275 research outputs found

    The presence of ^(146)Sm in the early solar system and implications for its nucleosynthesis

    Get PDF
    The presence of the p-process nucleus ^(146)Sm (mean life, r = 149 x 10^6 yr) in the early solar system and its in situ ɑ-decay into ^(142)Nd is demonstrated by the correlation of ^(142)Nd/^(144)Nd with ^(144)Sm/^(144)Nd in two meteorites which have a large range in ^(144)Sm/^(144)Nd in their constituent mineral phases. Clear excesses of ^(142)Nd/^(144)Nd, relative to the solar system value, are present in high Sm/Nd phases and a clear deficit of ^(142)Nd/^(144)Nd is observed in one sample with low Sm/Nd. The inferred abundance of ^(146)Sm/^(144)Sm is 0.008 at the time of the last equilibration of each meteorite at 4.47 AE ago, which yields ^(146)Sm/^(144)Sm ~0.015 at the time of formation of the solar system, 4.56 AE ago. These results confirm the presence of ^(146)Sm and provide a well defined initial abundance for ^(146)Sm. The abundance of ^(146)Sm is compatible with the p-process production rate estimates but not with the production rate for ^(146)Sm based on a photodisintegration model for the production of p-process nuclides

    Monitoring Stray Natural Gas in Groundwater With Dissolved Nitrogen. An Example From Parker County, Texas

    Full text link
    Concern that hydraulic fracturing and natural gas production contaminates groundwater requires techniques to attribute and estimate methane flux. Although dissolved alkane and noble gas chemistry may distinguish thermogenic and microbial methane, low solubility and concentration of methane in atmosphereâ equilibrated groundwater precludes the use of methane to differentiate locations affected by high and low flux of stray methane. We present a method to estimate stray gas infiltration into groundwater using dissolved nitrogen. Due to the high concentration of nitrogen in atmosphericâ recharged groundwater and low concentration in natural gas, dissolved nitrogen in groundwater is much less sensitive to change than dissolved methane and may differentiate groundwater affected high and low flux of stray natural gas. We report alkane and nitrogen chemistry from shallow groundwater wells and eight natural gas production wells in the Barnett Shale footprint to attribute methane and estimate mixing ratios of thermogenic natural gas to groundwater. Most groundwater wells have trace to nondetect concentrations of methane. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas from the Barnett Shale and/or shallower Strawn Group suggesting that localized migration of natural gas occurred. Twoâ component mixing models constructed with dissolved nitrogen concentrations and isotope values identify three wells that were likely affected by a large influx of natural gas with gas:water mixing ratios approaching 1:5. Most groundwater wells, even those with greater than 10â mg/L methane, have dissolved nitrogen chemistry typical of atmosphereâ equilibrated groundwater suggesting natural gas:water mixing ratios smaller than 1:20.Plain Language SummaryHydraulic fracturing, horizontal drilling, and associated natural gas production have dramatically changed the energy landscape across America over the past 10 years. Along with this renaissance in the energy sector has come public concern that hydraulic fracturing may contaminate groundwater. In this study we measure the chemistry of dissolved gas from shallow groundwater wells located above the Barnett Shale natural gas play, a tight gas reservoir located west of the Dallasâ Fort Worth Metroplex. We compare groundwater chemistry results to natural gas chemistry results from nearby production wells. Most groundwater wells have trace to nondetectible concentrations of methane, consistent with no measurable infiltration of natural gas into shallow groundwater. A cluster of groundwater wells have greater than 10 mg/L dissolved methane concentrations with alkane chemistries similar to natural gas. Using dissolved nitrogen and alkane concentrations and their stable isotope ratios in combination with chemical mixing models, we conclude that natural gas transported from the shallower Strawn Group affected these groundwater wells rather than natural gas from the deeper Barnett Shale, which is the target of hydraulic fracturing in this area. These results suggest that hydraulic fracturing has not affected shallow groundwater drinking sources in this area.Key PointsDissolved nitrogen in groundwater provides a means to differentiate highâ and lowâ flux infiltration of stray gasNitrogen concentrations and isotope values may attribute natural gas sourcesPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/1/wrcr23523.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146362/2/wrcr23523_am.pd

    Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars

    Get PDF
    We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured δ13C or δD close to zero or positive implies a shallow, abiogenic source. The effect of transport processes must therefore be carefully considered when attempting to identify the source of any methane observed by future missions, and the severe depletion in heavier isotopologues will have implications for the sensitivity requirements for future missions that aim to measure the isotopic fractionation of methane in the martian atmosphere

    Short-lived Nuclei in the Early Solar System: Possible AGB Sources

    Get PDF
    (Abridged) We review abundances of short-lived nuclides in the early solar system (ESS) and the methods used to determine them. We compare them to the inventory for a uniform galactic production model. Within a factor of two, observed abundances of several isotopes are compatible with this model. I-129 is an exception, with an ESS inventory much lower than expected. The isotopes Pd-107, Fe-60, Ca-41, Cl-36, Al-26, and Be-10 require late addition to the solar nebula. Be-10 is the product of particle irradiation of the solar system as probably is Cl-36. Late injection by a supernova (SN) cannot be responsible for most short-lived nuclei without excessively producing Mn-53; it can be the source of Mn-53 and maybe Fe-60. If a late SN is responsible for these two nuclei, it still cannot make Pd-107 and other isotopes. We emphasize an AGB star as a source of nuclei, including Fe-60 and explore this possibility with new stellar models. A dilution factor of about 4e-3 gives reasonable amounts of many nuclei. We discuss the role of irradiation for Al-26, Cl-36 and Ca-41. Conflict between scenarios is emphasized as well as the absence of a global interpretation for the existing data. Abundances of actinides indicate a quiescent interval of about 1e8 years for actinide group production in order to explain the data on Pu-244 and new bounds on Cm-247. This interval is not compatible with Hf-182 data, so a separate type of r-process is needed for at least the actinides, distinct from the two types previously identified. The apparent coincidence of the I-129 and trans-actinide time scales suggests that the last actinide contribution was from an r-process that produced actinides without fission recycling so that the yields at Ba and below were governed by fission.Comment: 92 pages, 14 figure files, in press at Nuclear Physics

    Nicoya Peninsula, Costa Rica: A single suite of Caribbean oceanic plateau magmas

    Get PDF
    The pre‐Tertiary oceanic crust exposed on the west coast of Costa Rica has been broadly referred to as the Nicoya Complex. This study was designed to determine the age of the Nicoya Complex in the Nicoya Peninsula, Playa Jacó, and the Quepos Peninsula using 40Ar‐39Ar radiometric dating and to assess the petrologic relationships between the different localities using major element, trace element, and Sr, Nd, Pb isotopic data. Radiometric ages of basalts and diabases from the Nicoya Peninsula are 88–90 Ma (with a weighted mean of 88.5 Ma), and those of two intrusive rocks (a gabbro and plagiogranite) are both 83–84 Ma. The combined geochemical data indicate that the sampled Nicoya Peninsula rocks belong to a single suite related by fractional crystallization of similar parental magmas. Nd and Pb isotopic ratios indicate a common mantle source distinct from that of mid‐ocean ridge basalts. Both the age and composition of the Nicoya rocks are consistent with the idea that they are a part of the Caribbean Cretaceous oceanic plateau [Donnelly, 1994]. The Jacó lavas are geochemically similar to the Nicoya Peninsula suite, and a single age of 84 Ma is identical to the age of the Nicoya Peninsula intrusives. The one analyzed Quepos basalt has a radiometric age of ∼64 Ma, and it is enriched in incompatible elements relative to the Nicoya rocks. Similarities in Nd and Pb isotopic ratios indicate that the Quepos and Nicoya/Jacó lavas were derived from a similar mantle source to that which produced the Nicoya rocks, possibly the Galapagos plume

    Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries

    Get PDF
    The data available for short-lived pp-nuclides are used in an open nonlinear model of the chemical evolution of the Galaxy in order to discuss the origin of extinct radionuclides, the stellar sources of pp-nuclides, and the chronology of solar system formation. It is concluded that the observed abundances of 97^{97}Tc, 98^{98}Tc, 92^{92}Nb, and 146^{146}Sm in the early solar system are consistent with nucleosynthesis in type II supernovae during continuous chemical evolution of the Galaxy and a subsequent short isolation of the presolar molecular cloud from fresh nucleosynthetic inputs. However, further work on supernova models is needed before pp-radionuclides will comprise reliable cosmochronometers. Despite these limitations, we argue that niobium-92 can be used to test whether the {\it rp}-process contributed to the synthesis of light {\it p}-nuclides in the Mo-Ru region.Comment: 8 pages, 2 figures. Proceedings of the Nuclear Physics in Astrophysics Conference, Debrecen, Hungary, 2002, to appear in Nucl. Phys.

    Methane Clumped Isotopes: Progress and Potential for a New Isotopic Tracer

    Get PDF
    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding petroleum systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. In general, clumped isotope measurements indicate plausible formation temperatures for abiotic, thermogenic, and microbial methane in many geological environments, which is encouraging for the further development of this measurement as a geothermometer, and as a tracer for the source of natural gas reservoirs and emissions. We also highlight, however, instances where clumped isotope derived temperatures are higher than expected, and discuss possible factors that could distort equilibrium formation temperature signals. In microbial methane from freshwater ecosystems, in particular, clumped isotope values appear to be controlled by kinetic effects, and may ultimately be useful to study methanogen metabolism

    Systematic LREE enrichment of mantle harzburgites: The petrogenesis of San Carlos xenoliths revisited

    Get PDF
    We are grateful to K. Itano for fruitful discussion of the ideas developed in this paper and K. Ozawa for support on the use of his opensystem melting model. The manuscript benefited from constructivecomments provided by Q. Xiong and three anonymous reviewers as well as from the editor X.-H. Li. This work was funded by a Japan Society for the Promotion of Science (JSPS) fellowship.The dichotomy between partial melting and metasomatism is a paradigm of mantle geochemistry since the pioneering work of Frey and Prinz (1978) on the occurrence of LREE-enriched harzburgites. However, the thermo-chemical implications of such two-stage scenarios are often poorly considered, and the latter fail to explain why trace-element enrichment and major-element depletion are often proportional.We here re-envisage the petrogenesis of the famous San Carlos peridotites based on new petrographic observations and detailed modal, major- and trace-element compositions. The lherzolites (and pyroxenites) are characterized by homogeneously fertile mineral chemistry and LREE-depleted patterns consistent with low degrees of partial melting of the lherzolitic protolith. Bulk compositions and mineral zoning suggest that opx-rich pyroxenites formed by pressure-solution creep during melt-present deformation, locally accompanied by magmatic segregations of cpx. The harzburgites are characterized by stronger mineral zoning with low-Mg# and Na-, Al- and Cr-rich cpx rims, and can be discriminated in a low-Jd and high-Jd cpx groups. The high-Jd group is interpreted as the result of local elemental redistribution in the presence of a low-degree hydrous melt, in good agreement with their wide range of LREE enrichment. In contrast, the MREE-to-HREE fractionation and increasing Cr# in spinel of the low-Jd group indicate that they experienced higher degrees of melting. Open-system melting simulations of trace-element fractionation during hydrous flux melting suggests that the high-Jd harzburgites are the result of low fluid influx producing poorly extracted melt, while higher influx led to higher melting degrees and efficient melt extraction in the low-Jd harzburgites; the lherzolites mostly remained below or near solidus during that process. The lithological and chemical heterogeneity of San Carlos mantle is thus compatible with a single-stage evolution, which is also supported by the striking consistency between Fe-Mg exchange and REE thermometric estimates (1057 and 1074 °C on average, respectively), indicating that harzburgites and lherzolites probably followed a similar P-T path and relatively little sub-solidus re-equilibration. These interpretations suggest that the development ofmelt extraction pathways promoted by reactive channeling instability is able to produce complex lithological heterogeneities during hydrous flux melting. This process provides a self-consistent explanation for the systematic enrichment of harzburgites observed in many mantle terranes and xenoliths worldwide. We argue that San Carlos is one of such examples where a ca 1.5-Ga continental lithosphere experienced localized flux melting and deformation during the tectonic reactivation of a Proterozoic subduction zone, providing new constraints on the mantle sources of volcanic activity in the Jemez Lineament.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Scienc
    corecore