1,682 research outputs found

    Development of text mining tools for information retrieval from patents

    Get PDF
    Biomedical literature is composed of an ever increasing number of publications in natural language. Patents are a relevant fraction of those, being important sources of information due to all the curated data from the granting process. However, their unstructured data turns the search of information a challenging task. To surpass that, Biomedical text mining (BioTM) creates methodologies to search and structure that data. Several BioTM techniques can be applied to patents. From those, Information Retrieval is the process where relevant data is obtained from collections of documents. In this work, a patent pipeline was developed and integrated intoFEDER -Federación Española de Enfermedades Raras(NORTE-01-0145-FEDER-000004)info:eu-repo/semantics/publishedVersio

    Target identification of Mycobacterium tuberculosis phenotypic\textit{Mycobacterium tuberculosis phenotypic} hits using a concerted chemogenomic, biophysical and structural approach

    Get PDF
    Mycobacterium phenotypic hits are a good reservoir for new chemotypes for the treatment of tuberculosis. However, the absence of defined molecular targets and modes of action could lead to failure in drug development. Therefore, a combination of ligand-based and structure-based chemogenomic approaches followed by biophysical and biochemical validation have been used to identify targets for Mycobacterium tuberculosis phenotypic hits. Our approach identified EthR and InhA as targets for several hits, with some showing dual activity against these proteins. From the 35 predicted EthR inhibitors, eight exhibited an IC50 below 50 μM against M. tuberculosis EthR and three were confirmed to be also simultaneously active against InhA. Further hit validation was performed using X-ray crystallography yielding eight new crystal structures of EthR inhibitors. Although the EthR inhibitors attain their activity against M. tuberculosis by hitting yet undefined targets, these results provide new lead compounds that could be further developed to be used to potentiate the effect of EthA activated pro-drugs, such as ethionamide, thus enhancing their bactericidal effect.GM is grateful to the European Molecular Biology Laboratory and Marie Sklodowska-Curie Actions for funding this work. VM and MB acknowledge Bill & Melinda Gates Foundation [subcontract by the Foundation for the National Institutes of Health (NIH)] (OPP1024021). VM and MS acknowledge the European Community’s Seventh Framework Programme [grant number 260872]. GP would like to acknowledge the Wellcome Trust and the European Molecular Biology Laboratory for funding. JPO was funded by the member nation states of the European Molecular Biology Laboratory. TLB acknowledges The Wellcome Trust for funding and support (grant number 200814/Z/16/Z)

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Clinical implementation of pre-treatment DPYD genotyping in capecitabine-treated metastatic breast cancer patients

    Get PDF
    Purpose Metastatic breast cancer (mBC) patients with DPYD genetic variants linked to loss of dihydropyrimidine dehydrogenase (DPD) activity are at risk of severe capecitabine-associated toxicities. However, prospective DPYD genotyping has not yet been implemented in routine clinical practice. Following a previous internal review in which two patients underwent lengthy hospitalisations whilst receiving capecitabine, and were subsequently found to be DPD deficient, we initiated routine DPYD genotyping prior to starting capecitabine. This study evaluates the clinical application of routine DPYD screening at a large cancer centre in London. Methods We reviewed medical records for consecutive patients with mBC who underwent DPYD genotyping before commencing capecitabine between December 2014 and December 2017. Patients were tested for four DPYD variants associated with reduced DPD activity. Results Sixty-six patients underwent DPYD testing. Five (8.4%) patients were found to carry DPYD genetic polymorphisms associated with reduced DPD activity; of these, two received dose-reduced capecitabine. Of the 61 patients with DPYD wild-type, 14 (23%) experienced grade 3 toxicities which involved palmar–plantar erythrodysesthesia (65%), and gastrointestinal toxicities (35%); no patient was hospitalised due to toxicity. Conclusions Prospective DPYD genotyping can be successfully implemented in routine clinical practice and can reduce the risk of severe fluoropyrimidine toxicities

    Phase 1, dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors

    Get PDF
    Background: Data suggest that immunomodulation induced by DNA hypomethylating agents can sensitize tumors to immune checkpoint inhibitors. We conducted a phase 1 dose-escalation trial (NCT02998567) of guadecitabine and pembrolizumab in patients with advanced solid tumors. We hypothesized that guadecitabine will overcome pembrolizumab resistance. Methods: Patients received guadecitabine (45 mg/m 2 or 30 mg/m 2, administered subcutaneously on days 1-4), with pembrolizumab (200 mg administered intravenously starting from cycle 2 onwards) every 3 weeks. Primary endpoints were safety, tolerability and maximum tolerated dose; secondary and exploratory endpoints included objective response rate (ORR), changes in methylome, transcriptome, immune contextures in pre-treatment and on-treatment tumor biopsies. Results: Between January 2017 and January 2020, 34 patients were enrolled. The recommended phase II dose was guadecitabine 30 mg/m 2, days 1-4, and pembrolizumab 200 mg on day 1 every 3 weeks. Two dose-limiting toxicities (neutropenia, febrile neutropenia) were reported at guadecitabine 45 mg/m 2 with none reported at guadecitabine 30 mg/m 2. The most common treatment-related adverse events (TRAEs) were neutropenia (58.8%), fatigue (17.6%), febrile neutropenia (11.8%) and nausea (11.8%). Common, grade 3+ TRAEs were neutropaenia (38.2%) and febrile neutropaenia (11.8%). There were no treatment-related deaths. Overall, 30 patients were evaluable for antitumor activity; ORR was 7% with 37% achieving disease control (progression-free survival) for ≥24 weeks. Of 12 evaluable patients with non-small cell lung cancer, 10 had been previously treated with immune checkpoint inhibitors with 5 (42%) having disease control ≥24 weeks (clinical benefit). Reduction in LINE-1 DNA methylation following treatment in blood (peripheral blood mononuclear cells) and tissue samples was demonstrated and methylation at transcriptional start site and 5' untranslated region gene regions showed enriched negative correlation with gene expression. Increases in intra-tumoural effector T-cells were seen in some responding patients. Patients having clinical benefit had high baseline inflammatory signature on RNAseq analyses. Conclusions: Guadecitabine in combination with pembrolizumab is tolerable with biological and anticancer activity. Reversal of previous resistance to immune checkpoint inhibitors is demonstrated

    A Phase 1, Dose Escalation Study of Guadecitabine (SGI-110) in Combination with Pembrolizumab in Patients with Solid Tumours

    Get PDF
    Background: Data suggest that immunomodulation induced by DNA hypomethylating agents can sensitize tumors to immune checkpoint inhibitors. We conducted a phase 1 dose-escalation trial (NCT02998567) of guadecitabine and pembrolizumab in patients with advanced solid tumors. We hypothesized that guadecitabine will overcome pembrolizumab resistance. Methods: Patients received guadecitabine (45 mg/m 2 or 30 mg/m 2, administered subcutaneously on days 1-4), with pembrolizumab (200 mg administered intravenously starting from cycle 2 onwards) every 3 weeks. Primary endpoints were safety, tolerability and maximum tolerated dose; secondary and exploratory endpoints included objective response rate (ORR), changes in methylome, transcriptome, immune contextures in pre-treatment and on-treatment tumor biopsies. Results: Between January 2017 and January 2020, 34 patients were enrolled. The recommended phase II dose was guadecitabine 30 mg/m 2, days 1-4, and pembrolizumab 200 mg on day 1 every 3 weeks. Two dose-limiting toxicities (neutropenia, febrile neutropenia) were reported at guadecitabine 45 mg/m 2 with none reported at guadecitabine 30 mg/m 2. The most common treatment-related adverse events (TRAEs) were neutropenia (58.8%), fatigue (17.6%), febrile neutropenia (11.8%) and nausea (11.8%). Common, grade 3+ TRAEs were neutropaenia (38.2%) and febrile neutropaenia (11.8%). There were no treatment-related deaths. Overall, 30 patients were evaluable for antitumor activity; ORR was 7% with 37% achieving disease control (progression-free survival) for ≥24 weeks. Of 12 evaluable patients with non-small cell lung cancer, 10 had been previously treated with immune checkpoint inhibitors with 5 (42%) having disease control ≥24 weeks (clinical benefit). Reduction in LINE-1 DNA methylation following treatment in blood (peripheral blood mononuclear cells) and tissue samples was demonstrated and methylation at transcriptional start site and 5' untranslated region gene regions showed enriched negative correlation with gene expression. Increases in intra-tumoural effector T-cells were seen in some responding patients. Patients having clinical benefit had high baseline inflammatory signature on RNAseq analyses. Conclusions: Guadecitabine in combination with pembrolizumab is tolerable with biological and anticancer activity. Reversal of previous resistance to immune checkpoint inhibitors is demonstrated

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for direct stau production in events with two hadronic tau-leptons in root s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of the supersymmetric partners ofτ-leptons (staus) in final stateswith two hadronically decayingτ-leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of139fb−1, recorded with the ATLAS detector at the LargeHadron Collider at a center-of-mass energy of 13 TeV. No significant deviation from the expected StandardModel background is observed. Limits are derived in scenarios of direct production of stau pairs with eachstau decaying into the stable lightest neutralino and oneτ-lepton in simplified models where the two staumass eigenstates are degenerate. Stau masses from 120 GeV to 390 GeV are excluded at 95% confidencelevel for a massless lightest neutralino

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore