74 research outputs found

    COVID Impact and the Rise of Antisemitism

    Get PDF
    My experiences with COVID and the accompanying anti semitism

    Different degrees of malnutrition and immunological alterations according to the aetiology of cirrhosis: a prospective and sequential study

    Get PDF
    OBJECTIVES: In this work we investigated how immunological dysfunction and malnutrition interact in alcoholic and viral aetiologies of cirrhosis. METHODS: To investigate the matter, 77 cirrhotic patients divided in three aetiologies [Alcohol, HCV and Alcohol + HCV) and 32 controls were prospectivelly and sequentially studied. Parameters of humoral immunity (Components 3 and 4 of seric complement and immunoglobulins A M, G and E) and of cellular immunity (total leukocytes and lymphocytes in peripheral blood, T lymphocytes subpopulations, CD4+ and CD8+, CD4+/CD8+ ratio and intradermic tests of delayed hypersensitivity), as well as nutrititional parameters: anthropometric measures, serum albumin and transferrin were evaluated. RESULTS: Multiple statistical comparisons showed that IgM was higher in HCV group; IgG was significantly elevated in both HCV and Alcohol + HCV, whereas for the Alcohol group, IgE was found at higher titles. The analysis of T- lymphocytes subpopulations showed no aetiologic differences, but intradermic tests of delayed hypersensitivity did show greater frequency of anergy in the Alcohol group. For anthropometric parameters, the Alcohol +HCV group displayed the lowest triceps skinfold whereas creatinine – height index evaluation was more preserved in the HCV group. Body mass index, arm muscle area and arm fat area showed that differently from alcohol group, the HCV group was similar to control. CONCLUSION: Significant differences were found among the main aetiologies of cirrhosis concerning immunological alterations and nutritional status: better nutrition and worse immunology for HCV and vice-versa for alcohol

    Oral squamous cell cancer: early detection and the role of alcohol and smoking

    Get PDF
    Objective: Oral squamous cell carcinoma has a remarkable incidence worldwide and a fairly onerous prognosis, encouraging further research on factors that might modify disease outcome. Data sources: A web-based search for all types of articles published was initiated using Medline/Pub Med, with the key words such as oral cancer, alcohol consumption, genetic polymorphisms, tobacco smoking and prevention. The search was restricted to articles published in English, with no publication date restriction (last update 2010). Review Methods: In this review article, we approach the factors for a cytologic diagnosis during OSCC development and the markers used in modern diagnostic technologies as well. We also reviewed available studies of the combined effects of alcohol drinking and genetic polymorphisms on alcohol-related cancer risk. Results: The interaction of smoking and alcohol significantly increases the risk for aero-digestive cancers. The interaction between smoking and alcohol consumption seems to be responsible for a significant amount of disease. Conclusion: Published scientific data show promising pathways for the future development of more effective prognosis. There is a clear need for new prognostic indicators, which could be used in diagnostics and, therefore a better selection of the most effective treatment can be achieved

    Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange

    Get PDF
    One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science

    Classification of current anticancer immunotherapies

    Get PDF
    © 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.info:eu-repo/semantics/publishedVersio

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Method for decellularizing skeletal muscle without detergents or proteolytic enzymes

    No full text
    Decellularized skeletal muscle is a promising model that can be used to study cell-matrix interactions and changes that occur in muscle extracellular matrix (ECM) in myopathies and muscle wasting diseases. The goal of this study is to develop a novel method to decellularize skeletal muscle that maintains the native biochemical composition and structure of the ECM. This method consists of sequential incubation of mouse tibialis anterior muscles in latrunculin B, high ionic strength salt solution, and DNase I and avoids use of proteases or detergents that degrade the ECM. Characterization of the decellularized muscles using hematoxylin and eosin staining along with DNA quantification suggested complete removal of DNA, whereas biochemical analyses indicated no loss of collagens and only a slight reduction in glycosaminoglycans. Western blot analysis of decellularized tissues showed removal of the vast majority of the contractile proteins actin and myosin, and morphological analysis using scanning electron microscopy suggested removal of myofibers from decellularized muscle tissues. Passive mechanical testing of decellularized muscle bundles revealed the typical nonlinear behavior, similar to that of intact muscle. Together, these results suggest that the protocol developed successfully decellularizes skeletal muscle without altering its composition and mechanical function
    corecore