146 research outputs found

    Alien Registration- Jodrey, Charles E. (Andover, Oxford County)

    Get PDF
    https://digitalmaine.com/alien_docs/12590/thumbnail.jp

    Alien Registration- Jodrey, Clarence H. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/28831/thumbnail.jp

    Is Random Close Packing of Spheres Well Defined?

    Full text link
    Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest that this impasse can be broken by introducing the new concept of a maximally random jammed state, which can be made precise.Comment: 6 pages total, 2 figure

    A first-order phase transition at the random close packing of hard spheres

    Full text link
    Randomly packing spheres of equal size into a container consistently results in a static configuration with a density of ~64%. The ubiquity of random close packing (RCP) rather than the optimal crystalline array at 74% begs the question of the physical law behind this empirically deduced state. Indeed, there is no signature of any macroscopic quantity with a discontinuity associated with the observed packing limit. Here we show that RCP can be interpreted as a manifestation of a thermodynamic singularity, which defines it as the "freezing point" in a first-order phase transition between ordered and disordered packing phases. Despite the athermal nature of granular matter, we show the thermodynamic character of the transition in that it is accompanied by sharp discontinuities in volume and entropy. This occurs at a critical compactivity, which is the intensive variable that plays the role of temperature in granular matter. Our results predict the experimental conditions necessary for the formation of a jammed crystal by calculating an analogue of the "entropy of fusion". This approach is useful since it maps out-of-equilibrium problems in complex systems onto simpler established frameworks in statistical mechanics.Comment: 33 pages, 10 figure

    Structural transitions in granular packs: statistical mechanics and statistical geometry investigations

    Get PDF
    We investigate equal spheres packings generated from several experiments and from a large number of different numerical simulations. The structural organization of these disordered packings is studied in terms of the network of common neighbours. This geometrical analysis reveals sharp changes in the network's clustering occurring at the packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ\rho) corresponding to the so called Random Loose Packing limit (RLP, ρ0.555\rho \sim 0.555) and Random Close Packing limit (RCP, ρ0.645\rho \sim 0.645). At these packing fractions we also observe abrupt changes in the fluctuations of the portion of free volume around each sphere. We analyze such fluctuations by means of a statistical mechanics approach and we show that these anomalies are associated to sharp variations in a generalized thermodynamical variable which is the analogous for these a-thermal systems to the specific heat in thermal systems.Comment: 7 pages, 6 figure

    Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance

    Get PDF
    We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature
    corecore