246 research outputs found

    A Survey and Comparison of Industrial and Academic Research on the Evolution of Software Product Lines

    Full text link
    Past research on software product lines has focused on the initial development of reusable assets and related challenges, such as cost estimation and implementation issues. Naturally, as software product lines are increasingly adopted throughout industry, their ongoing maintenance and evolution are getting more attention as well. However, it is not clear to what degree research is following this trend, and where the interests and demands of the industry lie. In this technical report, we provide a survey and comparison of selected publications on software product line maintenance and evolution at SPLC. In particular, we analyze and discuss similarities and differences of these papers with regard to their affiliation with industry and academia. From this, we infer directions for future research that pave the way for systematic and organized evolution of software product lines, from which industry may benefit as well.Comment: 8 page

    New records of fishes from the Maldive Islands, with notes on other species

    Get PDF
    Part 1: We report here information on the occurrence of the deep demersal fish species known to date from the Maldivian Exclusive Economic Zone below a depth of 180 m. Collections of Maldivian deep demersal fishes are held by The Natural History Museum, London (BMNH); the Bernice P. Bishop Museum, Honolulu; the Field Museum of Natural History, Chicago; the Marine Research Section, Ministry of Fisheries and Agriculture, Male, Republic of Maldives; the South African Museum, Cape Town; and the Zoological Survey of India, at the Indian Museum, Calcutta. Specimens from all of these institutions have been studied by the authors. In addition, the authors carried out sampling of the slope shark fishery during March - April 1996, which resulted in a significant new collection of shark material. A total of 99 deep demersal species are reported here which includes 36 new records for the Maldives. The six most speciose families are the Macrouridae (7 species), Congridae (5), Lutjanidae (5), Squalidae (4), Ogocephalidae (4) and Halosauridae (4).Part 2: Seventy-eight fish species are recorded from the Maldives for the first time. A further 30, which have been recorded in the literature but not included in previous reviews of Maldivian fishes, are listed. The total known shore and epipelagic fish fauna of the Maldives now stands at 1007 species. The total known demersal and epipelagic fish fauna is raised to 1090.Rhodes University Libraries (Digitisation

    Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon)

    Get PDF
    Aim: This study compares the phylogeography, population structure and evolution of four butterflyfish species in the Chaetodon subgenus Corallochaetodon, with two widespread species (Indian Ocean – C. trifasciatus and Pacific Ocean – C. lunulatus), and two species that are largely restricted to the Red Sea (C. austriacus) and north-western (NW) Indian Ocean (C. melapterus). Through extensive geographical coverage of these taxa, we seek to resolve patterns of genetic diversity within and between closely related butterflyfish species in order to illuminate biogeographical and evolutionary processes. Location: Red Sea, Indian Ocean and Pacific Ocean. Methods: A total of 632 individuals from 24 locations throughout the geographical ranges of all four members of the subgenus Corallochaetodon were sequenced using a 605 bp fragment (cytochrome b) of mtDNA. In addition, 10 microsatellite loci were used to assess population structure in the two widespread species. Results: Phylogenetic reconstruction indicates that the Pacific Ocean C. lunulatus diverged from the Indian Ocean C. trifasciatus approximately 3 Ma, while C. melapterus and C. austriacus comprise a cluster of shared haplotypes derived from C. trifasciatus within the last 0.75 Myr. The Pacific C. lunulatus had significant population structure at peripheral locations on the eastern edge of its range (French Polynesia, Johnston Atoll, Hawai'i), and a strong break between two ecoregions of the Hawaiian Archipelago. The Indian Ocean C. trifasciatus showed significant structure only at the Chagos Archipelago in the central Indian Ocean, and the two range-restricted species showed no population structure but evidence of recent population expansion. Main conclusions: Patterns of endemism and genetic diversity in Corallochaetodon butterflyfishes have been shaped by (1) Plio-Pleistocene sea level changes that facilitated evolutionary divergences at biogeographical barriers between Indian and Pacific Oceans, and the Indian Ocean and Red Sea, and (2) semi-permeable oceanographic and ecological barriers working on a shorter time-scale. The evolution of range-restricted species (Red Sea and NW Indian Ocean) and isolated populations (Hawai'i) at peripheral biogeographical provinces indicates that these areas are evolutionary incubators for reef fishes

    Robotergesteuerte Prozessautomatisierung (RPA): Reifegradmodell zur Identifizierung RPA geeigneter Prozesse hinsichtlich der Dimension Daten

    Get PDF
    For the introduction of RPA in a company, the first step is to identify suitable business processes. For this purpose, the processes are evaluated with regard to various selection criteria, such as complexity or case-sensitiv-ity. Another criterion for the selection and evaluation of processes is the data on which the process is based. In this paper, a maturity model is presented, which subdivides the selection criterion data into the 5 assessable categories digitisation level, data quantity, data variance, data for-mat and data responsibility.Für die Einführung von RPA im Unternehmen müssen in einem ersten Schritt geeignete Unternehmensprozesse identifiziert werden. Hierzu werden die Prozesse hinsichtlich verschiedener Auswahlkriterien bewertet, wie z. B. Komplexität oder Fallhäufigkeit. Ein weiteres Kriterium zur Auswahl und Bewertung von Prozessen sind die dem Prozess zugrundeliegenden Daten. In diesem Paper wird ein Reifegradmodell vorgestellt, welches das Auswahlkriterium Daten in die 5 bewertbaren Kategorien Digitalisierungsgrad, Datenmenge, Datenvarianz, Datenformat und Datenverantwortung untergliedert

    Ice ages and butterflyfishes: Phylogenomics elucidates the ecological and evolutionary history of reef fishes in an endemism hotspot

    Get PDF
    For tropical marine species, hotspots of endemism occur in peripheral areas furthest from the center of diversity, but the evolutionary processes that lead to their origin remain elusive. We test several hypotheses related to the evolution of peripheral endemics by sequencing ultraconserved element (UCE) loci to produce a genome-scale phylogeny of 47 butterflyfish species (family Chaetodontidae) that includes all shallow water butterflyfish from the coastal waters of the Arabian Peninsula (i.e., Red Sea to Arabian Gulf) and their close relatives. Bayesian tree building methods produced a well-resolved phylogeny that elucidated the origins of butterflyfishes in this hotspots of endemism. We show that UCEs, often used to resolve deep evolutionary relationships, represent an important tool to assess the mechanisms underlying recently diverged taxa. Our analyses indicate that unique environmental conditions in the coastal waters of the Arabian Peninsula probably contributed to the formation of endemic butterflyfishes. Older endemic species are also associated with narrow versus broad depth ranges, suggesting that adaptation to deeper coral reefs in this region occurred only recently (<1.75 Ma). Even though deep reef environments were drastically reduced during the extreme low sea level stands of glacial ages, shallow reefs persisted, and as such there was no evidence supporting mass extirpation of fauna in this region

    Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 1005-1010, doi:10.1007/s00338-011-0791-x.Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialisation and foraging behaviours.This project was funded in part by a National Science Foundation (USA) Graduate Research Fellowship to MLB.2012-06-1

    Reef fish hybridization: lessons learnt from butterflyfishes (genus Chaetodon)

    Get PDF
    Natural hybridization is widespread among coral reef fishes. However, the ecological promoters and evolutionary consequences of reef fish hybridization have not been thoroughly evaluated. Butterflyfishes form a high number of hybrids and represent an appropriate group to investigate hybridization in reef fishes. This study provides a rare test of terrestrially derived hybridization theory in the marine environment by examining hybridization between Chaetodon trifasciatus and C. lunulatus at Christmas Island. Overlapping spatial and dietary ecologies enable heterospecific encounters. Nonassortative mating and local rarity of both parent species appear to permit heterospecific breeding pair formation. Microsatellite loci and mtDNA confirmed the status of hybrids, which displayed the lowest genetic diversity in the sample and used a reduced suite of resources, suggesting decreased adaptability. Maternal contribution to hybridization was unidirectional, and no introgression was detected, suggesting limited, localized evolutionary consequences of hybridization

    Surgeons and suture zones: Hybridization among four surgeonfish species in the Indo-Pacific with variable evolutionary outcomes.

    Get PDF
    Closely related species can provide valuable insights into evolutionary processes through comparison of their ecology, geographic distribution and the history recorded in their genomes. In the Indo-Pacific, many reef fishes are divided into sister species that come into secondary contact at biogeographic borders, most prominently where Indian Ocean and Pacific Ocean faunas meet. It is unclear whether hybridization in this contact zone represents incomplete speciation, secondary contact, an evolutionary dead-end (for hybrids) or some combination of the above. To address these issues, we conducted comprehensive surveys of two widely-distributed surgeonfish species, Acanthurus leucosternon (N = 141) and A. nigricans (N = 412), with mtDNA cytochrome b sequences and ten microsatellite loci. These surgeonfishes are found primarily in the Indian and Pacific Oceans, respectively, but overlap at the Christmas and Cocos-Keeling Islands hybrid zone in the eastern Indian Ocean. We also sampled the two other Pacific members of this species complex, A. achilles (N = 54) and A. japonicus (N = 49), which are known to hybridize with A. nigricans where their ranges overlap. Our results indicate separation between the four species that range from the recent Pleistocene to late Pliocene (235,000–2.25 million years ago). The Pacific A. achilles is the most divergent (and possibly ancestral) species with mtDNA dcorr ≈ 0.04, whereas the other two Pacific species (A. japonicus and A. nigricans) are distinguishable only at a population or subspecies level (ΦST = 0.6533, P < 0.001). Little population structure was observed within species, with evidence of recent population expansion across all four geographic ranges. We detected sharing of mtDNA haplotypes between species and extensive hybridization based on microsatellites, consistent with later generation hybrids but also the effects of allele homoplasy. Despite extensive introgression, 98% of specimens had concordance between mtDNA lineage and species identification based on external morphology, indicating that species integrity may not be eroding. The A. nigricans complex demonstrates a range of outcomes from incomplete speciation to secondary contact to decreasing hybridization with increasing evolutionary depth

    On the origin of endemic species in the Red Sea

    Get PDF
    Aim: The geological and palaeo-climatic forces that produced the unique biodiversity in the Red Sea are a subject of vigorous debate. Here, we review evidence for and against the hypotheses that: (1) Red Sea fauna was extirpated during glacial cycles of the Pleistocene and (2) coral reef fauna found refuge within or just outside the Red Sea during low sea level stands when conditions were inhospitable. Location: Red Sea and Western Indian Ocean. Methods: We review the literature on palaeontological, geological, biological and genetic evidence that allow us to explore competing hypotheses on the origins and maintenance of shallow-water reef fauna in the Red Sea. Results: Palaeontological (microfossil) evidence indicates that some areas of the central Red Sea were devoid of most plankton during low sea level stands due to hypersaline conditions caused by almost complete isolation from the Indian Ocean. However, two areas may have retained conditions adequate for survival: the Gulf of Aqaba and the southern Red Sea. In addition to isolation within the Red Sea, which separated the northern and southern faunas, a strong barrier may also operate in the region: the cold, nutrient-rich water upwelling at the boundary of the Gulf of Aden and the Arabian Sea. Biological data are either inconclusive or support these putative barriers and refugia, but no data set, that we know of rejects them. Genetic evidence suggests that many endemic lineages diverged from their Indian Ocean counterparts long before the most recent glaciations and/or are restricted to narrow areas, especially in the northern Red Sea. Main conclusions: High endemism observed in the Red Sea and Gulf of Aden appears to have multiple origins. A cold, nutrient-rich water barrier separates the Gulf of Aden from the rest of the Arabian Sea, whereas a narrow strait separates the Red Sea from the Gulf of Aden, each providing potential isolating barriers. Additional barriers may arise from environmental gradients, circulation patterns and the constriction at the mouth of the Gulf of Aqaba. Endemics that evolved within the Red Sea basin had to survive glacial cycles in relatively low salinity refugia. It therefore appears that the unique conditions in the Red Sea, in addition to those characteristics of the Arabian Peninsula region as a whole, drive the divergence of populations via a combination of isolation and selection

    A multidisciplinary approach to identify priority areas for the monitoring of a vulnerable family of fishes in Spanish Marine National Parks

    Get PDF
    Background Syngnathid fishes (Actinopterygii, Syngnathidae) are flagship species strongly associated with seaweed and seagrass habitats. Seahorses and pipefishes are highly vulnerable to anthropogenic and environmental disturbances, but most species are currently Data Deficient according to the IUCN (2019), requiring more biological and ecological research. This study provides the first insights into syngnathid populations in the two marine Spanish National Parks (PNIA—Atlantic- and PNAC—Mediterranean). Fishes were collected periodically, marked, morphologically identified, analysed for size, weight, sex and sexual maturity, and sampled for stable isotope and genetic identification. Due the scarcity of previous information, habitat characteristics were also assessed in PNIA. Results Syngnathid diversity and abundance were low, with two species identified in PNIA (Hippocampus guttulatus and Syngnathus acus) and four in PNAC (S. abaster, S. acus, S. typhle and Nerophis maculatus). Syngnathids from both National Parks (NP) differed isotopically, with much lower δ15N in PNAC than in PNIA. The dominant species were S. abaster in PNAC and S. acus in PNIA. Syngnathids preferred less exposed sites in macroalgal assemblages in PNIA and Cymodocea meadows in PNAC. The occurrence of very large specimens, the absence of small-medium sizes and the isotopic comparison with a nearby population suggest that the population of Syngnathus acus (the dominant syngnathid in PNIA) mainly comprised breeders that migrate seasonally. Mitochondrial cytochrome b sequence variants were detected for H. guttulatus, S. acus, and S. abaster, and a novel 16S rDNA haplotype was obtained in N. maculatus. Our data suggest the presence of a cryptic divergent mitochondrial lineage of Syngnathus abaster species in PNAC. Conclusions This is the first multidisciplinary approach to the study of syngnathids in Spanish marine NPs. Habitat preferences and population characteristics in both NPs differed. Further studies are needed to assess the occurrence of a species complex for S. abaster, discarding potential misidentifications of genus Syngnathus in PNAC, and evaluate migratory events in PNIA. We propose several preferential sites in both NPs for future monitoring of syngnathid populations and some recommendations for their conservation.Postprin
    corecore