101 research outputs found

    Digital predictions of complex cylinder packed columns

    Get PDF
    A digital computational approach has been developed to simulate realistic structures of packed beds. The underlying principle of the method is digitisation of the particles and packing space, enabling the generation of realistic structures. Previous publications [Caulkin, R., Fairweather, M., Jia, X., Gopinathan, N., & Williams, R.A. (2006). An investigation of packed columns using a digital packing algorithm. Computers & Chemical Engineering, 30, 1178–1188; Caulkin, R., Ahmad, A., Fairweather, M., Jia, X., & Williams, R. A. (2007). An investigation of sphere packed shell-side columns using a digital packing algorithm. Computers & Chemical Engineering, 31, 1715–1724] have demonstrated the ability of the code in predicting the packing of spheres. For cylindrical particles, however, the original, random walk-based code proved less effective at predicting bed structure. In response to this, the algorithm has been modified to make use of collisions to guide particle movement in a way which does not sacrifice the advantage of simulation speed. Results of both the original and modified code are presented, with bulk and local voidage values compared with data derived by experimental methods. The results demonstrate that collisions and their impact on packing structure cannot be disregarded if realistic packing structures are to be obtained

    Impact of shape representation schemes used in discrete element modelling of particle packing

    Get PDF
    In different computer models, shape is represented using different methodologies, to varying degrees of precision. This paper examines two approaches to shape representation, and their effects on accuracy in the context of cylindrical particle packing. Two discrete element method (DEM) based software packages are used. A X-ray CT scan of a packed bed provides the experimental measurements for comparison. Eight sphere-composite representations of the same cylindrical pellet were tested. Two of these gave results that quantitatively follow experimental measurements. A range of factors that in theory could affect accuracy of the simulation results are examined, including edge roundedness, surface roughness and restitutional behaviour as a function of sphere-composite representations. The conclusion is that, for packing at least, matching the object's overall shape and dimensions is not enough. Only when a high enough resolution is applied to corners and edges, could the sphere-composite approach possibly match the experimental data quantitatively

    Validation of a stochastic digital packing algorithm for porosity prediction in fluvial gravel deposits

    Get PDF
    Porosity as one of the key properties of sediment mixtures is poorly understood. Most of the existing porosity predictors based upon grain size characteristics have been unable to produce satisfying results for fluvial sediment porosity, due to the lack of consideration of other porosity-controlling factors like grain shape and depositional condition. Considering this, a stochastic digital packing algorithm was applied in this work, which provides an innovative way to pack particles of arbitrary shapes and sizes based on digitization of both particles and packing space. The purpose was to test the applicability of this packing algorithm in predicting fluvial sediment porosity by comparing its predictions with outcomes obtained from laboratory measurements. Laboratory samples examined were two natural fluvial sediments from the Rhine River and Kall River (Germany), and commercial glass beads (spheres). All samples were artificially combined into seven grain size distributions: four unimodal distributions and three bimodal distributions. Our study demonstrates that apart from grain size, grain shape also has a clear impact on porosity. The stochastic digital packing algorithm successfully reproduced the measured variations in porosity for the three different particle sources. However, the packing algorithm systematically overpredicted the porosity measured in random dense packing conditions, mainly because the random motion of particles during settling introduced unwanted kinematic sorting and shape effects. The results suggest that the packing algorithm produces loose packing structures, and is useful for trend analysis of packing porosity

    Computational analysis of transitional airflow through packed columns of spheres using the finite volume technique

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Chemical Engineering, Volume 34 Issue 6 (2010), DOI: 10.1016/j.compchemeng.2009.10.013We compare computational simulations of the flow of air through a packed column containing spherical particles with experimental and theoretical results for equivalent beds. The column contained 160 spherical particles at an aspect ratio N=7.14N=7.14, and the experiments and simulations were carried out at particle Reynolds numbers of (RedP=700−5000)(RedP=700−5000). Experimental measurements were taken of the pressure drop across the column and compared with the correlation of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001). An equivalent computational domain was prepared using Monte Carlo packing, from which computational meshes were generated and analysed in detail. Computational fluid dynamics calculations of the air flow through the simulated bed was then performed using the finite volume technique. Results for pressure drop across the column were found to correlate strongly with the experimental data and the literature correlation. The flow structure through the bed was also analysed in detail

    Advances in shape measurement in the digital world

    Get PDF
    The importance of particle shape in terms of its effects on the behaviour of powders and other particulate systems has long been recognised, but particle shape information has been rather difficult to obtain and use until fairly recently, unlike its better-known counterpart, particle size. However, advances in computing power and 3D image acquisition and analysis techniques have resulted in major progress being made in the measurement, description and application of particle shape information in recent years. Because we are now in a digital era, it is fitting that many of these advanced techniques are based on digital technology. This review article aims to trace the development of these new techniques, highlight their contributions to both academic and practical applications, and present a perspective for future developments

    Applications of the DigiPac Model for Particle Packing

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore