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Abstract

We compare computational simulations of the flow of air through a packed col-

umn containing spherical particles with experimental and theoretical results for

equivalent beds. The column contained 160 spherical particles at an aspect ra-

tio N = 7.14, and the experiments and simulations were carried out at particle

Reynolds numbers of (Redp = 700 − 5000). Experimental measurements were

taken of the pressure drop across the column and compared with the correlation

of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001).

An equivalent computational domain was prepared using Monte Carlo packing,

from which computational meshes were generated and analysed in detail. Com-

putational Fluid Dynamics calculations of the air flow through the simulated

bed was then performed using the finite volume technique. Results for pressure

drop across the column were found to correlate strongly with the experimental

data and the literature correlation. The flow structure through the bed was also

analysed in detail.
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1. Introduction

Packed columns and packed beds are used extensively in industry for absorp-

tion, stripping and distillation operations (Perry and Green, 1997). As a result

there has been a great deal of interest in analysing their behaviour (Sahimi,

1994), particularly in regard to understanding the physical processes involved (Adler,

1992). A packed bed is a volume of space filled with a packing material, which

can be random in size and shape, such as gravel or charcoal, or comprise uniform

geometric shapes such as spheres or cylinders. A packed column is a special case

where the bed is contained in a tube or other narrow cylindrical vessel. When

a fluid passes through a packed bed, it percolates through a network of voids or

channels and interacts with the bed particles, creating a drop in pressure. Due

to this, a packed bed is generally characterised by a number of key parameters

such as porosity, particle size and bed depth. In the case of catalysts and other

industrial processes, bed surface area may also be a key parameter in achiev-

ing a maximum fluid-to-particle interaction. Packed columns possess similar

attributes, but the flow is more complex due to boundary effects at the walls of

the vessel; the presence of the wall alters the flow both directly and because it

upsets the packing of the particles within the column.

In early work in this area, researchers (Blake, 1922; Kozeny, 1927; Burke and

Plummer, 1928; Carman, 1937; Ergun, 1952) studied the influential parameters

of packed beds and columns, and through experiments and statistical methods

developed a set of equations based around theoretical tube models. These for-

mulate pressure drop per unit length as a function of the velocity, but do not

take into account the large scale bed geometry, and therefore assume the bed

is homogeneous. Bed geometry is a key aspect to understanding how a fluid

percolates through a bed, with regard to which routes it takes, volumes where

the flow is more or less uninhibited, and the role of stagnation zones. Identifying

and examining these aspects of the flow is best achieved using Computational

Fluid Dynamics (CFD). Such work has been carried out out on small numbers

of spheres, with low particle to tube ratios; however the computational cost of
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full simulation of the microstructural flow on larger beds has meant that this is

only just becoming a realistic approach.

In most applications of CFD to packed columns the ratio of particle to tube

diameter (aspect ratio, N = D/dp) is low. This is attributed to the complex

geometries associated with high aspect ratio beds and the associated problems

of generating the geometry and discretising it as a mesh. Naturally, in the early

days of computing the only beds which could be practically analysed were those

of low aspect ratios in cases containing only a couple of particles. As com-

puters advanced and computational power became more readily available, the

number of particles being modelled grew considerably. Spherical particles were

generally chosen due to the possible regular packing regimes, which can easily

be determined mathematically. In addition, spherical particles only require a

single coordinate, e.g cartesian or polar, and single value of radius to determine

the particle’s location and geometric properties.

Some of the earliest work applying CFD to packed beds was that of Dalman

et al. (1986). They used 2D CFD simulations to investigate flow structure and

heat transfer in an axisymmetric radial plane, and a velocity-pressure formu-

lation of the Navier-Stokes equations solved numerically using a finite element

technique. They investigated laminar flow at Reynolds numbers up to Re = 200,

with Prandtl number of 0.72 and 7.0, for a range of sphere sizes and separa-

tions. Although the packing possibilities are limited using this approach, the

work gave a valuable insight into the flow structure through the bed and indi-

cated the formation of eddies between the bed particles (Taskin, 2007). Lloyd

and Boehm (1994) studied flow and heat transfer around a linear array of 8

spheres using the finite element package FIDAP. They used Reynolds number

of 40, 80 and 120 with Prandtl numbers ranging from 0.73-7.3. This work was a

considerable advancement from that of Dalman et al. (1986) due to the number

of particles being analysed. Similar to the work of Derx and Dixon (1996) it was

possibly one of the first 3d studies performed on an array of spheres. Logtenberg

and Dixon (1998) modelled a bed of 8 spheres in the form of two layers of four

spheres perpendicular to the flow with low aspect ratios of 2.43. They used the
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commercial CFD code FLOTRAN to investigate fluid flow h eat transfer using

air for Reynolds numbers of Re = 9 − 1450. Logtenberg et al. (1999) modelled

a bed of ten spheres with aspect ratios of N = 2.43 using FEM. Similar to the

earlier work of Lloyd and Boehm (1994) they focussed on heat transfer and fluid

flow, focusing on wall-particle contact points.

For larger geometries one possible approach is to assume a regular structure

to the bed which can be reproduced using a simple unit cell (Hellström and

Lundström, 2006). An example of this was presented by Tóbis (2000) using

a simple cubic unit cell and comparing against theoretical expectations and

experiments on similar structured beds. In this work they used the finite volume

code Fluent and the standard k−ε turbulence model to investigate flow around

the particles in detail. A similar approach was used by Calis et al. (2001) to

model a limited subset of bed geometries known as composite structured packed

beds; instead of a single unit cell they represented the bed in terms of a single

linear row of spheres with appropriate boundary conditions. Manjhi et al. (2006)

examine regular packings of small numbers of spheres (< 10) in a cylindrical

tube using lattice Boltzmann techniques, and were able to produce convincing

visualisations of the microstructural flow in these highly simplified geometries.

Attempts have also been made to blend numerical simulations on simplified

geometries with empirical data (Tob́ıs, 2008). Dixon and Nijemeisland (2001)

used the finite volume technique to model small clusters of structured spheres

with aspect ratios N = 2 (Reynolds numbers of Re = 373 − 1922) and N = 4

(Re = 180). In the case of the higher aspect ratio bed (N = 4) the mesh is

too coarse to determine an accurate flow field, however it produced convincing

results for the other aspect ratio (N = 2). The limiting factor on all previous

packed beds CFD work is determining a geometry of a sufficient size to give

realistic results.

The task of reproducing a genuine random bed geometry is more challeng-

ing, but not impossible. One approach is to use 3d scanning techniques such as

MRI or micro-CT to scan the bed; image-based meshing techniques originally

developed in the field of computational biomechanics can then be used to recon-
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struct the bed geometry with a fair degree of accuracy. This sort of approach has

been applied to probe the flow in various porous media, for instance in porous

foams (Tabor et al., 2008) as well as other aspects of microstructure (Youssef

et al., 2005). The alternative is to construct an entirely artificial bed geometry

via some form of randomised object packing algorithm. Caulkin et al. (2007)

describe the code DigiPac, where the objects to be packed are represented as

assemblages of voxels in space which are allowed to move one grid spacing at

a time within a cubic lattice, and their resulting motion allows them to ex-

plore every possible packing space. Earlier work on packing thick fibres lead to

the development of the code MacroPac (Evans, 1988; Rowe et al., 2005), which

uses a Monte Carlo approach to explore packing space. Once the packing has

been determined the task is then to mesh the geometry using some appropriate

meshing algorithm, and then apply CFD to the resulting domain. Zeiser et al.

(2002) apply Lattice Boltzmann techniques to solve the flow in a packed col-

umn. Their tube-to-particle-diameter ratio is low (D/dP = 3, where D is the

tube diameter and dP the sphere diameter) so wall effects are dominant in their

flow; however they are able to investigate in some detail the microstructural

flow in the bed. Pan et al. (2006) apply Lattice Boltzmann techniques to both

a simple bcc unit cell model and also to a random bed; the focus of their paper

is comparing different variants of the Lattice Boltzmann technique rather than

experimental validation. However, there are still unresolved computational con-

cerns with LBM due to its restrictions to a limited class of mesh, and other

approaches to solving the Navier-Stokes equations are still appropriate (Tabor

et al., 2008). Finally, Magnico (2003) uses finite volume techniques applied to

a somewhat larger bed (several hundred particles and D/dP of 5− 7) but quite

a low Reynolds number (between 20 and 200).

In this paper we use MacroPac to generate the sphere packing using the

Monte Carlo approach, with the resulting sphere centres being exported to the

CAD package AutoCAD to recreate the spheres. The resulting geometry is

then imported into the commercial mesh generator Gambit, and meshed using

a fine tetrahedral mesh. This mesh is then imported into the finite volume
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CFD code Fluent for solution. At the same time, experimental measurements

were performed on an equivalent bed of spheres (marbles) of equivalent size.

Measurements of the pressure drop for air flow through the bed were taken

and correlated against theoretical expectation of Reichelt (1972), Eisfeld and

Schnitzlein (2001) and against the CFD results. Our work differs from the

earlier work described above as it is at a higher Reynolds number than that of

Magnico (2003) and a larger bed than that of Zeiser et al. (2002); Dixon and

Nijemeisland (2001). As with the work of Tóbis (2000), we use the CFD code

Fluent but with the k − ω turbulence model, and use a random packing of 160

spherical particles as an alternative to a simple unit cell or a regular packing.

Comparing against our own experiments rather than against results from the

literature (however good), also enables us to match exactly the size of particles

and column and the flow conditions.

1.1. Theoretical Background

Of interest for the flow though packed beds is the relationship between flow

velocity or Reynolds number and the drop in pressure across the bed. Many

theoretical correlations exist to calculate this, such as that reported by Blake

(1922); Kozeny (1927) for laminar flow and by Burke and Plummer (1928);

Carman (1937) for turbulent flow. Hicks (1970) proposed a new equation which

fits the data of Ergun (1952), Handley and Heggs (1968) and Wentz and Thodos

(1963). In many applications, applicable to both laminar and turbulent flow,

the well established Ergun equation (Ergun, 1952; Ergun and Orning, 1949) is

used calculate pressure drop through a packed bed given as

∆P

L
=

150µ (1 − ε)
2
US

ε3d2

P

+
1.75 (1 − ε) ρU2

S

ε3dP

(1)

where ε is bed porosity, US is superficial velocity (the equivalent velocity if the

bed was not there) and dP is particle equivalent diameter given in the form

dP =
6VP

SA

(2)

with VP the particle volume and SA its surface area. The Ergun equation is a

model to determine the expected behaviour of a packed bed, up until the point
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of fluidisation, and is heavily dependent on particle diameter and bed porosity,

where the porosity is given as the ratio of the void volume to the total volume

(ε = Vv/V ). The particle equivalent diameter is a way of introducing the shape

of the particle into this; for spherical particles it is just the sphere diameter.

The numerical coefficients for the Ergun equation are usually given as 150 and

1.75 (Ergun, 1952). Leva (1959) suggested alternative coefficients of 200 and

1.75, with MacDonald et al. (1979) recommending coefficients in the range of 180

and 1.8 − 4.0. Du Plessis and Woudberg state that the coefficients are severely

dependant on the interstitial physical flow conditions that vary considerably

between different types of structure (Plessis and Woudberg, 2008).

The Ergun equation is strictly applicable only for infinite beds; it takes

no account of boundary effects. To determine the applicability of the Ergun

equation we use the bed aspect ratio N = D/dp which compares the tube

diameter D to the particle diameter dp. Choi et al. (2008) suggest that when

the bed diameter (D) is not significantly larger than the particle diameter (dP ),

the flow maldistributions and wall friction are not negligible. Similarly, Foumeny

et al. (1993) suggest that when the aspect ratio is < 50, wall effects cause the

Ergun equation to yield a poor result. Choi et al. (2008) go on to suggest that

for low Reynolds numbers (Re/(1− ε) < 10) the Ergun equation tends to under

predict the pressure drop and in the larger Reynolds regime (Re/(1−ε) > 10) the

Ergun equation overpredicts the pressure drop in comparison to experimental

results. Many correlations have been published to account for the confining

wall, such as those proposed by Choi et al. (2008) and Gibilaro (2004). One of

the most promising correlations was proposed by Reichelt (1972) and further

improved by Eisfeld and Schnitzlein (2001). Eisfeld and Schnitzlein (2001) take

a comprehensive database of more than 2300 experimental data points from

24 published experimental studies and plot and determine values for the the

coefficients (K1, k1, k2) for the Reichelt (1972) equation.

In this paper we report our experimental and computational results in the
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form of dimensionless pressure drop, defined as

φ =
∆P

ρ0U2

S

dp

L
(3)

We define the particle Reynolds number Redp as

RedP =
ρUSdP

µ
(4)

which defines the flow regime, where the flow can be characterised as laminar

(RedP < 10), transitional (10 < RedP < 300) or turbulent (RedP > 300) Zi-

olkowska and Ziolkowska (1988). Carman (1937) suggest that in laminar flow,

the dimensionless pressure drop φ is proportional to 1/Redp. Here, we compare

both experimental and computational results with the correlation described by

Reichelt (1972) using the fitted coefficients determined by Eisfeld and Schnit-

zlein (2001) as

φ =
K1A

2

W

Redp

(1 − ε)

ε3
+

AW

BW

1 − ε

ε3
(5)

where K1 = 154 (Eisfeld and Schnitzlein, 2001)

AW = 1 +
2

3(D/dp)(1 − ε)
(6)

and

Bw =

[
k1

(
dp

D

)2

+ k2

]2

(7)

where k1 and k2 are given as 1.15 and 0.87 respectively (Eisfeld and Schnitzlein,

2001)

2. Method

2.1. Experimental Setup

The experimental setup used in this work requires methods for measuring

values of pressure difference ∆P , and volumetric flow rate (Q) and hence velocity

(U) and Reynolds number (Re). The rig is based on that of Tóbis (2000), with

the addition of pressure taps into the bed at 0.1 m vertical intervals, as shown

in figure 1. 14mm marbles were used as the spherical particles for the bed. The
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packed bed was supported by a wire mesh screen enclosed in a 100 mm diameter

Perspex column, with a length of 300 mm. Air was forced through the bed using

a centrifugal pump. Volumetric flow rate Q, and hence average velocity U ,

was determined by measuring differential pressure (∆P ), across a plate orifice

manufactured from Perspex. An experimental value for the flow coefficient Cf of

the plate orifice was calibrated against a velocity profile determined by hot-wire

anemometers attached to a data logger.

The plate orifice method was chosen over that of a Pitot static tube, because

the Pitot static tube only determines the velocity at its immediate location,

meaning that a full flow profile using this method would require many readings

to be taken in different locations across the pipe section, then averaged to reduce

error. One disadvantage of using a plate orifice is that there is a significant

pressure drop immediately after the orifice; to reduce this, a Venturi meter

could be used as an alternative, where the drop in pressure due to the device is

less significant. However, due to the inexpensiveness and ease of manufacture,

along with general accuracy and ease of calibration, the benefits of using plate

orifice outweigh the disadvantages.

Experimental pressure drop in this work was calculated by means of a dif-

ferential micro-manometer attached to a data logger. The data logger readings

were averaged to reduce error from small fluctuations in pressure due to turbu-

lence, with differential pressures taken from immediately before the bed (0.0)

and at 0.1 m intervals. To validate the total pressure drop, differential pressure

was recorded between intervals and added together, then compared with total

pressure drop.

An accurate value of air density was determined by using a barometer to de-

termine atmospheric pressure p and a k type thermocouple placed in the flow to

determine flow temperature T . This was used in conjunction with the universal

gas constant R = 287 J/kgK, to determine an air density of 1.117 kg/m3.

9



2.2. Computational Packing of Spheres

For this work, the particle packing simulation program MacroPac (Intelli-

gensys, UK) was used to generate packed beds of spheres of the same diameter

as those used for the real experiment. In MacroPac the Monte Carlo method

is used to pack the spheres to the maximum packing possible, by simulated

shaking of the column and packing medium. Characteristic parameters of the

packing such as porosity (ε = 0.48), number of bed particles (164) and contacts

can also be determined with this program. The container geometry used as an

input parameter for MacroPac was identical to that of the experiment.

Having generated these computational beds, the coordinates of the sphere

centres were exported to the CAD package AutoCAD and used to regenerate the

packed spheres in ACIS format for export to the automatic meshing program

Gambit. Figure 2 shows a view of the spheres in the bed displayed in Fluent.

Although relatively simple, using this technique there is scope to produce much

larger beds of spherical media, the only limitation is the large amount of com-

putational power required in mesh generation and computational simulation.

2.3. Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics is the use of computers to solve fluid flow

problems. Conventionally it is usually taken to mean the solution of the gov-

erning equations, the Navier-Stokes equations in 2 or 3 dimensions for laminar

flow, or the averaged Navier-Stokes equations together with a turbulence model

in the case of a turbulent flow. For a laminar flow then, the equations being

solved are as follows :

∇.u = 0

∂u

∂t
+ ∇.u u = −

1

ρ
∇p + ν∇2u (8)

For a turbulent flow, an averaging process is applied to the equations. Most

often this is an ensemble or time averaging, known as Reynolds averaging, which
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generates the Reynolds Averaged Navier-Stokes (RANS) equations :

∇. û = 0

∂ û

∂t
+ ∇. û û + ∇.R = −

1

ρ
∇p + ν∇2 û (9)

where ̂ denotes a Reynolds-averaged flow variable, and R is an additional term

called the Reynolds Stress, which represents the effect of the turbulence (which

has been removed by the averaging procedure) on the mean flow. This is an

unknown quantity, and so further equations must be introduced to close the set

of equations; these are referred to as turbulence models.

Various turbulence models have been proposed to complete the set of equa-

tions. The most frequently used models are those based on the Boussinesq

eddy viscosity approach, in which the effect of the turbulence is taken to be

equivalent to the enhancement of the viscosity of the fluid, so R is modelled

as νt∇
2 û −

2

3
kI. where k is the turbulent kinetic energy and νt the turbulent

viscosity. In turn, the turbulent viscosity νt is modelled in terms of two ad-

ditional variables; the turbulent kinetic energy k and the turbulent dissipation

ǫ, for which transport equations can be formulated and solved. This leads to

the well-known k− ǫ family of turbulence models, which are extensively used in

CFD (and have been applied to this problem by Tóbis (2000)). An alternative

to this which has found favour recently is the k − ω turbulence model, where

the turbulent kinetic energy k is paired with the turbulent frequency ω = ǫ/k,

obtained from the following set of partial differential equations;

∂

∂t
(ρκ) +

∂

∂xi

(ρκui) =
∂

∂xj

(
Γκ

∂Γ

∂xj

)
+ Gκ − Yκ + Sκ (10)

and
∂

∂t
(ρω) +

∂

∂xi

(ρωui) =
∂

∂xj

(
Γω

∂Γ

∂xj

)
+ Gω − Yω + Sω (11)

where Gκ is turbulent kinetic energy generation as a result of the average gradi-

ents in velocity, Gω is the specific dissipation rate. Γκ and Γω are the effective

diffusivity. Sκ and Sω are source terms. Yκ and Yω represent the turbulent

dissipation of κ and ω. ω exhibits much nicer behaviour near walls than ǫ and
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so this model is preferred for low Reynolds number turbulence. Since the flow

in our simulation is likely to be transitional to turbulent we have adopted the

k − ω model with Fluent’s enhanced wall treatment.

We solve the governing equations (9) using the finite volume approach. In

this, the domain of interest is divided into numerous small cells, and the gov-

erning equations integrated across the volume of each cell. Gauss’ theorem is

used to convert the spatial derivative term ∇.(u u) into a surface integral of the

flux across the faces bounding the cell, which converts the governing equations

into a set of difference equations which can be solved numerically. For this we

use the commercial CFD code Fluent; interpolation from cell centre to cell face

is carried out using 2nd order upwind differencing for the momentum equation,

and the non-linear nature of the equations is treated iteratively, using PISO for

transient calculations and SIMPLE for steady state calculations. The SIMPLE

algorithm (semi-implicit method for linked equations) is effectively a guess and

correct procedure for the calculation of pressure developed by S.V.Patankar and

D.B.Spalding (1972) (Versteeg and Malalasekera, 1995).The algorithm PISO,

which stands for pressure implicit with splitting of operators, involves a single

predictor step and two corrector steps (Versteeg and Malalasekera, 1995). Es-

sentially the PISO algorithm is a more advanced SIMPLE algorithm with the

inclusion of an extra corrector step for enhancement(Versteeg and Malalasekera,

1995). To ensure stability, simulations were run initially using a steady state

solver and then using this as a basis progressing to an unsteady solver. Courant

numbers were kept low (1×10−8) to ensure stability. Convergence to a solution

was judged based on the mass flow rate at the outlet of the domain.

3. Computational domain

The complex geometrical properties of random packed beds makes it difficult

to produce a valid mesh. Even when a mesh has been produced the quality is of-

ten dubious containing non-positive volumes and highly skewed elements, which

often lead to simulation divergence and instability with no solution convergence.
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Properties Mesh

Max Cell vol 1.834 mm3

Min Cell vol 5.208 × 10−3 mm3

Max face area 3.14 mm2

Min face area 1.987 × 10−2 mm2

Mesh Volume 5.796 × 105 mm3

Table 1: Mesh data

In this work the mesh creation was done using Gambit, a general-purpose pro-

gram providing a variety of automatic meshing strategies. Here the domain

was meshed using the Tet/hybrid and TGrid options; this generates meshes

comprised predominantly of tetrahedral cells but includes other cells (prismatic

and hexahedral) where necessary. Surfaces were not meshed separately and so

were automatically meshed as triangles. In this work the domain was split into

1,168,328 cells containing 2,456,980 faces and 248,950 nodes. The grid was then

partitioned along the principal axis into 4 segments to allow paralization of the

domain to reduce convergence time and run on a Beowulf cluster; each node of

the cluster comprises two dual-core 2.6GHz processors and 8GB RAM. To reach

an overall solution required between 4 and 8 computer hours.

To capture the full effects of viscous drag for microstructural flow the mesh

must be fine enough. To investigate this it is necessary to conduct a mesh

convergence study, by increasing the number of mesh elements and monitoring

the pressure at the model pressure outlet. In this case the study (figure 4)

demonstrated that the results did not significantly change after 1,168,328 cells;

a mesh finer than this would yield no advantage in producing more accurate

results and would be computationally more expensive.

The quality of the mesh was analysed using the dimensionless parameter

equivolume skew (EV ), given by

EV =
VO − VC

VO

(12)
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where the VO is the optimal cell size of an equilateral cell with the same cir-

cumradii and VC is the actual cell size. A cell equivolume skew of 0 indicates

a ”perfect” cell whilst a value of 1 indicates a highly skewed, completely de-

generate element. From figure 5 it can observed that the mesh contains a few

highly skewed elements. When meshing complex spherical geometries, such as

this, skewed cells are often unavoidable. In the literature, for the case of regular

sphere packings, particle distances from one another (gaps) can be set to allow a

suitable size element to be fitted. In our case distances vary quite considerably

and this cannot be done. The majority of skewed elements are located in areas

of particle near contact points. Fluent provides a range of features to smooth

the mesh and reduce skewness after the mesh has been produced. However this

does not completely eliminate all skewed elements, and these cause problems

with the numerical solution of the flow. Fluent also implements skewness correc-

tion and neighbour coupling as part of the PISO loop, which help to ameliorate

the problem. In this case the neighbour correction is set to 1 and the skewness

correction to 6, to stabilise the solution. For this work Fluent’s enhanced wall

treatment is adopted in which case to resolve the laminar sub-layer y+ values

for the wall adjacent cell need to be around y+ = 1. Figure 6 demonstrates

that this has been achieved for most near-wall cells.

4. Results

Figure 7.a. shows our raw results, comparing computed values of pres-

sure drop per unit length dp/L against particle Reynolds number Rep (circles)

with our experimental results (triangles) and empirical correlations (Eisfeld and

Schnitzlein (2001)). Calculated values of dp/L were evaluated by taking area-

weighted averages of the pressure at the top and bottom of the bed. Figure 7.b.

shows the same information but with the pressure drop expressed in terms of φ

using equation 3, which is a standard way of presenting the information in the

literature. To demonstrate the variation of pressure through the bed, figure 8.a.

presents the area-averaged pressure on regularly-spaced slices through the bed.
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Regression analysis has been used to fit straight lines through the data sets; this

clearly shows the linear relationship between pressure and height through the

domain.

MacroPac provides the facility to evaluate porosities across the bed. Results

for this bed are shown in figure 8.b. As expected the porosity is roughly uniform

across the core region but rises within the near-wall region of the column where

the packing is affected by the presence of the wall. Some low aspect ratio two

zone correlations such as DiFelice and Gibilaro (2004) rely on two values of

porosity, usually defined as wall and core porosities. Using MacroPac’s porosity

functionality these can be determined by the averaging the values of the wall

region (1 sphere radius), and the core region.

The actual flow patterns through the beds are shown in figure 9. These

show colour plots of velocity magnitude and turbulent kinetic energy on vertical

and horizontal cutting planes through the domain. The random packing of the

spheres is clearly visible; also note the practical difference between the interior of

the bed and the near-wall region where the packing of the spheres is constrained

by the presence of the wall. This lowers the porosity in these regions and a

significant fraction of the flow is being channelled through this region. One

advantage of computational simulation of the flow is the sheer volume of data

available for analysis; in particular here, flow velocities at every point in the

bed, which are available for statistical analysis.

5. Discussion

As expected CFD and experimental data show a strong correlation, with the

CFD marginally overpredicting the drop in pressure (figure 7.a,b). Both CFD

and experimental match theoretical results closely with the experimental and

CFD slightly underpredicting the expected curve from Reichelt (1972); Eisfeld

and Schnitzlein (2001). The small discrepancy between the results of the CFD,

experimental and the correlation proposed by Reichelt (1972) can be attributed

to the fact that the coefficients determined by Eisfeld and Schnitzlein (2001)
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are taken from a data set of 2300 data points from 24 sets of published results

over a timescale of 70 years, for a range of subtly different experimental cases.

Thus it represents an average of results which themselves exhibit quite a spread

of values; the spread being due to factors which have not been controlled for.

None the less, they correlate well and in this case we are comparing our CFD

with equivalent beds of the same aspect ratio and Reynolds number, whereas

the pressure drop data analysed by Eisfeld and Schnitzlein (2001) is over an

extensive range of Reynolds number and aspect ratios.

Near-wall effects can also be seen in the structure of the flow patterns them-

selves. When fluid percolates through a network of channels, the pathway of

mainstream velocity at a low Re takes the shortest route through the back-

bone of the bed (Andrade et al., 1997). At higher values of Re, the pathway of

mainstream velocity is dictated by the bed geometry (Andrade et al., 1997).

Figure 9 a-b illustrates pathways of mainstream velocity through the bed, bi-

assed towards the wall region. This is shown for the case Re = 2771; however

the flow patterns are largely similar for all the Reynolds numbers investigated,

with just the overall magnitude being altered. Similarly, figure 9 c-d plot tur-

bulent kinetic energy k on the same sections. Turbulence generation is seen to

be heavily influenced by the geometry, with the complexity of the bed having

a significant generation effect, whilst the near-wall region where the paths are

much simpler generates much less turbulence.

6. Conclusions

The goal of this work was to generate and probe random packed columns of

spheres using computational methods, and to demonstrate their accuracy and

reliability compared to experimental and theoretical results.

The macroscopic flow behaviour, i.e. the pressure drop per unit depth,

was found to correlate very well with experimental results on an equivalent

bed. As expected, empirical correlations from the literature slightly overpredict

the pressure drop compared with our computational and experimental results.
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Moreover the microscale flow behaviour can also be probed using this approach.

Calis et al. (2001) anticipated that within five years packed beds containing a few

hundred particles would be considered a ’standard’ problem in terms of memory

and calculation time requirements. With this achieved and as computers are

becoming ever increasingly powerful, we anticipate that within a few more years

it is likely that much larger beds of more than a thousand particles could be

analysed in this way.
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Figure 1: Experimental setup
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Figure 2: View of the bed of spheres used for the calculation.

Figure 3: Detail of geometry and mesh at the top of the bed
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Figure 4: Mesh convergence study; calculated pressure drop vs. number of cells for a range

of different meshes.
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Figure 5: Histogram showing distribution of cell equivolume skew values.
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Figure 6: Histogram showing distribution of yplus (y+) values for the wall region.
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Figure 7: a. Pressure drop per unit length as a function of the particle Reynolds number

(Rep). b. Dimensionless pressure drop (φ) as a function of particle Reynolds number (Rep).
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Figure 8: a. Average pressure across the x-plane of the bed at y-intervals of 0.01m. b. Porosity

as a function of distance across the x-plane of packed bed.
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Figure 9: Contours of velocity magnitude for 14mm spheres (a,b), contours of turbulent kinetic

energy (c,d). Flow is in the +z direction.
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