132 research outputs found

    A Novel Technique to Detect and Track Multiple Objects in Dynamic Video Surveillance Systems

    Get PDF
    Video surveillance is one of the important state of the art systems to be utilized in order to monitor different areas of modern society surveillance like the general public surveillance system, city traffic monitoring system, and forest monitoring system. Hence, surveillance systems have become especially relevant in the digital era. The needs of the video surveillance systems and its video analytics have become inevitable due to an increase in crimes and unethical behavior. Thus enabling the tracking of individuals object in video surveillance is an essential part of modern society. With the advent of video surveillance, performance measures for such surveillance also need to be improved to keep up with the ever increasing crime rates. So far, many methodologies relating to video surveillance have been introduced ranging from single object detection with a single or multiple cameras to multiple object detection using single or multiple cameras. Despite this, performance benchmarks and metrics need further improvements. While mechanisms exist for single or multiple object detection and prediction on videos or images, none can meet the criteria of detection and tracking of multiple objects in static as well as dynamic environments. Thus, real-world multiple object detection and prediction systems need to be introduced that are both accurate as well as fast and can also be adopted in static and dynamic environments. This paper introduces the Densely Feature selection Convolutional neural Network – Hyper Parameter tuning (DFCNHP) and it is a hybrid protocol with faster prediction time and high accuracy levels. The proposed system has successfully tracked multiple objects from multiple channels and is a combination of dense block, feature selection, background subtraction and Bayesian methods. The results of the experiment conducted demonstrated an accuracy of 98% and 1.11 prediction time and these results have also been compared with existing methods such as Kalman Filtering (KF) and Deep Neural Network (DNN)

    A scientometric analysis of deep learning approaches for detecting Fake News

    Get PDF
    The unregulated proliferation of counterfeit news creation and dissemination that has been seen in recent years poses a constant threat to democracy. Fake news articles have the power to persuade individuals, leaving them perplexed. This scientometric study examined 569 documents from the Scopus database between 2012 and mid-2022 to look for general research trends, publication and citation structures, authorship and collaboration patterns, bibliographic coupling, and productivity patterns in order to identify fake news using deep learning. For this study, Biblioshiny and VOSviewer were used. The findings of this study clearly demonstrate a trend toward an increase in publications since 2016, and this dissemination of fake news is still an issue from a global perspective. Thematic analysis of papers reveals that research topics related to social media for surveillance and monitoring of public attitudes and perceptions, as well as fake news, are crucial but underdeveloped, while studies on deep fake detection, digital contents, digital forensics, and computer vision constitute niche areas. Furthermore, the results show that China and the USA have the strongest international collaboration, despite India writing more articles. This paper also examines the current state of the art in deep learning techniques for fake news detection, with the goal of providing a potential roadmap for researchers interested in undertaking research in this fiel

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted

    IoMT with deep CNN: AI-based intelligent support system for pandemic diseases

    Get PDF
    The Internet of Medical Things (IoMT) is an extended version of the Internet of Things (IoT). It mainly concentrates on the integration of medical things for servicing needy people who cannot get medical services easily, especially rural area people and aged peoples living alone. The main objective of this work is to design a real time interactive system for providing medical services to the needy who do not have a sufficient medical infrastructure. With the help of this system, people will get medical services at their end with minimal medical infrastructure and less treatment cost. However, the designed system could be upgraded to address the family of SARs viruses, and for experimentation, we have taken COVID-19 as a test case. The proposed system comprises of many modules, such as the user interface, analytics, cloud, etc. The proposed user interface is designed for interactive data collection. At the initial stage, it collects preliminary medical information, such as the pulse oxygen rate and RT-PCR results. With the help of a pulse oximeter, they could get the pulse oxygen level. With the help of swap test kit, they could find COVID-19 positivity. That information is uploaded as preliminary information to the designed proposed system via the designed UI. If the system identifies the COVID positivity, it requests that the person upload X-ray/CT images for ranking the severity of the disease. The system is designed for multi-model data. Hence, it can deal with X-ray, CT images, and textual data (RT-PCR results). Once X-ray/CT images are collected via the designed UI, those images are forwarded to the designed AI module for analytics. The proposed AI system is designed for multi-disease classification. It classifies the patients affected with COVID-19 or pneumonia or any other viral infection. It also measures the intensity level of lung infection for providing suitable treatment to the patients. Numerous deep convolution neural network (DCNN) architectures are available for medical image classification. We used ResNet-50, ResNet-100, ResNet-101, VGG 16, and VGG 19 for better classification. From the experimentation, it observed that ResNet101 and VGG 19 outperform, with an accuracy of 97% for CT images. ResNet101 outperforms with an accuracy of 98% for X-ray images. For obtaining enhanced accuracy, we used a major voting classifier. It combines all the classifiers result and presents the majority voted one. It results in reduced classifier bias. Finally, the proposed system presents an automatic test summary report textually. It can be accessed via user-friendly graphical user interface (GUI). It results in a reduced report generation time and individual bia

    Biological decolorization of xanthene dyes by anaerobic granular biomass

    Get PDF
    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes—Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L−1, while the process rates were independent of the biomass concentration above 1.89 g VSS L−1. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L−1 AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, \textAC\textH2ACH2, as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.This work was supported by the PTDC/AMB/69335/2006 project grants (Fundacao para a Ciencia e Technologia, FCT, Portugal), BRAIN project (ID 6681, European Social Found and Romanian Government and the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
    corecore