201 research outputs found

    An interpolated biogeographical framework for tropical Africa using plant species distributions and the physical environment

    Get PDF
    AIM: Existing phytogeographical frameworks for tropical Africa lack either spatial completeness, unit definitions smaller than the regional scale or a quantitative approach. We investigate whether physical environmental variables can be used to interpolate floristically defined vegetation units, presenting an interpolated, hierarchical, quantitative phytogeographical framework for tropical Africa, which is compared to previously defined regions. LOCATION: Tropical mainland Africa 24°N to 24°S. TAXON: 31,046 vascular plant species and infraspecific taxa. METHODS: We calculate a betasim dissimilarity matrix from a comprehensive whole‐flora database of plant species distributions. We investigate environmental correlates of floristic turnover with local non‐metric multidimensional scaling. We derive a hierarchical biogeographical framework by clustering the dissimilarity matrix. The framework is modelled using a classification decision tree method and 12 physical environmental variables to interpolate and increase the resolution of the framework across the study region. RESULTS: Floristic turnover is related strongly to water availability and temperature, with smaller contributions from land cover, topographic ruggedness and lithology. Region can be predicted with 90% accuracy by the model. We define 19 regions and 99 districts. We find a novel arrangement of the arid regions. Regional subdivision within the savanna biome is supported with minor variation to borders. Within the forests of west and central Africa, our whole‐flora gridded regionalization supports the divisions identified by a previous analysis of trees only. MAIN CONCLUSIONS: Physical environmental variables can be used to predict floristically defined vegetation units with very high accuracy, and the approach could be pursued for other incompletely sampled taxa and areas outside of tropical Africa. Geographical coherence is higher than in previous quantitative phytoregional definitions. For most tropical African vascular plant species, we provide predictions of which species will occur within each mapped district and region of tropical Africa. The framework should be useful for future studies in ecology, evolution and conservation

    Experimental and numerical study of strength mismatch in cross-weld tensile testing

    Get PDF
    The mechanical properties of welded boiler tubes used in power plants can be significantly altered as a result of the fabrication history, such as pre-straining and heat treatment. The primary aim of the study was to determine the effect of fabrication history on local tensile properties across the welds. This was achieved by testing cross-weld specimens machined from welded thin-walled tubes (with unstrained or pre-strained base metal) before and after heat treatment. Digital image correlation, which is a full-field strain measurement technique, was implemented in order to obtain the local stress–strain curves and to extract the corresponding local tensile properties such as offset proof stress. Evidence of strain hardening due to the constraint and thermo-mechanical cycles during the welding process was found in the heat-affected zone and evidence of softening was observed in the pre-strained base metal. It was found that the heat treatment process removed the effect of pre-straining and welding on the proof stress and the strength along the specimen was nearly homogenized. However, mapping the local stress–strain curves in the as-welded cross-weld specimens with pre-strained base metal has revealed abnormal strain relaxation with increase in load in the weld-affected region. For a better understanding of this behaviour, a tensile test of a cross-weld specimen with a large strength mismatch between the weld metal and the base metal was simulated using the finite element method. It was found that the strength mismatch in the specimen causes the development of biaxial stresses in the heat-affected zone once local yielding begins, and the use of global axial stress to construct the local stress–strain curve results in an apparent ‘reduced-strain’ anomaly. Nevertheless, for the strength mismatch ratios studied, this anomalous behaviour did not seem to significantly affect the determination of the local proof stress in the specimens

    NAA is a Marker of Disability in Secondary-Progressive MS: A Proton MR Spectroscopic Imaging Study

    Get PDF
    BACKGROUND AND PURPOSE: The secondary progressive phase of multiple sclerosis is characterised by disability progression due to processes that lead to neurodegeneration. Surrogate markers such as those derived from MRI are beneficial in understanding the pathophysiology that drives disease progression and its relationship to clinical disability. We undertook a 1H-MRS imaging study in a large secondary progressive MS (SPMS) cohort, to examine whether metabolic markers of brain injury are associated with measures of disability, both physical and cognitive. MATERIALS AND METHODS: A cross-sectional analysis of individuals with secondary-progressive MS was performed in 119 participants. They underwent 1H-MR spectroscopy to obtain estimated concentrations and ratios to total Cr for total NAA, mIns, Glx, and total Cho in normal-appearing WM and GM. Clinical outcome measures chosen were the following: Paced Auditory Serial Addition Test, Symbol Digit Modalities Test, Nine-Hole Peg Test, Timed 25-foot Walk Test, and the Expanded Disability Status Scale. The relationship between these neurometabolites and clinical disability measures was initially examined using Spearman rank correlations. Significant associations were then further analyzed in multiple regression models adjusting for age, sex, disease duration, T2 lesion load, normalized brain volume, and occurrence of relapses in 2 years preceding study entry. RESULTS: Significant associations, which were then confirmed by multiple linear regression, were found in normal-appearing WM for total NAA (tNAA)/total Cr (tCr) and the Nine-Hole Peg Test (ρ = 0.23; 95% CI, 0.06-0.40); tNAA and tNAA/tCr and the Paced Auditory Serial Addition Test (ρ = 0.21; 95% CI, 0.03-0.38) (ρ = 0.19; 95% CI, 0.01-0.36); mIns/tCr and the Paced Auditory Serial Addition Test, (ρ = -0.23; 95% CI, -0.39 to -0.05); and in GM for tCho and the Paced Auditory Serial Addition Test (ρ = -0.24; 95% CI, -0.40 to -0.06). No other GM or normal-appearing WM relationships were found with any metabolite, with associations found during initial correlation testing losing significance after multiple linear regression analysis. CONCLUSIONS: This study suggests that metabolic markers of neuroaxonal integrity and astrogliosis in normal-appearing WM and membrane turnover in GM may act as markers of disability in secondary-progressive MS

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons
    • 

    corecore