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ABSTRACT 

The mechanical properties of welded boiler tubes used in power plants can be 

significantly altered as a result of the fabrication history, such as pre-straining and heat 

treatment. The primary aim of the study was to determine the effect of fabrication history on 

local tensile properties across the welds.  This was achieved by testing cross-weld specimens 

machined from welded thin-walled tubes (with unstrained or pre-strained base metal) before 

and after heat treatment. Digital image correlation (DIC), which is a full-field strain 

measurement technique, was implemented in order to obtain the local stress-strain curves and 

to extract the corresponding local tensile properties such as offset proof stress. Evidence of 

strain hardening due to the constraint and thermo-mechanical cycles during the welding 

process was found in the heat-affected-zone (HAZ) and evidence of softening was observed 

in the pre-strained base metal. It was found that the heat treatment process removed the effect 

of pre-straining and welding on the proof stress and the strength along the specimen was 

nearly homogenized. However, mapping the local stress-strain curves in the as-welded cross-

weld specimens with pre-strained base metal has revealed abnormal strain-relaxation with 

increase in load in the weld-affected region. For a better understanding of this behaviour, a 

tensile test of a cross-weld specimen with a large strength mismatch between the weld metal 

and the base metal was simulated using the finite element method. It was found that the 

strength mismatch in the specimen causes the development of bi-axial stresses in the HAZ 

once local yielding begins and the use of global axial stress to construct the local stress-strain 
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curve results in an apparent “reduced-strain” anomaly. Nevertheless, for the strength 

mismatch ratios studied, this anomalous behaviour did not seem to significantly affect the 

determination of the local proof stress in the specimens.  

Keywords: cross-weld tensile testing, strength mismatch, local deformation, digital image 

correlation, finite element analysis  

 

Introduction 

The structural integrity, performance and life of austenitic stainless steel weldments 

in power generation plants is largely determined by the mechanical properties of the weld 

metal, the heat affected zone (HAZ) and the base metal. These properties depend on the full 

fabrication history including cold bending and swaging, welding, heat treatment and the 

effects of service ageing.  For example, many metres of austenitic stainless steel tubes are 

bent, swaged, welded and heat treated to produce heat exchanger units in the installation of 

steam raising power plants. Prior to the instalment the mechanical properties of the virgin 

tube have been greatly altered during manufacturing steps.  

The tube-shaping operations such as bending and swaging accumulate plastic 

deformation in the stainless steel. The plastic deformation can improve the strength of 

austenitic stainless steels, but it increases the material's susceptibility to stress corrosion and 

creep damage [1, 2].  For this reason, ASME Boiler and Pressure Vessel Design code [3] 

specifies forming strain limits for stainless steels for high temperature applications. For 

example, for 316H type stainless steel the forming limit is 20% strain, if the material is to 

operate between 580°C and 675°C. If it exceeds that threshold, the material should be 

annealed above 1040°C to restore its mechanical properties to the start of life values. In 

addition to the tube shaping, heat exchanger units require welding to produce tube junctions 
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where the main tube with a larger diameter is connected to a U-bent tube. However, very 

little is known about the effects of welding onto plastically deformed tubes. The effect of 

heat during welding can alter the material properties around the weld bay either softening or 

hardening. In case of welding onto bent or swaged tubes, if the temperature is high enough, 

annealing occurs and this softens the previously work-hardened material. Current 

construction practices for 316H tubes forbid welding onto material that has experienced more 

than 15% plastic strain, without first resolution heat treating the material [4]. If the base metal 

near the weld has a relatively lower yield strength, then the thermal cycles during welding 

can cause strain hardening or considerable amount of plastic strain near the weld fusion zone 

[5]. As a result of hardening or softening the material properties change in weld-near regions 

and this causes a strength variation in the heat affected region. Furthermore, the tube-shaping 

and welding processes can produce significant level of residual stresses, which can cause 

premature failures during operation [6]. Therefore, a post weld heat treatment (PWHT) is 

recommended to relieve the weld residual stresses. However, in practice it is not always 

possible to follow these codes strictly, especially when the whole boiler is constructed as a 

single unit and it is then too large and too complex, and possibly contains different tubing 

materials, to have PWHT applied.  

The knowledge of local strength variation in the weld-affected regions is crucial in 

the structural integrity assessments of these units [7, 8].  Several methods for capturing the 

spatial variation in tensile properties in weldments have been reported in literature.  One such 

method involves testing of miniature-specimens extracted from different regions of 

weldments [9–11]. However, the spatial resolution and accuracy that can be achieved using 

miniature-specimens are limited by the ability to isolate the individual weld regions. Another 

method is based on the instrumented ball indentation technique [12, 13].  Although the 
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resolution obtainable by the ball indentation method is much better than that can be achieved 

by miniature-specimens, the technique requires semi-empirical formulas and the conditions 

generated by multi-axial compression loading are assumed to correlate well with those of 

uniaxial compression and tension loading. A more promising method involves testing tensile 

specimens that are machined from weldments to contain the main parts of the weldment 

within their gauge length (so-called cross-weld specimens) and mapping full field strain at 

the gauge section using a full-field optical technique [5, 14]. The main advantage of this 

method over the other methods is that it provides local stress strain curves, from which the 

variation of mechanical properties such as proof stress across the weldment can be 

determined.   

A common optical method used for these measurements is digital image correlation 

(DIC), which is based on computational tracking of contrasting surface features (speckle 

patterns) on digital images of the specimen's gauge section taken during deformation. The 

algorithm used in the DIC technique divides the images into sub-regions and, provided that 

each sub-region or “subset” has a unique traceable intensity pattern within the immediate 

vicinity, the algorithm cross-correlates the subset patterns in successive images. It then 

calculates the relative displacement vector of each subset in each pixel with sub-pixel 

accuracy [15]. This spatially resolved displacement/strain measurement with DIC enables the 

investigation of the local material properties in heterogeneous materials, such as welded 

components.  It has been used by several researchers to determine the local material 

properties of friction stir weldments [14, 16–24], arc weldments [10, 11, 25–29] and laser 

beam weldments [30, 31] during tensile testing.  

In the present study, as part of a project investigating the effect of fabrication history 

on 316H tube weldments, the local tensile properties of the weldments after different 
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manufacturing steps (pre-straining, welding and heat treatment) have been studied by 

carrying out tension tests on specimens that were cut perpendicular to the weld line, such that 

the gauge length of the specimen contained the fusion zone and the heat affected zone (cross-

weld specimens). The offset proof strength variation across the weldment was obtained on 

cross-weld tensile specimens from the local stress-strain curves which were constructed 

using the local displacement measurements by DIC and the global load measured by the load 

cell unit of the tensile test machine. An anomaly in the form of apparent strain relaxation 

with increasing applied load was observed in the local stress-strain curves obtained in the 

HAZ of the cross-welds tensile specimens cut from the tubes that were pre-strained before 

welding. Similar observations have been reported in literature [21, 25, 29], which were 

attributed to the use of global stress in calculations and the strength mismatch between the 

weld and base metals. The global stress is determined directly from the load cell readings of 

the testing machine and hence the stress is assumed to be uniform throughout the gauge 

section of specimens (“iso-stress assumption”) [14]. Lockwood and Reynolds [17] 

experimentally and numerically studied the validity of  the iso-stress assumption and the level 

of constraint due to the specimen geometry. They reported that, although the use of global 

stress was a convenient way of extracting the local material properties, the constraint due to 

the thickness of the specimen has an influence on the deformation behaviour, which leads to 

the breakdown of the iso-stress assumption. A numerical modelling work using finite 

elements has been undertaken in the present study to verify the measured local stress-strain 

curves by investigating (1) the strength mismatch effect, (2) the influence of strain calculation 

method and (3) the use of global load in characterising local stress-strain curves. The effect 

of these anomalies in the prediction of offset proof strength variation across the weld from 

the local stress-strain curves was also investigated using the finite element simulations.   



6 

 

 

Experimental Procedure 

1. Materials 

A set of plastically-strained and butt-welded tubes were supplied for the experimental 

programme by EDF Energy (Table 1). The untreated tubes (referred to as the tubes before 

plastic straining and welding) were manufactured by extrusion and then solution annealed at 

1100°C for 3 minutes followed by water quenching. The final austenite grain size is about 

25µm. The tubing material is AISI Type 316H austenitic stainless steel with the composition 

given in Table 2. The initial tubing geometry was 38 mm in outer diameter and 4 mm in wall 

thickness. The test specimens were fabricated as follows;  

(1) two 450 mm long tubes were pulled uniaxially in tension to give a plastic strain of 10% 

in the first tube and 20% in the second tube. The pre-straining processes were done using a 

strain rate of ~0.15%/s with a servo-hydraulic rig. The tube ends were connected to the servo-

hydraulic rig using specifically manufactured adaptors, which were welded to the ends of the 

tubes so that they could be easily fitted to a pair of universal joints for gripping. 25 mm of 

the tube ends where the adaptors were welded were chopped off after the completion of pre-

straining process. The strain during the processing was monitored by a side-mounted 

extensometer, four strain gauges fitted at 90° intervals around the circumference of the centre 

of the pipe and by fiducial markings on the pipe length.   

(2) The strained tubes and a non-strained tube were cut into two halves.  

(3) Following a root tack welding, the matching half-tubes were clamped together and then 

welded using a tungsten inert gas (TIG) welding process (complying to the welding standard 

ISO 15614-1) with type 316L filler metal code (Tables 2 and 3). The weld contains two 

passes: root pass and cap pass. During the root pass the tacks were incorporated into the weld. 
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A micrograph of the weld cross section and the weld geometry are shown in Fig. 1.  A 

microstructural examination revealed that the weld microstructure is mainly austenite with 

about 5% delta-ferrite.  

Flat tensile test specimens from both the welded part of the tube (cross-weld 

specimens) and the tube ends that were not affected by the welding process (plain specimens) 

were cut using electro-discharge machining (EDM) as shown in Fig. 2.  The specimens were 

then ground flat to a thickness of 3 mm.  Standardized tensile test specimens are generally 

designed according to ASTM E 8/E 8M – 11: Standard Test Methods for Tension Testing of 

Metallic Materials [32]. However, the dimensions of the specimens have been modified in 

this work due to the tube geometry. In addition, the gauge length of the cross-weld specimens 

has been designed longer in order to fit all the weld affected zones (the weld metal, the HAZ 

and the base metal). The actual test specimens with modified dimensions have been machined 

after the verification tests with dummy samples following FEA simulations to check the 

stress distribution through the test specimen during tensile test.  The cut position and the 

dimensions of the tensile specimens are given in Fig. 2. The tubes, cross-weld and plain 

tensile specimens are labelled as shown in Table 1. Some of the specimens were labelled as 

“HT” to show that they were heat treated at a soaking temperature of 1050°C for 15 minutes 

under vacuum and quenched to 50°C with nitrogen gas. 

 

2. Tensile testing 

Tension tests of plain and cross-weld specimens (B0, B10, B20, B0-HT, B10-HT, B20-HT 

and C0, C10, C20, C0-HT, C10-HT, C20-HT) were carried out using a screw-driven tensile testing 

machine with a 30kN load cell. Mechanical wedge action grips were used to fix the 

specimens into the machine. In addition to DIC measurements, a clip gauge (Instron, 25mm 
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gauge length) was attached to the specimens to measure the extension of the gauge length. 

Before each test commenced, the loading and specimen alignment was checked using a laser 

line alignment tool in order to avoid subjecting the specimen to any bending or torsion, i.e. 

to ensure the loading was purely uniaxial tension [33, 34]. Two universal joints were used to 

improve axial alignment. Additionally, 2 mm thin aluminium guide plates were placed in the 

wedge grips to centrally position the shoulders of the specimens with the loading axis of the 

testing machine. 

 

3. Digital image correlation 

The full field distribution of strain was obtained throughout DIC integrated tensile 

tests of plain and cross-weld specimens. The surface pattern required for the DIC 

measurements is usually obtained by applying a spray paint. However, in this study, it was 

found that the speckle pattern obtained by white light illumination of the rough surface 

produced by EDM gave finer and more consistent speckle pattern, and hence better image 

correlation [27]. A DC fibre optic light source was used to illuminate the surface. The tensile 

tests were performed under displacement control with a constant extension rate of 

0.1mm/min. During the tests, images of the front surface of the specimens were captured by 

a digital single lens reflex (DSLR) camera (Nikon D300), with a sensor size of 4,288 x 2,848 

pixels, and a 200 mm macro lens.  The pixel size for the magnification used corresponded to 

about 11 m. The images were taken every 10 seconds and the load and extension from the 

testing machine were recorded every second. The analysis of the images was performed using 

a commercial DIC software package [35].  

In-plane displacement vectors in the loading direction were calculated within the 

user-defined working space using a ‘256×256 subset size with 50% overlap and 2 passes’ 



9 

 

and a ‘128×128 subset size with 50% overlap and 6 passes’ respectively. After the 

displacement map in the loading direction was obtained using the DIC software, the strain 

was calculated by differentiating the displacement in a user-defined gauge length using a 

Matlab script. Stress-strain curves were constructed with the averaged strain data for each 

row and the global stress (i.e. the iso-stress assumption) calculated using the data from the 

load cell, as shown in Fig. 3.  A linear line is fit to the data points in a user-defined range 

within the elastic regime. This linear line is offset to a required value (0.2%, 1.0%, 2.0% etc) 

and the proof stress at the input value is taken as the stress component of the point where the 

offset line and the stress-strain curve intersect. 

 

Experimental Results 

1. Plain specimens  

Plain tensile test specimens (B0, B10, B20, B0-HT, B10-HT, B20-HT) were extracted from 

positions remote from the influence of the welds. Their global tensile stress-strain behaviour 

is shown in Fig. 4(a). Although they have homogenous material properties, the DIC technique 

was employed to measure strain in the gauge section of the specimens and compared to those 

obtained by the extensometer in order to verify the confidence in DIC technique. As can be 

seen in Fig. 4(b), the results from the extensometer and the DIC measurements show a good 

correlation for all the specimens. Fig. 4(b) also gives a tabulation of 0.2% and 1% proof 

stresses derived from these curves.   

2. Cross-weld specimens  

Cross-weld tensile test specimens (C0, C10, C20, C0-HT, C10-HT, C20-HT) were extracted 

across the weldment; therefore, the material properties vary along the gauge length which 

includes the weld metal, the HAZ and the unaffected base metal (Fig. 4(a)).  Hardness 
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profiles across the weld for the as-welded and heat-treated cross-weld specimens have been 

obtained using an automated hardness test machine with a load of 5kgf.   It can be seen in 

Fig. 5 that the hardness values in the unaffected base metal are almost constant, but they vary 

in the weld pool and the HAZ. 

Four Kyowa KFG-1-120-C1-16 type strain gauges (SGs), which were 1.1 mm wide 

and 1 mm long, were glued on the tensile specimens as shown in Fig. 6. The two SGs, which 

were attached 20 mm away from the weld centre line (WCL) on opposite faces of the 

specimen, were used to check the alignment of the test fixture. The other two SGs were 

located on the back surface of the specimen; one SG was glued at the middle of the weld and 

the other was in the HAZ region (~6.5 mm away from WCL). The local stress-strain curves 

constructed with the strain data obtained from these latter two SGs were compared to the 

stress-strain curves constructed with strain data obtained using the DIC measurements for 

verification. Note that the global stress (iso-stress), which was calculated from the load (kN) 

recorded from the load cell attached to the crosshead of the Instron testing machine, was used 

to construct both sets of stress-strain curves.  

The full field displacement data obtained by the DIC measurements were used to 

construct stress-strain curves at every subset (~ 0.5 mm2) of the test area shown in Fig. 6.  

These were then used to map the variation of proof stress across the weldment.  The complete 

stress-strain curves at three critical locations are mentioned below.       

Local stress-strain curves obtained at the weld centre 

Stress-strain curves, which were constructed with the strain data from SGs and DIC 

at the weld centre, are given in Fig. 7. Results from the two measurement techniques show a 

good overall correlation, although there are some discernible differences, which may 

possibly be attributed to the fact that these measurements were made on the opposite sides of 
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the test specimen. Stress-strain curves obtained from specimens C0, C10 and C20 at the weld 

centre, which represent the weld metal tensile behaviour prior to the heat treatment, are very 

similar. The tensile behaviour of the weld metal after the heat treatment is depicted in the 

stress-strain curves obtained from specimens C0-HT, C10-HT and C20-HT at the weld centre. The 

effect of heat treatment on the weld metal can be clearly seen: 0.2% proof stress of the weld 

metal prior to heat treatment is between 265-275 MPa, which decreases to about 200-220 

MPa after the heat treatment.  

Local stress-strain curves obtained at a distance of 6.5mm from the WCL 

Stress-strain curves, which were constructed with the strain data from SGs and DIC 

at the position of 6.5mm from the WCL, are given in Fig. 8. Results from the two 

measurement techniques show a good correlation for all specimens. (Note that the stress-

strain curves obtained from the SG on specimens C0 and C10 end at 2.7% and 0.8% strain, 

respectively, because the SGs detached unexpectedly during testing). However, there is 

anomalous behaviour in the curve for the specimen C20; there is an apparent strain relaxation 

starting at around 200 MPa.  This strain relaxation seems to coincide with the start of the 

strain-hardening that the weld metal experiences after yielding at ~210MPa. This anomaly 

was also observed in other regions of the HAZ as discussed below.    

Local stress-strain curves obtained at a distance of 10mm from the WCL 

At 10mm from the WCL in cross-weld specimens, strain data was only obtained from 

DIC measurements (Fig. 9). The stress-strain curves for the heat-treated specimens C0-HT, 

C10-HT and C20-HT are very similar to those observed at 6.5mm. Similar to the anomaly 

detected in specimen C20 at 6.5 mm, but somewhat more pronounced here, an apparent strain 

relaxation effect has been observed for specimens C10 and C20. Although this apparent strain 

relaxation seems to be starting at around 340 MPa for both specimens (the dashed rectangle 



12 

 

in Fig. 9), the change in slope of the elastic line with increasing stress (which will be referred 

as “reduced-strain” trend hereafter) starts at a lower stress, coinciding with the strain 

hardening in the weld metal after yielding at ~210MPa.  This suggests that, once local 

yielding starts, the load partitioning is not homogenous throughout the weldment and, hence, 

the iso-stress assumption that was used to plot the stress-strain curves is no longer valid.  

Local stress-strain curves obtained at a distance of 20mm from the WCL 

Stress-strain curves obtained from SG and DIC measurements at 20mm from the 

WCL are given in Fig. 10. It can be seen that C10 and C20 specimens show a similar anomaly 

as in the case of 10mm, albeit less pronounced.  At 20mm from the WCL the stress-strain 

curve of C10 has both elastic and plastic regions, however, C20 is still in the elastic region and 

does not reach yielding point when the failure occurs in the weld metal. The stress-strain 

curve of C10 is very similar to that of plain specimen, B10 (Fig. 4(b)), which suggests that 

beyond 20 mm from the WCL, there is no effect of welding on mechanical properties. The 

heat-treated specimens C0-HT, C10-HT and C20-HT show again a similar stress-strain behaviour 

as in Figures 8 and 9. 

The stress-strain curves obtained from the base metal and the HAZ at different 

positions suggest that the welding and heat treatment has a considerable influence on the 

material properties of the unstrained and pre-strained base metal. It was observed that the 

pre-strained base metal becomes softer closer to the fusion boundary after welding. As 

mentioned above, some of the stress-strain curves obtained from the pre-strained base metal 

in non-heat-treated condition showed some anomalies. The unstrained base metal was also 

affected by the welding process; the hardness and the strength of both the weld and the base 

metal were lower after the heat treatment. Stress-strain curves obtained from the heat-treated 
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specimens (C0-HT, C10-HT and C20-HT) at different positions in the base metal suggest that the 

mechanical properties are very similar at these positions.  

For a better understanding of the variation in material properties, the proof stress 

distribution is given in Fig. 11 which plots the variation of 0.2% proof stress on one side of 

the WCL for the cross-weld specimens based on the analysis of the DIC stress-strain curves. 

In specimen C0, the proof stress increases from a minimum of 268 MPa in the weld region to 

a maximum of 319 MPa at about 10mm from the WCL and then drops gradually to a steady 

value of 285 MPa at about 25mm from the WCL. In specimen C10, the proof stress increases 

steadily from a minimum of 260 MPa in the weld region to a maximum of about 565 MPa at 

16mm from the WCL, where it levels off.  The trend in proof stress for specimen C20 is 

similar to C10 but in this case the material beyond 8.5mm did not show any yielding (since 

fracture already took place in the softer weld metal before the yield stress level of the material 

beyond 8.5mm was reached) and hence the proof stress could not be derived. In specimen 

C0-HT, the proof stress increases from a minimum of 200 MPa in the weld region to a 

maximum of about 250 MPa at 7mm from the WCL and it remains almost constant beyond 

that point. In specimens C10-HT and C20-HT, the trend in proof stress distribution is quite 

similar. Apart from a small increase just after the weld interface, the specimens C0-HT, C10-HT 

and C20-HT show almost identical yielding behaviour. The proof stresses obtained from SGs 

are tabulated in Fig. 11. Results from the DIC and the SGs show a good correlation in general. 

However, the proof stress obtained from the SG on specimen C0 at WCL is 290 MPa whereas 

the DIC gives 275 MPa. Note that the SGs are on the opposite half and at the back surface of 

the specimen. Proof stresses obtained from the back and front SGs at 20mm away from the 

WCL for specimens C0 and C10 are very similar, which confirms the alignment of the loading 

fixture and the specimen was correct.  
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FE validation of DIC integrated tension test of a cross-weld specimen with strength 

mismatch 

The hardness profile in Fig. 5 suggests that specimens C0, C0-HT, C10-HT and C20-HT are 

almost homogenous whereas the non-heat-treated base metal of the specimens C10 and C20 

are much stronger than the weld metal, which means that there is a strength mismatch in 

those specimens.  

During tensile testing of a cross-weld specimen with a significant strength mismatch 

level, as in the case of the specimens C10 and C20, the strong metal can constrain the plastic 

deformation of the soft metal and bi-axial stresses can develop during yielding at the interface 

they join. Therefore, these bi-axial stresses can influence the yielding behaviour of the 

material in the vicinity. So, the softer material may start to deform at a higher applied stress 

than those observed in homogeneous materials and this may affect the local stress-strain 

curves which are constructed using the uniaxial stress and strain information.  

In order to understand the effect of strength mismatch on cross-weld specimens and 

validate the experimental results, a finite element model was developed. The main aims were 

to investigate: (1) the constraint effects in under-matched strength condition (y-base > y-weld), 

(2) the effect of the strain computation technique on the apparent stress-strain curves and (3) 

the validity of the iso-stress assumption. The results were also expected to provide 

information on the reliability of the prediction of offset proof strength variation across the 

weld from the local stress-strain curves showing the anomalies in the elastic region of 

sections with higher proof strength. 

1. Finite Element Model  

A 2D multi-material model with plane stress elements was developed with the 

assumption that the weld geometry was symmetrical through the thickness of the specimens. 
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The 2D plane stress assumption was also used by Lockwood and Reynolds, who have found 

that plane stress model gives very comparable results with DIC measurements in thin 

(2.7mm) tensile specimens [17].  In specimens C10 and C20 there is a gradually softened zone 

(i.e. HAZ) where the local yield strength increases continuously from the weld boundary to 

the unaffected base metal. Therefore, the yield strength in the model was assumed to increase 

linearly from the weld metal to the unaffected base metal as shown in Fig. 12. The strength 

mismatch level is given as the ratio of the yield stress of the weld and the base metals. 

Therefore, for this model the strength mismatch level was selected as 0.3. The size of each 

zone was estimated by using the hardness map of the specimens C10 and C20.  

Because of its simplicity, modelling a partitioned HAZ region in cross weld tension 

specimens has been very common [17, 20, 36]. However, varying the material properties 

between the weld and the unaffected base metal in a stepwise manner creates an artificial 

interface between each HAZ partition which results in unrealistic biaxial stress state at each 

interface. In the multi-material model used in this study, a continuous HAZ material in which 

the properties are functionally graded was generated by the ABAQUS user-subroutines [37].  

This finite element model, which had 1518 elements and 4853 nodes (Fig. 13), was 

analysed using ABAQUS Version 6.7 [37]. Quadrilateral CPS8R (reduced integration, eight-

node element) type plane stress elements were used in the models. The boundary conditions 

were selected to simulate the actual tension tests of cross-weld specimens; i.e. the bottom 

end of the specimen was fixed and the top end was pulled with a constant displacement rate 

of 0.1mm/min. The FE analysis was static and non-linear, based on isotropic elastic–plastic 

materials with isotropic work-hardening. Strain rate dependency was not taken into account 

since the displacement rate was small. 

2. Numerical Results  
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Local stress-strain curves 

In order to investigate whether the anomalies observed in tension tests were caused 

by a real material behaviour or were a result of experimental inadequacies, such as the use of 

iso-stress assumption, local true-stress versus true-strain curves obtained by the FE modelling 

were examined. The effect of strain averaging along the width and the use of global stress on 

the shape of a local stress strain curve in HAZ are demonstrated in Fig. 14, where four 

different stress-strain curves are plotted to show the local deformation behaviour at 7.75mm 

away from the WCL. These curves are compared to the input stress-strain curve (see ) 

in the same figure. Note that the stress and the strain used to construct these curves are in the 

loading direction as it was measured during the DIC integrated tension tests. These four 

stress-strain curves are: 

(1) “stress @ mid-width” vs. “strain @ mid-width” curve (see  on Fig. 14)  

which was constructed by the axial stress and axial strain calculated for the middle 

domain (filled domain in Fig. 14) at 7.75mm from the WCL. This curve represents 

the original local deformation behaviour in this domain when the whole specimen is 

under tension.  

(2) “averaged-width stress” vs. “averaged-width strain” curve (see  on Fig. 14) 

which was constructed by the axial stress and strain, both averaged along the full-

width (all unfilled domains + the filled domain in the middle) at 7.75mm from the 

WCL. This curve represents the original local deformation behaviour averaged over 

the domains lying along the width at a distance of 7.75mm from the WCL. 

(3) “global stress” vs. “strain @ mid-width” curve (see  on Fig. 14). The curve 

(1) was modified by using the global stress (iso-stress) instead of the “stress @ mid-

width” because the experimental local-stress-strain curves can only be constructed 
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using the global stress as the local stress cannot be measured. Therefore, this curve 

represents one of the extremes for the experimental way of constructing the local 

stress-strain curve using local strain at a point and the global stress. This enables the 

spatially-resolved local deformation behaviour on the sample surface to be obtained, 

as it was used by Reynolds and Duvall [14].  

(4) “global stress” vs. “averaged-width strain” curve (see  on Fig. 14). The curve 

(2) was modified by using the global stress instead of the “averaged-width stress” due 

to not being able to measure local stress. This curve represents another extreme for 

the experimental way of constructing the local stress-strain curve using the averaged-

strain along the width at a specific distance from the WCL and the global stress.  

 

Iso-stress assumption (the use of global stress) in DIC analyses means that the stress, 

which is used to construct the local stress-strain curves, is uniform along the specimen gauge 

length and is calculated by dividing the global load to the original cross-section of the 

specimen. In FE analyses, the stress averaged across the width at 24.5mm away from the 

WCL was considered as the “global stress”, since at 24.5mm away from WCL and further 

away towards the end of the specimen the axial stress is uniform across the width and there 

is very small deformation in the transverse direction during the simulation.  

In Fig. 14, it can be seen that there is no anomaly on curves (1) and (2), although they 

are different from the input stress-strain curve. The use of global stress instead of “averaged-

width stress” does not influence the stress-strain behaviour (see curves (2) and (4)). On the 

other hand, the use of global stress instead of “stress @ mid-width” considerably modifies 

the stress-strain behaviour (see curves (1) and (3)). On curve (3), the most significant 

modification is the “reduced-strain” trend, i.e., the change in the slope of the elastic region 
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after 250MPa. This “reduced-strain” trend on curve (3) was observed in the experimental 

local stress-strain curves at 10mm (in the HAZ) from the WCL for specimens C10 and C20 

(Fig. 9). Note that curve (3) employs “strain @ mid-width” whereas the experimental local 

stress-strain curves employ averaged-width strain. This conflict briefly happens because of 

the definition of the working space in which the displacement vectors were calculated.  The 

working space was defined as a rectangular area which does not include whole of the 

specimen width (includes only 3.5mm in the middle of a 6mm specimen width) because, for 

practical reasons, the working space selected is based on the last image where the specimen 

has shrunk considerably due to Poisson effect.  

Reliability of the proof stress distribution  

It was shown in Fig. 14 that the use of global stress and strain-averaging across the 

width of the specimen influences the local stress-strain curves. Experimentally, local stress-

strain curves which were constructed with global stress and strain averaging across the width 

were used to predict the 0.2% offset proof stress along the half the length of the cross-weld 

specimens (see Fig. 11). In order to check the reliability of the experimental prediction of the 

proof stress distribution in a cross-weld specimen with strength mismatch, the numerical 

local stress-strain curves, which were constructed with FE results by using the same 

experimental assumptions, were employed to predict the 0.2% and 1% proof stresses. In Fig. 

15, 0.2% and 1% proof stress determined from the input stress-strain curves is compared with 

the proof stress distributions predicted from two types of local stress-strain curves; curve (3), 

which was obtained by plotting “global stress” vs. “strain @ mid-width”, and curve (4), 

which was obtained by plotting “global stress” vs. “averaged-width strain”. It can be seen 

that although the DIC experimental procedure and strength mismatch has affected the local 

stress-strain curves, the use of curve (3) on the determination of the 0.2% and 1% proof stress 
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distributions has a negligible effect. In the HAZ region, when compared to the input 0.2% 

proof stress, curve (3) gives a very similar proof stress (~1MPa higher than the input data), 

whereas curve (4) gives a considerably lower proof stress (~40MPa lower). Similarly, 

compared to the input 1% proof stress, curve (3) gives a very similar proof stress (~4MPa 

higher), whereas curve (4) gives a lower proof stress (~25MPa lower).  

 

Discussion 

1. Effects of manufacturing steps on tensile properties 

Pre-straining 

Pre-straining has a considerable effect on the strength of the base material. The 0.2% 

proof strength of the plain specimens B0, B10 and B20 are 295MPa, 557MPa and 689MPa, 

respectively (Fig. 4(b)). The increase in the strength is due to the accumulation of plastic 

strain in the material after pre-straining [38]. The accumulated plastic strain after pre-

straining can be qualitatively determined by hardness measurements. The hardness values of 

the non-strained, 10% pre-strained and 20% pre-strained base material are 154, 218 and 251 

HV, respectively (Fig. 5).  

Welding 

It was found that the 0.2% proof stress in the weld is between 260-280MPa and is 

similar for specimens C0, C10 and C20. It was also observed that the hardness values of the 

weld in all three tubes are the same (150 HV). The difference in stress-strain curves obtained 

from SG and DIC (Fig. 7) confirms that the material properties of the front and back surfaces 

are possibly different since the back surface represents the root pass whereas the front surface 

represents the cap pass. 
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The slight increase in proof stress (Fig. 11) and hardness (Fig. 5) of specimen C0, in 

the base metal between 5 and 25mm from the WCL is associated with hardening during the 

welding process. The hardening in the base metal near the fusion boundary was reported in 

the thermo-mechanical welding simulations of the stainless steels [39, 40]. The hardening 

response of this stainless steel tube during a welding thermo-mechanical cycle is very 

complicated because of the wide ranges of imposed temperature, total strain and strain rate, 

and because of the potential recovery, recrystallization, creep and visco-plastic effects at high 

temperatures [39]. Smith et al [39] have developed a numerical model for the accurate 

prediction of the weld residual stresses in 3-pass groove welds of a 316L stainless steel plate. 

In their simulation, the material model was based on a thermo-mechanical hardening 

behaviour which considers the cyclic strain hardening and annealing phenomena. They 

observed that plastic strain accumulation occurs in the base metal adjacent to the weld bead 

after each weld thermo-mechanical cycle. Their observation was confirmed by spatially 

resolved proof stress data on cross-weld samples cut from each weld pass using ESPI 

(electron speckle pattern interferometry) integrated tension tests [5]. They measured 4-6.5% 

plastic strain in the heat-affected zones of different cross-weld samples. Similarly, Shan et al 

[40] has developed a 3D thermo-mechanical model of a single-bead-on-plate weld (316L 

stainless steel) and reported accumulation of 4-8% plastic strain near the weld bead in the 

base metal  due to welding.  

The effect of welding onto plastically strained materials in terms of hardness and 

0.2% proof stress can be seen in Figures 5 and 11, respectively. There is a marked drop in 

hardness and proof stress for the pre-strained and welded samples approaching the weld from 

about 16mm away from the WCL. This is caused by the welding process. Base metal near 

the weld was heated to temperatures where dislocation annealing mechanisms are known to 
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take place. During welding of tube A0, it was recorded that the peak temperatures had reached 

800C, 550C and 400C at 9, 14 and 19mm away from the WCL, respectively. It is known 

that the annealing temperature of a metal can be lowered by increasing the amount of cold 

work [41]. It was observed in this study that the austenite grain size increases with amount 

of cold work from about 25m (no plastic strain) to 45m (20% plastic strain) at 1mm 

distance from the fusion boundary. These findings suggest that the pre-strained base metal 

adjacent to weld (about 1-1.5mm from the fusion boundary) was annealed due to the heat 

produced by welding. The gradual decrease in proof stress towards the fusion boundary may 

be explained with partial softening (recovery).  

Heat Treatment 

Heat treatment at 1050°C with a soaking time of 15 minutes has a significant 

influence on the tensile properties of the plain and the cross-weld specimens. The 0.2% proof 

strength of the plain specimens decreases dramatically after the heat treatment.  The 0.2% 

proof stress of specimens B0-HT, B10-HT and B20-HT are 249, 218 and 225MPa, respectively 

(Fig. 4(b)). 

Surprisingly, the stress-strain curves of the specimens B10-HT and B20-HT are below the 

stress-strain curve of the specimen B0-HT.  This can be attributed to the Hall-Petch grain size 

effect [42, 43]. The micrographs of the plain samples before and after heat treatment are 

given in Fig. 16. Prior to the heat treatment, the grain size of both non-strained and pre-

strained material is ~30m in the straining direction. However, after the heat treatment the 

grain size of plain material is almost unchanged at about 28 m, whereas the grain size of 

the pre-strained materials was almost doubled (>50 m), which resulted in lower strength.  

It has been found that the heat treatment has also altered the tensile properties of the 

cross-weld specimens. The proof stress of the weld metal decreased by 60MPa as a result of 
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the heat treatment. This can be attributed to the decrease in ferrite content in the 

microstructure. Austenitic stainless steel welds usually contain unstable delta ferrite, which 

is known to prevent hot-cracking during solidification. The AISI 316L weld metal in the 

samples tested in this work contained about 5% delta-ferrite.  However, since delta-ferrite is 

an unstable phase, it partially transforms to austenite at the heat treatment temperature of 

1050°C. Decreasing ferrite content is generally known to result in a decrease in room-

temperature strength [30].  The decrease in 0.2% proof stress of the base metal in specimens 

C0-HT, C10-HT and C20-HT is similar to the decrease in the proof stress of plain specimens B0-

HT, B10-HT and B20-HT.  The hardness profiles on heat-treated cross-weld samples (Fig. 5) 

agrees well with the proof stress distribution on cross-welds C0-HT, C10-HT and C20-HT (Fig. 

11).  

It can be concluded that the effect of pre-straining on mechanical properties has been 

eradicated by the heat treatment process. 

 

2. Local stress-strain curves 

Local strains were measured with DIC and SGs during the tension tests of cross-weld 

specimens. Since it is not possible to measure local stresses in a composite specimen during 

the tension test, in the construction of local stress-strain curves, the global stress was used. 

Anomalies have been observed at around 340 MPa on some of the experimental curves 

obtained from C10 and C20 specimens (Fig. 9). A realistic FE model of the cross-weld 

specimen with strength mismatch was useful to understand why these anomalies exist on 

some curves, which are discussed below.  

In a tension test of a homogenous specimen the stress is purely axial and no stress 

develops in the transverse or through thickness direction in the gauge length until necking 
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starts. However, in a tension test of a cross-weld specimen, biaxial stresses develop after 

yielding starts due to the strength mismatch. The strong metal can constrain the deformation 

of the soft metal and bi-axial stresses can develop at the interface. The development of 

stresses in the loading and transverse direction during the tension test of a cross-weld 

specimen with strength mismatch is shown in Fig. 17. According to the 2D von Mises 

yielding criteria, the development of transverse stresses will affect the yielding behaviour of 

the metal. The reason why curves (1) and (2) in Fig. 14 are different than the input stress-

strain curve is the development of biaxial stresses and strains as demonstrated in Fig. 17. 

In Fig. 14, it was observed that, when averaged-width strain was used, the use of 

global stress instead of actual averaged-width stress does not modify the local stress-strain 

curve (see curves (2) and (4)). This means that the actual stress averaged across the full-width 

at 7.75mm is very similar to the global stress. On the other hand, it was found out that when 

strain at the mid-width at 7.75mm from WCL was used, the use of global stress instead of 

actual stress at mid-width creates an anomaly as observed experimentally (see curves (1) and 

(3)). The reason for that is the non-uniform axial stress distribution throughout the specimen 

as shown in Fig. 17(a), which results in a significant difference between the global stress and 

the actual axial stress at mid-width at 7.75mm.  

Fig. 15 shows that the proof stress prediction using the curve (3) (“global stress” vs. 

“strain @ mid-width”) is more reliable compared to that using curve (4) (“global stress” vs. 

“averaged-width strain”). It can be seen from Fig. 15(b) that even 1% proof stress prediction 

using curve (4) is 25MPa less than the input 1% proof stress. The reason why curve (4) does 

not predict the proof stress well, despite not showing any anomaly, is because it does not 

represent the input stress-strain curve well. On the other hand, even though there is anomaly 
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on curve (3) due to the use of global stress, it is similar to the input stress-strain curve (see 

Fig.14).  

The deformation behaviour at mid-width at 7.75mm from WCL is governed by the 

corresponding local input stress-strain curve. Therefore, curve (3) is expected to be similar 

to the input stress-strain curve when (i) the global stress is close to the equivalent stress at 

mid-width and (ii) the axial strain at mid-width is close to the equivalent strain at mid-width. 

Note that the similarity between the curve (3), or curve (4), and the input stress-strain curve 

will change depending on the combined effect of the specimen geometry, length of the HAZ 

and the strength mismatch between the base and weld metals. 

   

Conclusions 

It has been shown that the DIC technique can successfully be used to map local strain 

variations in welded joints during tensile testing.  The technique has been employed to study 

the effect of pre-straining on the properties of welded thin-walled tubes manufactured from 

AISI 316H type stainless steel.  

The tensile tests of the plain specimens cut from the studied tubes showed that the 

pre-straining the material to 10% and 20% increases the proof stress about 190% and 230%, 

respectively. The effect of pre-straining, however, could be reversed by applying an 

appropriate heat treatment procedure.  The effect of pre-straining on proof stress was also 

considerable in cross-weld specimens cut from the welded-tubes. The mapping of the proof 

stress across the weldment revealed that, although no significant increase in the proof stress 

was observed within the weld metal, it gradually increased in the HAZ away from the WCL, 

reaching to the plain metal levels at about 20 mm from the WCL.  As in the plain specimens, 
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the effect of pre-straining disappeared in the cross-weld specimens and the proof stress along 

the specimens was nearly homogenized after the heat treatment at 1050C for 15 minutes.  

Strength mismatch within the weld affected zone resulted in apparent strain relaxation 

in local stress-strain curves when strain fields obtained by DIC was constructed using global 

stress calculated from the applied load. The reason for this is that once local yielding begins 

in a region with lower yield strength, the surrounding region with higher yield strength 

constrain the softer material and biaxial stresses develop in the region. FE simulation of a 

tension test of a cross-weld specimen using a multi-material model confirmed that bi-axial 

stresses develop progressively within the HAZ between the already plastically deformed 

region and the adjacent region that hasn't yielded yet. The biaxial stress state changes the 

local yielding behaviour of the material and hence the use of global axial stress to construct 

the local stress-strain curve in the HAZ where the bi-axial stresses progressively develop 

produces an experimental anomaly where the strain appears to relax in the elastic regime 

with increasing strain. FE modelling results suggest that the use of global stress to calculate 

the proof stress in the specimens showing the reduced-strain anomaly caused by the strength 

mismatch level of 0.3 produces less than 8% error in proof stress when strain fields were 

obtained from the middle section (strain @midwidth) of the cross-weld specimen tests. 
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Tables 

Table 1 Photographs of the tubes and labelling of the test specimens 

Pre-strained and welded tubes 
Degree of 

plastic 
deformation 

Label 
of 

tubes 

Label of 
the plain 
tensile 

specimens 

Label of the       
cross-weld 

tensile 
specimens 

 

0% A0 B0, B0-HT C0, C0-HT 

 

10% A10 B10, B10-HT C10, C10-HT 

 

20% A20 B20, B20-HT C20, C20-HT 

 

 

Table 2 Chemical composition of the stainless steel tubing material (Type 316H) and 

the weld material (Type 316L) 

 

 Cr Ni Mo Mn Si Co C 

316H 16.89 11.25 2.04 1.55 0.53 0.089 0.05 

316L 18.38 12.07 2.53 1.61 0.37 - 0.01 

 

  

 

Pipes Degree of 
Plastic 

Deformation 

0% 

10% 

15% 

20% 

 

25% 

 

Pipes Degree of 
Plastic 

Deformation 

0% 

10% 

15% 

20% 

 

25% 

 

Pipes Degree of 
Plastic 

Deformation 

0% 

10% 

15% 

20% 

 

25% 
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Figures 

 
Fig. 1 (a) Weld preparation; (b) Micrograph of the weld cross-section.  

 

 

 
Fig. 2 The cut position (top), and the dimensions of the cross-weld test specimens (bottom 

left) and plain specimens (bottom right). Both types of specimens are 3mm thick. (LD: 

longitudinal direction of the tube parallel to the pre-straining direction, HD: hoop direction 

of the tube perpendicular to the pre-straining direction, RD (into the page): radial direction 

of the tube perpendicular to the pre-straining direction). 
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Fig. 3 Flow chart for the determination of the proof stress distribution from DIC displacement 

measurements with Matlab scripts. 
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Fig. 4 (a) Global engineering stress-strain curves of all the specimens obtained by tension 

tests with the use of an extensometer; (b) Comparisons of strain values determined by DIC 

and extensometer (EXT) for plain specimens. 0.2% and 1% proof stresses determined from 

the curves are also tabulated. 
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Fig. 5 Hardness profiles on the as-welded cross-weld specimens C0, C10 and C20 and heat-

treated cross-weld specimens C0-HT, C10-HT and C20-HT.  

 

 
Fig. 6 Positions of strain gauges (SGs) on the back and front surfaces of cross-weld 

specimens.  
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Fig. 7 Stress-strain data measured using strain gauges (SG) and DIC at the weld centre of 

cross-weld specimens. 

 

 
Fig. 8 Stress-strain data measured using strain gauge (SG) and DIC at 6.5mm from the WCL 

of cross-weld specimens. 
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Fig. 9 Stress-strain data measured using DIC at 10mm from the WCL of cross-weld 

specimens. 

 

 
Fig. 10 Stress-strain data measured using SGs and DIC at 20mm from the WCL of cross-

weld specimens. 
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Fig. 11 Variation in 0.2% proof stress moving away from the WCL for cross-weld specimens 

(derived from SG and DIC data). Solid symbols represent the DIC data. Other symbols at 

WCL, 6.5mm and 20mm represent SG data. Open symbols are for the heat treated samples 

labelled with HT. 0.2% proof stress obtained from SG is also tabulated for different positions. 

  



37 

 

 

 

 
 

Fig. 12 Material properties input for FE model. (a) Input stress-strain curves (b) Input yield 

stress distribution along the specimen. Note that material properties in HAZ are continuous 

and there is no interface between unaffected base metal and HAZ. 
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Fig. 13 Finite element model mesh, element size and type 

 

 

 

 
Fig. 14 The effect of iso-stress assumption (the use of global stress) on the stress-strain curves 

obtained from mid-width (filled domain) and averaged-width (unfilled & filled domains in a 

row) at 7.75mm away from WCL. Global stress was obtained from the average of axial 

stresses across the width (unfilled domains) at 24.5mm away from WCL. 
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Fig. 15 Determination of 0.2% (a) and 1% (b) proof stress distribution along the half length 

of the specimen using curves (3) and (4) (see Fig. 14). Solid lines (―) correspond to the input 

0.2% and 1% proof stress. 
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Fig. 16 The microstructures of the plain specimens before (B0, B10, B20) and after (B0-HT, 

B10-HT, B20-HT) the heat treatment on the RD-LD plane 
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Fig. 17 Multi-material simulation results between WCL and 25mm away in the top half of 

the specimen at a global stress of 263, 304, 365, 407 and 440MPa (a) True stress (yy) in 

loading direction (y-direction) (b) True stress (xx) in the transverse direction (x-direction). 

The domain at the mid-width of 7.75mm is highlighted with a rectangle. 

 


