99 research outputs found

    Nanoliter contact angle probes tumor angiogenic ligand-receptor protein interactions

    Get PDF
    Any molecular recognition reaction supported by a solid-phase drives a specific change of the solid-solution interfacial tension. Sessile Contact Angle (CA) experiments can be readily used to track this thermodynamic parameter, prompting this well-known technique to be reinvented as an alternative, easy-access and label-free way to probe and study molecular recognition events. Here we deploy this technique, renamed for this application CONAMORE (CONtact Angle MOlecular REcognition), to study the interaction of the tumor-derived pro-angiogenic vascular endothelial growth factor-A (VEGF-A) with the extracellular domain of its receptor VEGFR2. We show that CONAMORE recognizes the high affinity binding of VEGF-A at nanomolar concentrations to surface-immobilized VEGFR2 regardless of the presence of a ten folds excess of a non specific interacting protein, and that it further proofs its specificity and reliability on competitive binding experiments involving neutralizing anti-VEGF-A antibodies. Finally, CONAMORE shows the outstanding capability to detect the specific interaction between VEGFR2 and low molecular weight ligands, such as Cyclo-VEGI, a VEGFR2 antagonist cyclo-peptide, that weights about 2 kDa

    Anesthetic Considerations for Deep Brain Stimulation

    Get PDF
    Deep brain stimulation (DBS) was used to treat refractory Parkinson’s disease (PD) for the first time in 1987 by Professor Benabid’s group by placing stimulating electrodes into targeted brain structures. DBS is a widely accepted neurosurgical treatment for Parkinson’s disease (PD), benign tremor, dystonia, epilepsy, and other neuropsychiatric disorders with no significant changes in anatomical brain structures. Prior to the introduction of DBS, traditional treatment for PD involved surgical removal of parts of the brain known as thalamotomy, pallidotomy, and cingulotomy. Intraoperative identification of the affected areas of brain is possible through a couple of mechanisms involving electrical stimulation and monitoring of the brain function, known as “functional neurosurgery”. Implantation of electrodes in the targeted area and the insertion of a programmable pulse generator under the clavicle or in the abdomen are the main steps in DBS surgery. Anesthetic management for DBS remains controversial and might vary between institutions and physicians. Although no guidelines have been developed, there are some common anesthetic considerations for DBS surgery, including difficult airway management, facilitation of neuromonitoring, and anesthetic drugs interference with microelectrode recordings (MERs). Local anesthesia, general anesthesia, and monitored anesthesia care (MAC) have been used worldwide in patients undergoing DBS

    Analysis of a nanoparticle‑enriched fraction of plasma reveals miRNA candidates for down syndrome pathogenesis

    Get PDF
    Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA-carriers were separated from the plasma of young participants with DS and their non-trisomic siblings and miRNAs were extracted. A microarray-based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR-16-5p, miR-99b-5p and miR-144-3p. These miRNAs were then profiled for 15 pairs of DS and non‑trisomic sibling couples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non-trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including ‘nervous system development’, ‘neuronal cell body’ and certain forms of ‘leukemia’. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS‑associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis

    Subcutaneous dissociative conscious sedation (sDCS) an alternative method for airway regional blocks: a new approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicted difficult airway is a definite indication for awake intubation and spontaneous ventilation. Airway regional blocks which are commonly used to facilitate awake intubation are sometimes impossible or forbidden. On the other hand deep sedation could be life threatening in the case of compromised airway.</p> <p>The aim of this study is evaluating "Subcutaneous Dissociative Conscious Sedation" (sDCS) as an alternative method to airway regional blocks for awake intubation.</p> <p>Methods</p> <p>In this prospective, non-randomized study, 30 patients with predicted difficult airway (laryngeal tumors), who were scheduled for direct laryngoscopic biopsy (DLB), underwent "Subcutaneous Dissociative Conscious Sedation" (sDCS) exerted by intravenous fentanyl 3-4ug/kg and subcutaneous ketamine 0.6-0.7 mg/kg. The tongue and pharynx were anesthetized with lidocaine spray (4%<b>)</b>. 10 minutes after a subcutaneous injection of ketamine direct laryngoscopy was performed. Extra doses of fentanyl 50-100 ug were administered if the patient wasn't cooperative enough for laryngoscopy.</p> <p>Patients were evaluated for hemodynamic stability (heart rate and blood pressure), oxygen saturation (Spo<sub>2</sub>), patient cooperation (obedient to open the mouth for laryngoscopy and the number of tries for laryngoscopy), patient comfort (remaining moveless), hallucination, nystagmus and salivation (need for aspiration before laryngoscopy).</p> <p>Results</p> <p>Direct laryngoscopy was performed successfully in all patients. One patient needed extra fentanyl and then laryngoscopy was performed successfully on the second try. All patients were cooperative enough during laryngoscopy. Hemodynamic changes more than 20% occurred in just one patient. Oxygen desaturation (spo<sub>2</sub>< 90%) didn't occur in any patient.</p> <p>Conclusions</p> <p>Subcutaneous Dissociative Conscious Sedation (sDCS) as a new approach to airway is an acceptable and safe method for awake intubation and it can be suggested as a noninvasive substitute of low complication rate for regional airway blocks.</p> <p>Registration ID in IRCT</p> <p>IRCT201012075333N1</p

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    © 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore