726 research outputs found

    Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case

    Full text link
    We use the functional renormalization group equation for the effective average action to study the non-Gaussian renormalization group fixed points (NGFPs) arising within the framework of f(R)-gravity minimally coupled to an arbitrary number of scalar, Dirac, and vector fields. Based on this setting we provide comprehensible estimates which gravity-matter systems give rise to NGFPs suitable for rendering the theory asymptotically safe. The analysis employs an exponential split of the metric fluctuations and retains a 7-parameter family of coarse-graining operators allowing the inclusion of non-trivial endomorphisms in the regularization procedure. For vanishing endomorphisms, it is established that gravity coupled to the matter content of the standard model of particle physics and many beyond the standard model extensions exhibit NGFPs whose properties are strikingly similar to the case of pure gravity: there are two UV-relevant directions and the position and critical exponents converge rapidly when higher powers of the scalar curvature are included. Conversely, none of the phenomenologically interesting gravity-matter systems exhibits a stable NGFP when a Type II coarse graining operator is employed. Our analysis resolves this tension by demonstrating that the NGFPs seen in the two settings belong to different universality classes.Comment: 49 pages, 5 figure

    Nonlocal Quantum Gravity and the Size of the Universe

    Full text link
    Motivated by the conjecture that the cosmological constant problem is solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function Fk(V)F_k(V) of the Euclidean spacetime volume VV. For the V+VlnVV + V \ln V-invariant the renormalization group running enormously suppresses the value of the renormalized curvature which results from Planck-size parameters specified at the Planck scale. One obtains very large, i.e., almost flat universes without finetuning the cosmological constant. A critical infrared fixed point is found where gravity is scale invariant.Comment: 6 pages, 1 figure, contribution to the proceedings of the 36th International Symposium Ahrenshoop, Berlin, August 26-30, 200

    Effective Supergravity Actions for Conifold Transitions

    Full text link
    We construct gauged supergravity actions which describe the dynamics of M-theory on a Calabi-Yau threefold in the vicinity of a conifold transition. The actions explicitly include N charged hypermultiplets descending from wrapped M2-branes which become massless at the conifold point. While the vector multiplet sector can be treated exactly, we approximate the hypermultiplet sector by the non-compact Wolf spaces X(1+N). The effective action is then uniquely determined by the charges of the wrapped M2-branes.Comment: 57 pages, no figure

    Towards reconstructing the quantum effective action of gravity

    Get PDF
    Starting from a parameterisation of the quantum effective action for gravity we calculate correlation functions for observable quantities. The resulting templates allow to reverse-engineer the couplings describing the effective dynamics from the correlation functions. Applying this new formalism to the autocorrelation function of spatial volume fluctuations measured within the Causal Dynamical Triangulations program suggests that the corresponding quantum effective action consists of the Einstein-Hilbert action supplemented by a non-local interaction term. We expect that our matching-template formalism can be adapted to a wide range of quantum gravity programs allowing to bridge the gap between the fundamental formulation and observable low-energy physics.Comment: 6 pages, 1 figure; v2: reference update+clarification; v3: matches published versio
    corecore