the change and each of these would have'to be separately searched. 

No coding at all can be produced for a CRDS search for 6b, while 6a can only 

be coded for "formation of a C--H bond", giving rise to many errors. 

Keywording for general concepts, e.g., "hydrogenation","double bond 

migration", seems a more feasible way of dealing with general concepts of 
• 

this sort. TI1US in example 6c, the relevant reactions may be readily found 

.. . ' 
~ 
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from the ind(·x la the 111eilhelli'l!1" VOIIlFlCS, u;,cJer the headi.ng "ketones from 

a11(>nC5", ('rr,phasising the value of kc)'\vording for CO!1 r cpts of this sort. 

For query 6d, the relevant ,'1nswers can be found from the l"LN only by 

scanning all appropriate hetcrocyclic rings formed, an iQpractical procedure 

for a large data base; similarly the eRDS search produces a very large out~ut~ 

• 
because of the generality of tlle structure cnange. The relevant reactions 

are readily found from the Theilheimer volU!;]cs by the keyword phrase 

"n~p]accrn(?nt of o>:ygen, cyclic, by ni trogen/sulphur, cyclic". 

Several of the queries were retested, using only the reaction (bond 

change) coding of CRDS, without reactant or product structures. In all 

cases a very large number of answers, many erroneous, resulted from the 

general coding. TIle specification of reactant and/or product structures by 

Ringcode is obviously an essential component of this system in a practical 

situation. The erroneous output from CRDS used in this way represents, as 

might be expected, a wide variety of reactions involving the same type of 

bonds broken or formed. When CRDS is used with structures specified 

relatively few erroneous results appear. These are usually due to a bond 

change in a different part of the structure; . thus the reaction shown in 

Figure 7a was retrieved as.an answer to 6c and that in 7b as an answer to ld. 

It is difficult to make a direct comparison with likely errors in the 

WLN system, where the search was carried out by scanning a printed index. 

It is evident, from the number of occurrences of the various fragment keys 

from the WLN analysis, that some form of structure search may be necessary 

to limit the output. However, increased precision in searches may be 

obtained from the fact that a structured feature may be specified as being 

actually involved in the reaction, rather than merely being present in one 

of the reacting molecules, by its presence in the reaction site notation. 

Discussion 

The most immediate impression gained from the results of this ~ornpariso'n 

is the great similarity between the performance of the two systems. In 
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eencr;ll, n:actions occurring in wcll-defin(~d st fuctljral cnvirol1ncnts l!ny he 

searched effich:ntly by ei'ther syste:m, 1,,'hcrc.1s wore eenerally stated que:ril..!s 

are poorly dealt with. There arc, nonethe1ess, ,Jistinct differences, HS will 

be noted below. 

An evaluation of this sort makes clear the loree extent to which a 
• 

reaction information system requires a struct,jre search capability. TIH! 

CRDS system requires the specific coding of reactants noJ products to reduce 

output to a manageable level. The l\TJ..N sys tem to some extent incorpora tes 

structural information by including larger fragments in its reaction site 

analysis, but may still require some examination of reactant and product 

structures for maximum effectiveness. In lIJany cases, hOlJever, the reaction 

site notations are sufficient to characterise the change. In a computerised 

system based on WLN a substructure search procedure would be required, operatin~ 

on the reaction site and/or the full reactant and product notations. The 

relative merits of Ringcode and lvLN l:>r substructure search would then have 

, (J 1) 
to be considered in a comparison of these reaction systems. 

The inclusion of considerable structural information in the reaction site 

notation often enables the ~~N system to give a more precise analysis than eRDS. 

This is exemplified by the search for reaction J f" where the presence of a 

ketone adjacent to the reaction site gave a different analysis, and in the ring. 

formation and closure reactions where the monocycles involved were delineated 

both by the fragments and the reaction site notation. This is a very powerful i 

feature of this type of analysis. Frequently reaction queries are specified ir 

just'- this way,. i.e .. ,., in terms of precise groups and ring systems,- and an ... 

analysis based on WLN gives a rapid and reliable re~ult. This is due to the 

extent to which such analyses retain the ability of the notation to describe 

structures in accordance with chemical intuition. In other cases, however, 

the two types of analysis are comparabl~. 

Both systems are currently poorly equipped for handling the more general 

queries, i.e. those involving particular structural modifications in'a variety 
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of (:llvirl);w(~nts. For a r,:mu311y-inoC'xcd file', th(~se probl(:r.~s could he 

alleviated by the use of inlellectu.:111y assigned keywords similar to those 

used in the indexes of TIleilheimer; this hns been proposed by Derwcnt fur 

the on-line version of CRDS. In the case of thcHLN system, eeneric scauh 

capabi li tics could be ohtai ned algori thmica 11y bOfh from the reaction site 

• • ( ) 2) 
and parent compound notnt10ns. 

In summarising the performance of the t\170 systel;}S it is useful to 

consider the various access points to reaction information provided by the 

systems, and their appropriateness to the several types of reaction query 

likely to be encountered. 

The two systems, as noted above, allow for approaches to reactions at 

different levels of structural specificity. CRDS allows searching directly 

for bonds formed and broken: in the \-!LN sys tern this can only be achieved 

indirectly, by considering the possible reaction site changes brought about 

by a given bond change. The WLN system allows for a direct search on reaetio 

sites: in CRDS an indirect search, combining bonds changed with structural 

features present or not present in reactant and product, is required. 

The lVLN approach gives three levels of structural description (4) : 

reaction fragments, reaction site notations, and parent structure WLNs. 

CRDS allows two levels: bond changes, and bond changes plus structural 

features of reactant and product (T,.ihich mayor may not form part of th~ 

reaction site). 

It. is helpful,. acc.ep.ting. some' degree of over-simplification. '. to considerr 

possible reaction enquiries as falling into three classes: structural concept 
• 

related, reaction site related, and bond related •. 

above. 

Concept related questions are typified by the more general test queries 

They are e).-pressed as structural concepts,· as.~~~p11f1ed by 

t~ereaction3 of Figure 6 I but are not restricted to anything other than 

a very general structural environment • Such questions are poorly dealt with 

. by the structural reaction descriptions of both systems. and some form of 

concept indexing is desirable. 
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\ 
RC:Jcdon site related 'llH:rir:-S In'Jl>lvc spc'cification of the bond ch;,n:::es, 

\,1ith slIffi dent information on surrounding atoms to give a description of the 

re .. ~cti on in chemically sir.nificant lini ts, function:l! groups, ring sys teElS etc. 

It may well be that this type of qu~ry will predominate for a ~eneral organic 

reaction information service. TIlcse queries are ?calt with by using the 

• 
reaction site information from WLN, or the b~nd change with reactant and 

product structures in CRDS. As noted above, both systems dealt effectively 

with test quesUons of this sort, with the \~LN system having some advantages. 

Bond related queries involve specification of a bond or bonds broken 

or formed, without full specification of the reaction site change: such 

information could be particularly useful for synthetic planning. Direct 

access at the bond level would be a.valuable component of a comprehensive 

reaction information system: this could be provided by manual indexing, as 

. . . h • (13,14) 
in CRDS, or by algor1t m1C means. 

Any of these t~ree types of query may involve specification of 

structural features of the reacting molecules, .not involved in the reaction 

site. This may be achieved in both systems, using the substructure searching 

capabilities of ~~N and Ringcode respectively. 

A 'comparison of ease of use of the two systems would not be entirely 

meaningful, since much of the complexity of use of eRDS is due to structure 

searchingyia Ringcode. The corresponding computerised WLN searching was 

not undertaken: consideration of this factor again brings up the comparison 

of WLN and Ringcode as structure representation. 

A WLN system is inherently more flexible thaq a fragmentation based 

system, since it allows production of printed indexes with whole structure 

representations provided as well as computer searches. This means that a 

WLN reaction system can provide both hard-copy output and printed desk-top 

tools which,· given a working knowledge of WLN, could be used by the bench 

chemist. A fragmentation code system can only be efficiently used ~ia 

computer, unless it relies upon a restricted coding such as the Theilheimer 
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code. Tt JIlay be that a printed index ,,'1.N reaction analysis, system \,ould be 

bes t used ;1S an aid to immcdi<ite synthetic problems, perhaps wi th rela live ly 

:,m;~l1 files. In this way full advantage could be taken of its ability to 

rapidly answer precise questions of the kind often, encountered in day-to-Jay 

synthetic ,-,ork. A useful application would be reaction indexing of internal 
• I 

da ta banks, where s truc tures are already codl)d in H'LN and ,,,here exis ti 11g h'iN 

handling programs could be utilised. This \.JQuld give a reaction searching 

capability entirely compatible with in-house structure searching., For 

larger files, a computerised search system would probably be required. 

Conclusions 

The two systems, based on WLN analysis and on bond change descriptors 

with Ringcode, were b~th found to deal effectively with queries defined in 

terms of reaction site change, involving functional groups, ring systems, etc. 

Such queries may well predominate in general purpose reaction information 

systems. The If:LN system provided greater precision in some cases, due to 

the varying levels of structural representation provided. For some questions 

the bond change information in eRDS is valuabl~: this may b'e particularly 

useful for synthetic planning: Both systems perform poorly with concept 

related queries, where there is no specific reaction site indication. They 

both require some form of 'concept indexing for full overall effectiveness. 

A WLN-based system may be valuable in providing printed indexes of reactions. 
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