62 research outputs found

    Synthesis of the Einstein-Podolsky-Rosen entanglement in a sequence of two single-mode squeezers

    Full text link
    Synthesis of the Einstein-Podolsky-Rosen entangled state --- the primary entangled resource in continuous-variable quantum-optical information processing --- is a technological challenge of great importance. Here we propose and implement a new scheme of generating this state. Two nonlinear optical crystals, positioned back-to-back in the waist of a pump beam, function as single-pass degenerate optical parametric amplifiers and produce single-mode squeezed vacuum states in orthogonal polarization modes, but in the same spatiotemporal mode. A subsequent pair of waveplates acts as a beam splitter, entangling the two polarization modes to generate the Einstein-Podolsky-Rosen state. This technique takes advantage of the strong nonlinearity associated with type-I phase-matching configuration while at the same time eliminating the need for actively stabilizing the optical phase between the two squeezers, which typically arises if these squeezers are spatially separated. We demonstrate our method in an experiment, preparing a 1.4 dB two-mode squeezed state and characterizing it via two-mode homodyne tomography.Comment: 4 pages, 3 figure

    Undoing the effect of loss on quantum entanglement

    Full text link
    Entanglement distillation is a process via which the strength and purity of quantum entanglement can be increased probabilistically. It is a key step in many quantum communication and computation protocols. In particular, entanglement distillation is a necessary component of the quantum repeater, a device which counters the degradation of entanglement that inevitably occurs due to losses in a communication line. Here we report an experiment on distilling the Einstein-Podolsky-Rosen (EPR) state of light, the workhorse of continuous-variable entanglement, using the technique of noiseless amplification. In contrast to previous implementations, the entanglement enhancement factor achievable by our technique is not fundamentally limited and permits recovering an EPR state with a macroscopic level of entanglement no matter how low the initial entanglement or how high the loss may be. In particular, we recover the original level of entanglement after one of the EPR modes has passed through a channel with a loss factor of 20. The level of entanglement in our distilled state is higher than that achievable by direct transmission of any state through a similar loss channel. This is a key bench-marking step towards the realization of a practical continuous-variable quantum repeater and other CV quantum protocols.Comment: 8 pages, 5 figure

    Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds

    Full text link
    The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound‐induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. We carried out the present work to further develop the mouse model by testing the hypothesis that whole blood NTE inhibition could be used as a biochemical marker for exposure to neuropathic OP compounds. Because brain NTE and AChE inhibition are biomarkers of OPIDN and acute cholinergic toxicity, respectively, we compared NTE and AChE 20‐min IC50 values as well as ED50 values 1 h after single intraperitoneal (i.p.) injections of increasing doses of two neuropathic OP compounds that differed in acute toxicity potency. We found good agreement between the brain and blood for in vitro sensitivity of each enzyme as well for the ratios IC50(AChE)/IC50(NTE). Both OP compounds inhibited AChE and NTE in the mouse brain and blood dose‐dependently, and brain and blood inhibitions in vivo were well correlated for each enzyme. For both OP compounds, the ratio ED50(AChE)/ED50(NTE) in blood corresponded to that in the brain despite the somewhat higher sensitivity of blood enzymes. Thus, our results indicate that mouse blood NTE could serve as a biomarker of exposure to neuropathic OP compounds. Moreover, the data suggest that relative inhibition of blood NTE and AChE provide a way to assess the likelihood that OP compound exposure in a susceptible species would produce cholinergic and/or delayed neuropathic effects. Copyright © 2016 John Wiley & Sons, Ltd.The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound‐induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for the biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. The present work represents further development of the mouse model aimed at using whole blood NTE as a biomarker of exposure to neuropathic OP compounds and predicting OPIDN risk in susceptible species by comparing blood NTE and AChE inhibition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134102/1/jat3305.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134102/2/jat3305_am.pd

    In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer

    Get PDF
    A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene) 290 - block -poly( N , N -dimethylaminoethyl methacrylate) 240 (PB- b -PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag + complexation with PDMAEMA blocks, followed by the reduction of the bound Ag + with sodium borohydride. A successful synthesis of the AgNPs on a PB- b -PDMAEMA micellar template was confirmed by means of UV–Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB- b -PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature. A SERS reporting probe, 4-mercaptophenylboronic acid (4-MPBA), was used to demonstrate a laser-induced enhancement of the SERS signal observed under constant laser irradiation. The local heating of the AgNPs/PB- b -PDMAEMA sample in the laser spot is thought to be responsible for the triggered SERS effect, which is caused by the approaching of AgNPs and the generation of “hot spots” under a thermo-induced collapse and the aggregation of the PDMAEMA blocks of the polymer matrix. The triggered SERS effect depends on the time of a laser exposure and on the concentration of 4-MPBA. Possible mechanisms of the laser-induced heating for the AgNPs/PB- b -PDMAEMA metallopolymer hybrids are discussed

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore