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a b s t r a c t

Any molecular recognition reaction supported by a solid phase drives a specific change of the
solid–solution interfacial tension. Sessile contact angle (CA) experiments can be readily used to track
this thermodynamic parameter, prompting this well-known technique to be reinvented as an alterna-
tive, easy-access and label-free way to probe and study molecular recognition events. Here we deploy
this technique, renamed for this application CONAMORE (CONtact Angle MOlecular REcognition), to study
the interaction of the tumor-derived pro-angiogenic vascular endothelial growth factor-A (VEGF-A) with
the extracellular domain of its receptor VEGFR2. We show that CONAMORE recognizes the high affinity
binding of VEGF-A at nanomolar concentrations to surface-immobilized VEGFR2 regardless of the pres-
ence of a ten-fold excess of a non-specific interacting protein, and that it further proofs its specificity and
reliability on competitive binding experiments involving neutralizing anti-VEGF-A antibodies. Finally,
CONAMORE shows the outstanding capability to detect the specific interaction between VEGFR2 and
low molecular weight ligands, such as Cyclo-VEGI, a VEGFR2 antagonist cyclo-peptide, that weighs about
2 kDa.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Protein–protein interactions are the underlying mechanism
leading to the activity of every biological system in both phys-
iological and pathological conditions. Since pharmacology and
diagnostics are progressing towards specific molecular targets
and markers, investigation of protein–protein interactions gained
increasing importance in medicine during the last decades. Thus,
the development of innovative sensing platforms able to push for-
ward the understanding of thermodynamics and kinetics of these
interactions at reasonable costs are still an open and demanding
issue (Cheng et al., 2006; Ferrari, 2005).

Protein–protein interactions and their kinetic and thermody-
namic parameters can be directly investigated in solution phase
or on solid phase assays (Marquette and Blum, 2006; Bergese
et al., 2008). Solution phase assays, such as micro-calorimetric
(Falconer et al., 2010), are affected by limitations related to the
use of large amounts of highly purified proteins (milliliters of pro-
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tein solutions at �M concentrations, at least) and to the different
conformation that protein can assume in solution with respect
to cellular environments (Cooper, 2004). On the contrary, solid
phase assays performed on intact cells, cell membrane preparations
or with immobilization of the receptors in “cell-like” environ-
ments have been used to reveal protein–protein interactions and
to study their kinetics. Among these, Enzyme-Linked ImmunoSor-
bent Assay (ELISA) (Wild, 2005), Surface Plasmon Resonance (SPR)
(Rich and Myszka, 2000), radio- or fluorescence-assays (Souriau
and Hudson, 2003; Phizicky and Fields, 1995) and Fluorescence
Resonance Energy Transfer (FRET) (Wu and Brand, 1994) have
to be cited as the most common techniques. Recently, innova-
tive solid phase biosensors have been exploited for the study of
protein–protein binding, including electrochemical or electrical
immunoassays (Zheng et al., 2005) or micro-mechanical biosensors
(Waggoner and Craighead, 2007).

In this communication we spotlight the study of a
protein–protein interaction by nanoliter contact angle, named, for
this specific application, CONAMORE (CONtact Angle MOlecular
REcognition). This new label-free assay is based on the observation
that a ligand–receptor interaction supported by a solid phase
drives a specific change of the solid–solution interfacial tension
(Bergese et al., 2009; Oliviero et al., 2010), that can be straight-
forwardly detected by sessile drop contact angle measurements

0956-5663/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Fig. 1. Schematic of sessile drop CA systems at equilibrium formed by a drop of ligand solution (phase B), a receptor-functionalized surface (phase S), and a surrounding
phase (phase C); the CA is indicated by �. Panel (a) represents the unspecific case, where ligands and receptors do not bind; panel (b) represents the specific case, where
ligands and receptors bind.

(Fig. 1). In particular, we show that the proof-of-concept we imple-
mented to detect DNA duplex formation (Bergese et al., 2009) can
be profitably extended to investigate the more demanding case
of the interactions between soluble protein ligands with their
surface-immobilized cellular receptors. This application marks
down a new path for the contact angle technique as well, that
so far has been exclusively deployed to study physisorption and
wettability of protein films (see for e.g., Sigal et al., 1998; Rios and
Smirnov, 2009).

We investigate the interaction between the tumor-produced
pro-angiogenic vascular endothelial growth factor (VEGF-A) at
nanomolar concentrations and the surface-immobilized extracel-
lular domain of its endothelial cell receptor VEGFR2, featuring
VEGF-A/VEGFR2 binding in the presence of non-interacting pro-
teins, competitive binding experiments and detection of binding of
small peptide ligands to VEGFR2. This ligand–receptor system has
a fundamental impact in biomedicine, since it promotes angiogen-
esis, the process of new blood vessel formation from pre-existing
ones that plays a key role in human cancer proliferation (Folkman,
1995). Experimental evidences point to the VEGF-A/VEGFR2 sys-
tem as an important target for the development of anti-angiogenic
therapies aimed at inhibiting the tumor growth and the metastatic
process (Ferrara et al., 2003). Accordingly, neutralizing anti-VEGF-A
antibodies and VEGFR2 inhibitors have shown promising anti-
neoplastic effects in cancer patients (Hurwitz et al., 2004).

CONAMORE results to be very reliable and sensitive. These
aspects together with the label-free nature of the technique
constitute decisive advantages with respect to ELISA, radio- or
fluorescence-assays and electrical or electrochemical immunoas-
says (Morgan et al., 1996; Lee et al., 2009). On the other hand,
the use of minute quantities of ligand solutions – hundreds of
nanoliters, potentially reducible to hundreds of picoliters (Taylor
et al., 2007) – and the low cost of the instrumentation place
CONAMORE in a favorable position to compete with mature label-
free assays such as SPR (Huang et al., 1998) and Isothermal Titration
Calorimetry (ITC) (Kim and Kiick, 2007). Beyond these practi-
cal advantages, the transduction principle of CONAMORE opens
original perspectives in the understanding of thermodynamics
and kinetics of ligand–receptor interactions, in the investigation
of ligand-induced conformational changes and in the identifica-
tion/screening of low molecular weight (LMW) ligands, such as
peptides and drugs.

2. Experimental details

2.1. Biomolecules and chemicals

Recombinant human extracellular domain of VEGFR2-Fc
(sVEGFR2/Fc) chimeras were from RELIATech GmbH (Braun-
schweig, Germany). Human recombinant vascular endothelial
growth factor-A165 (VEGF-A) was from R&D Systems (Minneapolis,
MN) and bovine serum albumin (BSA) from Sigma–Aldrich, Ger-
many.

VEGF-A was dissolved in phosphate buffered saline (PBS,
Sigma–Aldrich, Germany), pre-equilibrated with cyclohexane

(Sigma–Aldrich, Germany). Solutions of VEGF-A were also prepared
with the addition of 1 �M BSA.

Anti-human VEGF-A monoclonal antibody (specific antibody)
and anti-human IL-8 monoclonal antibody (irrelevant antibody)
(R&D Systems, Minneapolis, MN, USA) were dissolved at a final
concentration of 0.01 �g �l−1 in a PBS solution containing 100 nM
VEGF-A and 1 �M BSA.

Cyclo-VEGI (CBO-P11, MW = 1998.3 Da, Calbiochem, CA, USA)
and VEGF15 (D’Andrea et al., 2005, MW = 1948 Da) were dissolved
in PBS (with the addition of 1 �M BSA) in order to obtain a final
concentration of 1 �M.

2.2. Surface functionalization

Surface Plasmon Resonance (SPR) chips with the CM3 func-
tionalization (BIAcore Inc., Piscataway, NJ, USA) were employed as
substrates for the contact angle measurements.

To this purpose, the CM3 chips were detached from the plas-
tic holder, rinsed with HBS-EP buffer (10 mM HEPES, pH 7.4,
150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20, BIAcore Inc.,
Piscataway, NJ, USA) and immersed for 3 h in 0.2 M N-ethyl-N-
(3-dimethylaminopropyl)-carbodiimide hydrochloride plus 0.05 M
N-hydroxysuccinimide. The surfaces were then washed with HBS-
EP and incubated with 30 �l of sVEGFR2/Fc (1.87 �M in 10 mM
sodium acetate, pH 3.0) for 2 h at 25 ◦C and 14 h at 4 ◦C. After
sVEGFR2/Fc immobilization, matrix neutralization was performed
with 1.0 M ethanolamine (pH 8.5).

After an accurate HBS-EP wash, the functionalized chips were
briefly immersed in 10 mM NaOH, washed with HBS-EP and stored
in PBS at 4 ◦C.

2.3. Protein and peptides binding measurements with
CONAMORE and data analysis

Sessile drop experiments (Adamson and Gast, 2000) for
the determination of the contact angles were carried out at
room temperature with a CAM 200 tensiometer (KSV Instru-
ments, Finland) equipped with a Navitar camera and employing
cyclohexane as surrounding phase. The employed cyclohexane
and the PBS solution were pre-equilibrated in order to avoid
solute exchange between the two phases during the experi-
ments.

Sessile drop measurements on the functionalized chips were
performed depositing drops of the protein and the peptide solu-
tions with volumes ranging from 150 to 250 nanoliters. The contact
angle evolution was monitored for 12 min, acquiring an image
every second for the first 3 min and every 30 s for the remain-
ing 9 min. The images were analyzed using the KSV CAM Optical
Contact Angle and Pendent Drop Surface Tension Software 4.04,
fitting the drop profile with the circular or the Young–Laplace
algorithms. Since the droplet spreading kinetics indicated that the
overall (mechanical and chemical) equilibrium with the substrates
was reached about 9 min after the drop deposition (see also Fig. 2
and Section 4), the contact angle value of each drop was taken
as the mean value of the last 8 acquired images (from 8.5 min to



Author's personal copy

G. Olivero et al. / Biosensors and Bioelectronics 26 (2010) 1571–1575 1573

Fig. 2. (a) Spreading kinetics of droplets of the PBS solution of VEGF-A 100 nM (red circles) and of the raw PBS solution (green circles). The variation of the contact angle in
the first 9 min is due to the attainment of the mechanical and chemical equilibrium between the drop, the solid surface and the surrounding phase (cyclohexane). The red and
green dotted lines identify the contact angle equilibrium values. Not all the tracked contact angles are reported for clarity reasons. (b) Differential solid–solution interfacial
tension, ��SB , for a PBS solution of VEGF-A 100 nM with respect to reference (raw) PBS solution (VEGF-A) compared with the ��SB for the same solutions after adding BSA
1.0 �M (VEGF-A with BSA). The area of the graph included between the two dotted lines identifies the error associated to the absolute solid–solution interfacial tension of
the reference PBS solutions, i.e., the background noise of the signal. (c) ��SB for a PBS solution containing 100 nM VEGF-A, 0.01 �g �l−1 of a specific anti-VEGF-A antibody
and 1.0 �M BSA with respect to the same solution without VEGF-A (VEGF-A + Ab) compared with the ��SB for the same solutions but containing an irrelevant antibody in
place of the specific one (VEGF-A + Irr-Ab). (d) ��SB for a PBS solution of VEGF-A 100 nM and BSA 1.0 �M with respect to reference PBS solution of BSA 1.0 �M, before and
after the treatment of the immobilized receptor VEGFR2 with 6 M urea. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of the article.).

12 min after the drop deposition). Triplicates of the same drop were
deposited in line.

After the deposition of the triplicates of each drop, the chips
were reactivated by a brief immersion in 10 mM NaOH (to remove
the bound proteins) and subsequent accurate washings with PBS
and Milli-Q water.

The measurements of the interfacial tension between cyclohex-
ane and the protein and peptide solutions were performed through
the pendant drop method (Adamson and Gast, 2000).

The values of the contact angles and solution–surrounding
phase interfacial tensions were taken as the mean of the three
independent replicates and the errors evaluated as the standard
deviations of the mean.

Contact angle measurements were also performed on substrates
after a treatment in urea in order to unfold the immobilized recep-
tors. The functionalized chips were immersed in a 6 M solution of
urea for 30 min and then accurately rinsed in HBS-EP buffer.

2.4. ELISA

A 96-well plate was coated for 16 h at room temperature with
250 ng/ml of sVEGFR2/Fc in PBS at 100 �l/well. When indicated,
the plate was incubated in cyclohexane for 5 min and then washed
with PBS before a 3-h blocking step with 1% BSA. Then, VEGF-A
(20 ng/ml dissolved in PBS or in PBS pre-equilibrated with cyclo-
hexane) was added and incubated for 1 h at 37 ◦C followed by 1 h
incubation at room temperature (Ponticelli et al., 2008). An anti-
human VEGF monoclonal antibody (R&D System, Minneapolis, MN)
diluted in PBS at 300 ng/ml was added to the wells and incubated

for 1 h at 37 ◦C followed by 1 h incubation at room temperature.
Finally, wells were incubated for 1 h at room temperature with a
secondary donkey anti-mouse horseradish peroxidase-conjugated
antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA).

3. Theory and calculation

The equilibrium of a ligand–receptor binding reaction confined
at the interface between a solid functionalized with the recep-
tors and a solution supplying the ligands (Bergese et al., 2007) is
described by the surface van’t Hoff isotherm

�rG0 = − ��

[�LR]
− RT ln K� (1)

where �rG0 is the standard molar Gibbs free energy of the reac-
tion in (free) solution, �� is the variation of the solid–solution
interfacial tension upon binding, [� LR] is the equilibrium surface
density of the ligand–receptor complexes, K� is the surface equi-
librium constant (or binding affinity),1 and R and T are the ideal gas
constant and the absolute temperature, respectively. Eq. (1) quan-
tifies how a part of the Gibbs free energy of the reaction is employed
to accommodate binding on the surface, driving the change of the
solid–solution interfacial tension �� .

�� can be directly evaluated by sessile drop contact angle
experiments. When a droplet is placed onto a solid surface it

1 For further details on the difference between K� and the equilibrium constant
in free solution, please refer to Oliviero et al. (2010).
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Table 1
Optical density values for the ELISA experiments. The table shows the absorbance
values registered on immobilized VEGFR2 when incubated with a PBS buffered solu-
tion, a PBS buffered solution of VEGF-A 100 nM, or a solution of VEGF-A 100 nM in
PBS pre-equilibrated with cyclohexane (VEGF-A*) before and after the exposure of
the immobilized receptors to cyclohexane.

Before VEGFR2 exposure
to cyclohexane

After VEGFR2 exposure
to cyclohexane

Vehicle 0.424 0.432
VEGF-A 0.918 0.869
VEGF-A* 0.868 0.875

reaches the equilibrium with the surface and the surroundings at
the contact line at which drop, surface and surroundings meet,
identifying a definite contact angle � (Young, 1805 and Fig. 1). �
is linked to the interfacial tensions by the Young–Dupré equation
(Adamson and Gast, 2000). CONAMORE roots on this physico-
chemical phenomenon and can be illustrated with the help of Fig. 1.
Here the surface, S, is functionalized with a receptor and the droplet,
B, is a solution of unspecific or specific ligands for the immobilized
receptor (panel (a) or (b), respectively); C is the surrounding phase.
The specific binding reaction featured by system (b) gives a specific
contribution to the solid–solution interfacial tension, �SB, that is
missed in the interfacial tension of the unspecific system (a), �0

SB,
taken as reference. Thus, as suggested by Eq. (1), specific binding is
associated to a change (differential) of the solid–solution interfacial
tensions ��SB = �SB − �0

SB. In other words, �SB can be regarded as
the transduction signal of the specific binding event. An analogous
concept holds if pure buffer is considered instead of an unspecific
ligand solution.

As mentioned above, interfacial tensions are related to contact
angles by the Young–Dupré equation, and it can be shown that
for the system under consideration the following equation holds
(Bergese et al., 2009):

��SB = �SB − �0
SB = �0

BC cos �0 − �BC cos � (2)

where �0 and � are the contact angles of the unspecific and of the
specific systems, respectively, and, analogously, �0

BC and �BC are the
solution–surrounding phase interfacial tensions of the unspecific
and of the specific systems, respectively. Eq. (2) allows to directly
determine the transduction signal ��SB by measuring �0 and � by
sessile drop contact angle experiments, provided that �0

BC and �BC
were previously determined (for example by pendant drop exper-
iments, see Section 2). Eq. (2) also indicates that in the particular
case in which �0

BC
∼= �BC the contact angles difference is biunivocally

related to ��SB, and thus directly probes the specific binding.

4. Results

4.1. Receptor surface functionality

CONAMORE experiments were performed with cyclohexane as
surrounding phase in order to avoid evaporation of the nanoliter
drops and to enhance the solution contact angles with the sur-
face. Measurement of water solution contact angle under organic
solvents is a reliable method to evaluate the energetics of protein
binding to different surfaces (Sigal et al., 1998). Moreover, from a
theoretical perspective, proteins in non-polar organic solvents pre-
serve their functionality as, in principle, they do not unfold because
of the increased stability of their non-polar groups in such envi-
ronments (Pace et al., 2004). However, to be on the safe side, we
designed and performed ELISA tests to experimentally check the
hypothesis that cyclohexane does not affect the binding capacity
of VEGFR2 and of its ligand VEGF-A.

The results, reported in Table 1, fully confirmed this hypothesis.
In particular, the VEGF-A/VEGFR2 complex is formed after the expo-
sure of the immobilized VEGFR2 to cyclohexane, also when VEGF-A
is dissolved in a PBS solution pre-equilibrated with cyclohexane.

4.2. Ligand–receptor binding experiments

The first experiment was the detection of VEGF-A/VEGFR2
specific binding. To this purpose we measured the differential
solid–liquid interfacial tension, ��SB, between a PBS solution of
VEGF-A and the raw PBS solution (taken as reference). The con-
centration of VEGF-A was fixed at 100 nM in order to have a large
excess of ligand in the deposited drop when compared to the Kd
value for the VEGF-A/VEGFR2 interaction, approximately equal to
30 nM (Huang et al., 1998).

Fig. 2 (panel a) shows the evolution with time of the contact
angles of the VEGF-A and PBS (reference) drops. The spreading
kinetics show that the mechanical and chemical equilibrium of
the drops with the surface and the surrounding phase (cyclohex-
ane) is reached about 9 min after deposition. By substituting into
Eq. (2) the equilibrium values of the contact angles, �0 = 67.5 ± 0.3◦

and � = 73.5 ± 1.3◦, and of the solution–cyclohexane interfacial ten-
sions, ��0

BC = 35.2 ± 0.7 mN m−1 and �BC = 35.2 ± 0.7 mN m−1, we
obtain ��SB = 3.5 ± 0.9 mN m−1. This value is a significant transduc-
tion signal, giving the first, solid proof of the possibility to probe the
interaction between VEGF-A and VEGFR2 by CONAMORE.

Next we assessed the capability of CONAMORE to probe the
VEGF-A/VEGFR2 interaction also in the presence of a large molar
excess of proteins that might interfere with the detection of the
complex formation. To this purpose, we chose BSA (Bovine Serum
Albumin) as a demonstrative non-specific interactor, since this pro-
tein is used as a carrier in most of the routine techniques aimed
at ligand–receptor binding studies. On this basis, we measured
��SB of a PBS solution of VEGF-A 100 nM and BSA 1.0 �M with
respect to a reference PBS solution of BSA 1.0 �M; we obtained
��SB = 3.6 ± 0.2 mN m−1. As shown in Fig. 2 (panel b) this value
is consistent with the ��SB measured for the BSA free solutions,
demonstrating that (i) the high concentration of BSA (ten-folds the
concentration of VEGF-A) does not affect the interaction between
VEGF-A and VEGFR2 and that (ii) CONAMORE is extremely reliable
and specific. In view of these observations and of the lower exper-
imental uncertainty, all the next experiments were performed by
adding to the buffer solution 1.0 �M BSA as a carrier; this solution
will be hereafter referred as PBS/BSA solution.

The specificity and reliability of CONAMORE was further tested
through a competition experiment in which a specific neutralizing
anti-VEGF-A antibody prevents the interaction between VEGF-A
and VEGFR2. As shown in Fig. 2 (panel c) ��SB for a PBS/BSA
solution containing 100 nM of VEGF-A plus 0.01 �g �l−1 of anti-
VEGF-A antibody (Ab) with respect to the reference PBS/BSA
solution is equal to 0.3 ± 0.5 mN m−1. This means that CONAMORE,
as expected, indicates that the antibody interacts with VEGF-A and
prevent it from binding VEGFR2. Instead, when the specific anti-
VEGF-A antibody is replaced by an irrelevant antibody (Irr-Ab) that
does not interfere with the VEGF-A/VEGFR2 binding, ��SB comes
back to 2.1 ± 0.3 mN m−1, which is a value comparable with the
previously measured ��SB of the VEGF-A/VEGFR2 binding.

Receptor interaction strongly depends on a proper conforma-
tional structure of the receptor that allows the recognition of the
ligand by specific binding site(s) on the receptor protein surface.
As a proof of the reliability of the CONAMORE signal due to the
interaction between VEGF-A and VEGFR2, we measured ��SB of a
PBS/BSA solution of VEGF-A 100 nM with respect to the reference
PBS/BSA solution onto immobilized VEGFR2 before and after expo-
sure of immobilized VEGFR2 to urea 6 M, that completely unfolds
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Fig. 3. (a) Differential solid–solution interfacial tension, ��SB , for a PBS solution of
Cyclo-VEGI 1 �M with respect to a PBS solution of VEGF15 1 �M (both the solutions
also contain BSA 1.0 �M). The area of the graph included between the two dotted
lines identifies the error associated to the absolute solid–solution interfacial tension
of the (reference) VEGF15 solution, i.e., the background noise of the signal.

the immobilized protein (Scholtz et al., 1995). The results, reported
in Fig. 2 (panel d) show that, with the folded VEGFR2, VEGF-A
binding drives a ��SB equal to 3.0 ± 0.4 mN m−1, that is signifi-
cantly different from the one measured with the unfolded VEGFR2,
��SB = 1.0 ± 0.5 mN m−1. This indicates a dramatic suppression of
the specific interaction between VEGF-A and VEGFR2 following
the disruption of the conformational structure of the receptor. On
the other hand, the binding ��SB from this experiment is fairly
consistent with the ones obtained in the previous experiments,
bringing an additional proof of the repeatability of CONAMORE
measurements.

CONAMORE was finally tested for its ability to detect the specific
interaction of VEGFR2 with low molecular weight (LMW) ligands.
To this purpose we used, as a model ligand, the peptide Cyclo-
VEGI, a well-known VEGFR2 antagonist (Zilberberg et al., 2003)
that weights 1998 Da. In order to eliminate the possible contribu-
tion of non-specific adsorption that may occur when employing
LMW molecules on biopolymer functionalized surfaces (Serizawa
et al., 2007), the LMW peptide VEGF15 was used as the negative
control (D’Andrea et al., 2005). ��SB for a PBS/BSA solution of Cyclo-
VEGI 1 �M with respect to a reference PBS/BSA solution of VEGF15
1 �M resulted 2.7 ± 1.1 mN m−1(Fig. 3), confirming the auspicated
performances of CONAMORE with LMW species.

5. Conclusions

The inedited and successful application of CONAMORE to the
recognition of interactions between cell membrane receptors and
angiogenic growth factors was described. In particular the inter-
action between the immobilized VEGFR2 receptor and nanomolar
concentrations of its specific ligand VEGF-A was detectable with
a consistent transduction signal in the presence of a ten-fold
molar excess of an unrelated protein (1.0 �M BSA) or of irrelevant
immunoglobulins and was distinguished from the non-specific
interactions occurring after denaturation of the receptors. The
extraordinary specificity, reliability and repeatability of the tech-
nique were confirmed by a competition experiment, where
CONAMORE revealed the VEGF-A/VEGFR interaction suppression
by a neutralizing anti-VEGF-A antibody. Finally, the detection of
the interaction between Cyclo-VEGI, a 2 kDa cyclo-peptide, and
VEGFR2 demonstrates the technique capability to evaluate the
binding of LMW molecules to surface-immobilized proteins.

These experiments spotlight the role that CONAMORE can play
in the study of protein–protein interactions, being a label-free tech-
nique with an easier access and a lower cost in comparison with

established methods such as SPR or Quartz Crystal Microbalances
(QCM). Furthermore, the recent development of automated pico-
liter instruments candidates CONAMORE as a decisive player in
applications where small volumes of analyte and/or multiplexed
operation are mandatory. Finally, the direct transduction of the
energy of the interactions opens new perspectives, not only in the
widening of the understanding of surface confined ligand–receptor
interactions, but also in the study of interactions that induce con-
formational changes of the proteins and in the identification of low
molecular weight receptor agonists and antagonists with potential
therapeutic implications.
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