71 research outputs found

    Indicators of Quality of Care in Individuals With Traumatic Spinal Cord Injury: A Scoping Review

    Get PDF
    Study Design: Scoping review. Objectives: To identify a practical and reproducible approach to organize Quality of Care Indicators (QoCI) in individuals with traumatic spinal cord injury (TSCI). Methods: A comprehensive literature review was conducted in the Cochrane Central Register of Controlled Trials (CENTRAL) (Date: May 2018), MEDLINE (1946 to May 2018), and EMBASE (1974 to May 2018). Two independent reviewers screened 6092 records and included 262 full texts, among which 60 studies were included for qualitative analysis. We included studies, with no language restriction, containing at least 1 quality of care indicator for individuals with traumatic spinal cord injury. Each potential indicator was evaluated in an online, focused group discussion to define its categorization (healthcare system structure, medical process, and individuals with Traumatic Spinal Cord Injury related outcomes), definition, survey options, and scale. Results: A total of 87 indicators were identified from 60 studies screened using our eligibility criteria. We defined each indicator. Out of 87 indicators, 37 appraised the healthcare system structure, 30 evaluated medical processes, and 20 included individuals with TSCI related outcomes. The healthcare system structure included the impact of the cost of hospitalization and rehabilitation, as well as staff and patient perception of treatment. The medical processes included targeting physical activities for improvement of health-related outcomes and complications. Changes in motor score, functional independence, and readmission rates were reported as individuals with TSCI-related outcomes indicators. Conclusion: Indicators of quality of care in the management of individuals with TSCI are important for health policy strategists to standardize healthcare assessment, for clinicians to improve care, and for data collection efforts including registries

    Particle Shape Characterisation and Classification using Automated Microscopy and Shape Descriptors in Batch Manufacture of Particulate Solids

    Get PDF
    It is known that size alone, as often defined as the volume equivalent diameter, is not sufficient for characterizing many particulate products. The shape of crystalline products can be as important as size in many applications. Traditionally particulate shape is often defined by some simple descriptors such as the maximum length and aspect ratio. Although these descriptors are intuitive, they result in loss of some information of the original shape. This paper presents a method to use principal component analysis (PCA) to derive simple latent shape descriptors from microscope images of particulate products made in batch processes, and the use of the descriptors for identification of batch to batch variations. Data from batch runs of both a laboratory crystalliser and an industrial crystallisation reactor are analysed using the approach. Qualitative and quantitative comparison with the use of traditional shape descriptors that have physical meanings and Fourier shape descriptors is also made

    In-situ crystal morphology identification using imaging analysis with application to the L-glutamic acid crystallization

    Get PDF
    A synthetic image analysis strategy is proposed for in-situ crystal size measurement and shape identification for monitoring crystallization processes, based on using a real-time imaging system. The proposed method consists of image processing, feature analysis, particle sieving, crystal size measurement, and crystal shape identification. Fundamental image features of crystals are selected for efficient classification. In particular, a novel shape feature, referred to as inner distance descriptor, is introduced to quantitatively describe different crystal shapes, which is relatively independent of the crystal size and its geometric direction in an image captured for analysis. Moreover, a pixel equivalent calibration method based on subpixel edge detection and circle fitting is proposed to measure crystal sizes from the captured images. In addition, a kernel function based method is given to deal with nonlinear correlations between multiple features of crystals, facilitating computation efficiency for real-time shape identification. Case study and experimental results from the cooling crystallization of l-glutamic acid demonstrate that the proposed image analysis method can be effectively used for in-situ crystal size measurement and shape identification with good accuracy

    Advances in shape measurement in the digital world

    Get PDF
    The importance of particle shape in terms of its effects on the behaviour of powders and other particulate systems has long been recognised, but particle shape information has been rather difficult to obtain and use until fairly recently, unlike its better-known counterpart, particle size. However, advances in computing power and 3D image acquisition and analysis techniques have resulted in major progress being made in the measurement, description and application of particle shape information in recent years. Because we are now in a digital era, it is fitting that many of these advanced techniques are based on digital technology. This review article aims to trace the development of these new techniques, highlight their contributions to both academic and practical applications, and present a perspective for future developments

    Effects of grinding variables on structural changes and energy conversion during mechanical activation using line profile analysis (LPA)

    No full text
    The mechanical treatment of solids is one of the most common and widely used operations with which man has been concerned from the very beginnings of history of civilization. At the present, mechanical activation has a wide range of application potential. Mechanical activation processes are used to modify the properties of materials, enhance the reactivity of materials and produce advanced materials. When materials are subjected to intensive grinding, the structure and microstructure characters of material change widely. These structural changes determine the reactivity of materials and/or minerals and may play an important role in a proper subsequent process. The use of X-ray diffraction line broadening measurements has been proved to be useful in the characterization of microstructure and structural characteristics. The objective of this study is to investigate the influence of the milling operation variables on the microstructure and structural changes of natural hematite. The influence of the three variables, mill type, grinding time and media surface, through an experimental design was investigated using different methods of characterization by XRD line profile analysis (LPA). The results revealed that mechanical activation of hematite brings about great changes in geometrical and microstructural characteristics with increased the grinding intensity, whatever milling methods are applied. The measurements of the BET surface area, granulometric surface area and particle size show a tendency of the particles to form agglomerates during prolonged milling; in particular with grinding under higher media surface. The agglomeration stage of particles appears to be related to the milling operation conditions. The results indicated that the pores of the agglomerates remain accessible for Nitrogen gas, which addresses the formation of relatively weaker (soft) agglomerates. With a first approximation, the vibratory mill yielded the maximum BET specific surface area, accounting for 18.4 m2/g after 9 hours of milling with higher media surface. The expansions of hematite lattice and volume cell, especially in the initial stages of milling, were identified. The Williamson-Hall method confirms its merit for a rapid overview of the line broadening effects and possible understanding of the main causes. The anisotropic character of line broadening for deformed hematite as a function of grinding variables was revealed. From the Williamson-Hall plots, it was understood that strain and size contributions exist simultaneously in the milled samples. It was found that the hematite crystal is ‘soft' between (024) and other reflections. As seen by the Warren-Averbach method, the planetary mill products yield the smallest crystallites and the maximum root mean square strain (RMSS) (with the exception of the ground sample within one hour and low media surface). The final products contain crystallites sizes between 73.5 and 5.6 nm and its lattice strain (RMSS) at L=10 nm varies from 0.06 up to 5.32 , depending on the milling performance. With a first approximation, the products of the vibratory mill yielded lower X-ray amorphization degree with regard to the grinding time and media surface variables. The approximation of the energy contribution to the long- lived defects demonstrated that the amorphization character is the most important energy carrier in the activated hematite, accounting for more than 93% of overall stored energy in hematite. For a given stress energy, the activated hematite in the tumbling mill contains the largest excess energy and has in vibratory mill the smallest amount of excess energy. Generally, the vibratory mill brings about less distortion in the hematite than other mills for the same level of stress energy. However, to produce an identical stress energy in different mills, the planetary mill is needed a specific energy input much higher than the other mills. To investigate the influence of other milling variables in detail, more investigations are recommended, especially as the experiment design and progress in the knowledge nowadays provide possibilities to use advanced methods for the characterization. In our opinion, the investigation of the effect of various defects formed during mechanical activation on the reactivity of the minerals are now only at the beginning of their development. Systematic investigations are recommended to explore what defects are formed under various types of mechanical action in the crystal of the substances of different types and how these defects influence reactivity.Godkänd; 2006; 20070109 (haneit

    Mechanical activation of hematite using different grinding methods with special focus on structural changes and reactivity

    No full text
    The mechanical treatment of solids is one of the most common and widely used operations which man has been concerned from the very beginning of the history of civilization. Nowadays, mechanical activation has a wide range of application potentials. Mechanical activation processes are used to modify the properties of materials, to enhance the reactivity of materials and to produce advanced materials and to separate composite materials into its constituents. When materials are subjected to intensive grinding, the structure and microstructure characters of material change widely. These structural changes determine the reactivity of materials and/or minerals and may play an important role in subsequent processes. The objective of this study is to investigate the influence of the grinding techniques on the microstructure and structural changes of natural hematite. The influences of the five grinding methods with various grinding variables have been investigated: (1) three types of loose media mills in dry mode, (2) interparticle comminution in a confined piston-die press and (3) a stirred media mill in wet mode. A variety of microstructural characterization methods based on X-ray diffraction line profile analysis such as Warren-Averbach, Williamson-Hall and Rietveld methods associated with other characterizations methods have been employed in the present study. In addition, the effects of mechanical activation on the thermal reactivity of hematite concentrate have been studied using hydrogen reduction of activated samples. The results reveal that mechanical activation of hematite causes great changes in geometrical and microstructural characteristics with increased grinding intensity, whatever milling methods were applied. In the case of dry grinding with loose media mills, the results show that the particles show a tendency to form agglomerates during prolonged milling. The expansions of hematite lattice and volume cell were identified. The Williamson-Hall method provides itself to be a technique for a rapid overview of the X-ray line broadening effects and facilitates the understanding of the influence of grinding processes on the material structures. The anisotropic character of line broadening for deformed hematite as a function of grinding variables was revealed. From the Warren- Averbach method, it has been found that the planetary mill products yield the smallest crystallites and the maximum root mean square strain (RMSS) with one exception. The products of the vibratory mill yield approximately lower X-ray amorphization degree with regard to the grinding time and media surface variables. The approximation of the energy contribution to the long- lived defects demonstrated that the amorphization character is the most important energy carrier in the activated hematite, accounting for more than 93% of overall stored energy in hematite. The comparison of the loose media mills based on stress energy revealed that the vibratory mill brings about less distortion in the hematite than other mills for the same level of stress energy. In addition, the variance analysis revealed that the media surface and grinding time significantly influence the five main response variables at 95% confidence level. Multivariate techniques are successfully applied for projection of microstructure characters to identify the salient features underlying the data. Principal component analysis (PCA) makes it possible to predict easily which condition leads to production of similar properties or microstructure characters and opens a new window for prediction of microstructure characteristics based on changes in the grinding variables for further investigations. Partial least square discrimination analysis (PLS-DA) analysis suggested that mills could be differentiated from each other. From the interparticle comminution investigations, it has been found that the energy absorption is the dominating factor for the size reduction, surface area and induced structural changes in the particle bed comminution. It was also found that the interparticle breakage causes plastic deformation in the material and subsequently induces changes in the structure of the ground hematite and thus provides evidences for the activation potentiality of this method. The comparison with loose media mill (tumbling) in terms of net grinding energy indicated that the interparticle breakage has high energy transfer efficiency to the particles being ground and subsequently favor in the structural changes for a given energy. The comparison of the dry tumbling milling with wet stirred media milling showed that the stirred media mill is more effective in producing structural changes compared to the dry operation; although the X-ray amorphous phase content remained unaffected by the grinding environments, but a large difference was observed in the production of BET surface area. The milling process has been shown to have a pronounced influence on the reduction behavior and kinetic scheme of hematite especially at lower temperature or conversion degrees. Mechanical activation of hematite concentrate lead to the initiation of reduction at lower temperatures. The starting temperature of the reduction was decreased to from 420 about 330˚C depending on grinding intensity. Moreover, the pretreatment resulted in improved resolution of overlapping reduction events and the activation energy of the first step of reduction decreased with increasing grinding time. The study showed that the activation energy of the two steps of the reduction depends greatly on the extent of conversion implicating that the reduction processes of hematite to magnetite and magnetite to iron features multi-step characteristics. To investigate the influence of other milling variables in detail, more investigations are recommended, especially as the experiment design and progress in the knowledge to-day provide possibilities to use advanced methods for characterization and analysis. In our opinion, the investigation of the effects of various defects formed during mechanical activation on the reactivity of the minerals are currently only at the beginning of their developments. Systematic investigations are recommended to explore what defects are formed in the crystal of the substances under various types of mechanical action and how these defects influence the reactivity.Godkänd; 2007; 20070315 (ysko

    Structural changes and reactivity of hematite subjected to extended milling

    No full text
    Godkänd; 2008; 20081113 (ysko
    corecore