45 research outputs found

    Jamming, glass transition, and entropy in monodisperse and polydisperse hard-sphere packings

    Get PDF
    This thesis is dedicated to the investigation of properties of computer-generated monodisperse and polydisperse three-dimensional hard-sphere packings, frictional and frictionless. For frictionless packings, we (i) assess their total (fluid) entropy in a wide range of packing densities (solid volume fractions), (ii) investigate the structure of their phase space, (iii) and estimate several characteristic densities (the J-point, the ideal glass transition density, and the ideal glass density). For frictional packings, we estimate the Edwards entropy in a wide range of densities. We utilize the Lubachevsky–Stillinger, Jodrey–Tory, and force-biased packing generation algorithms. We always generate packings of 10000 particles in cubic boxes with periodic boundary conditions. For estimation of the Edwards entropy, we also use experimentally produced and reconstructed packings of fluidized beds. In polydisperse cases, we use the log-normal, Pareto, and Gaussian particle diameter distributions with polydispersities (relative radii standard deviations) from 0.05 (5%) to 0.3 (30%) in steps of 0.05. This work consists of six chapters, each corresponding to a published paper. In the first chapter, we introduce a method to estimate the probability to insert a particle in a packing (insertion probability) through the so-called pore-size (nearest neighbour) distribution. Under certain assumptions about the structure of the phase space, we link this probability to the (total) entropy of packings. In this chapter, we use only frictionless monodisperse hard-sphere packings. We conclude that the two characteristic particle volume fractions (or densities, φ) often associated with the Random Close Packing limit, φ ≈ 0.64 and φ ≈ 0.65, may refer to two distinct phenomena: the J-point and the Glass Close Packing limit (the ideal glass density), respectively. In the second chapter, we investigate the behaviour of jamming densities of frictionless polydisperse packings produced with different packing generation times. Packings produced quickly are structurally closer to Poisson packings and jam at the J-point (φ ≈ 0.64 for monodisperse packings). Jamming densities (inherent structure densities) of packings with sufficient polydispersity that were produced slowly approach the glass close packing (GCP) limit. Monodisperse packings overcome the GCP limit (φ ≈ 0.65) because they can incorporate crystalline regions. Their jamming densities eventually approach the face-centered cubic (FCC) / hexagonal close packing (HCP) crystal density φ = π/(3 √2) ≈ 0.74. These results support the premise that φ ≈ 0.64 and φ ≈ 0.65 in the monodisperse case may refer to the J-point and the GCP limit, respectively. Frictionless random jammed packings can be produced with any density in-between. In the third chapter, we add one more intermediate step to the procedure from the second chapter. We take the unjammed (initial) packings in a wide range of densities from the second chapter, equilibrate them, and only then jam (search for their inherent structures). Thus, we investigate the structure of their phase space. We determine the J-point, ideal glass transition density, and ideal glass density. We once again recover φ ≈ 0.64 as the J-point and φ ≈ 0.65 as the GCP limit for monodisperse packings. The ideal glass transition density for monodisperse packings is estimated at φ ≈ 0.585. In the fourth chapter, we demonstrate that the excess entropies of the polydisperse hard-sphere fluid at our estimates of the ideal glass transition densities do not significantly depend on the particle size distribution. This suggests a simple procedure to estimate the ideal glass transition density for an arbitrary particle size distribution by solving an equation, which requires that the excess fluid entropy shall equal to some universal value characteristic of the ideal glass transition density. Excess entropies for an arbitrary particle size distribution and density can be computed through equations of state, for example the BoublĂ­k–Mansoori–Carnahan–Starling–Leland (BMCSL) equation. In the fifth chapter, we improve the procedure from the first chapter. We retain the insertion probability estimation from the pore-size distribution, but switch from the initial assumptions about the structure of the phase space to a more advanced Widom particle insertion method, which for hard spheres links the insertion probability to the excess chemical potential. With the chemical potential at hand, we can estimate the excess fluid entropy, which complies well with theoretical predictions from the BMCSL equation of state. In the sixth chapter, we extend the Widom particle insertion method from the fifth chapter as well as the insertion probability estimation method from the first chapter to determine the upper bound on the Edwards entropy per particle in monodisperse frictional packings. The Edwards entropy counts the number of mechanically stable configurations at a given density (density interval). We demonstrate that the Edwards entropy estimate is maximum at the Random Loose Packing (RLP) limit (φ ≈ 0.55) and decreases with density increase. In this chapter, we accompany computer-generated packings with experimentally produced and reconstructed ones. Overall, this study extends the understanding of the glass transition, jamming, and the Edwards entropy behavior in the system of hard spheres. The results can help comprehend these phenomena in more complex molecular, colloidal, and granular systems

    Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles

    Get PDF
    The processes that led to the formation of the planetary bodies in the Solar System are still not fully understood. Using the results obtained with the comprehensive suite of instruments on-board ESA’s Rosetta mission, we present evidence that comet 67P/Churyumov-Gerasimenko likely formed through the gentle gravitational collapse of a bound clump of mm-sized dust aggregates (“pebbles”), intermixed with microscopic ice particles. This formation scenario leads to a cometary make-up that is simultaneously compatible with the global porosity, homogeneity, tensile strength, thermal inertia, vertical temperature profiles, sizes and porosities of emitted dust, and the steep increase in water-vapour production rate with decreasing heliocentric distance, measured by the instruments on-board the Rosetta spacecraft and the Philae lander. Our findings suggest that the pebbles observed to be abundant in protoplanetary discs around young stars provide the building material for comets and other minor bodies

    Long-term efficacy and safety of CT-P6 versus trastuzumab in patients with HER2-positive early breast cancer: final results from a randomized phase III trial

    Get PDF
    Purpose Equivalent efficacy was demonstrated for the biosimilar CT-P6 and trastuzumab following neoadjuvant therapy for patients with human epidermal growth factor receptor-2 (HER2)-positive early breast cancer. Following adjuvant treatment, efficacy and safety were comparable between treatments. We report updated safety and efficacy data after up to 3 years’ follow-up. Methods Following neoadjuvant chemotherapy with CT-P6/trastuzumab, patients underwent surgery and continued receiving adjuvant CT-P6/trastuzumab. The primary endpoint (previously reported) was pathological complete response. Time-to-event analyses (disease-free survival [DFS], progression-free survival [PFS], and overall survival [OS]), study drug-related and cardiac adverse events, and immunogenicity were assessed during post-treatment follow-up. Results Most patients entered the follow-up period (CT-P6: 259 [95.6%]; trastuzumab: 269 [96.8%]). After a median follow-up of 38.7 (CT-P6) and 39.6 (trastuzumab) months, medians were not reached for time-to-event parameters; estimated hazard ratios (HRs) and 3-year survival rates were similar between groups. Estimated HRs (95% confidence intervals) for CT-P6 versus trastuzumab were 1.23 (0.78–1.93) for DFS, 1.31 (0.86–2.01) for PFS, and 1.10 (0.57–2.13) for OS (intention-to-treat population). Safety findings were comparable between groups for the overall study and follow-up period, including study drug-related cardiac disorders (CT-P6: 22 [8.1%] patients; trastuzumab: 24 [8.6%] patients [overall]) and decreases in left ventricular ejection fraction. Immunogenicity was similar between groups. Conclusion The similarity of the time-to-event analyses between CT-P6 and trastuzumab supports the equivalence in terms of efficacy established for the primary endpoint. CT-P6 was well tolerated, with comparable safety and immunogenicity to trastuzumab. ClinicalTrials.gov: NCT02162667 (registered June 13, 2014

    Data from: Random-close packing limits for monodisperse and polydisperse hard spheres

    No full text
    We investigate how the densities of inherent structures, which we refer to as the closest jammed configurations, are distributed for packings of 10000 frictionless hard spheres. A computational algorithm is introduced to generate closest jammed configurations and determine corresponding densities. Closest jamming densities for monodisperse packings generated with high compression rates using Lubachevsky–Stillinger and force-biased algorithms are distributed in a narrow density range from φ = 0.634-0.636 to φ ≈ 0.64; closest jamming densities for monodisperse packings generated with low compression rates converge to φ ≈ 0.65 and grow rapidly when crystallization starts with very low compression rates. We interpret φ ≈ 0.64 as the random-close packing (RCP) limit and φ ≈ 0.65 as a lower bound of the glass close packing (GCP) limit, whereas φ = 0.634-0.636 is attributed to another characteristic (lowest typical, LT) density φLT. The three characteristic densities φLT, φRCP and φGCP are determined for polydisperse packings with log-normal sphere radii distributions
    corecore