9 research outputs found

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Prognostic model on niche development after a first caesarean section:development and internal validation

    No full text
    Objective: To develop and internally validate a prognostic prediction model for development of a niche in the uterine scar after a first caesarean section (CS). Study design: Secondary analyses on data of a randomized controlled trial, performed in 32 hospitals in the Netherlands among women undergoing a first caesarean section. We used multivariable backward logistic regression. Missing data were handled using multiple imputation. Model performance was assessed by calibration and discrimination. Internal validation using bootstrapping techniques took place. The outcome was ‘development of a niche in the uterus’, defined as an indentation of = 2 mm in the myometrium. Results: We developed two models to predict niche development: in the total population and after elective CS. Patient related risk factors were: gestational age, twin pregnancy and smoking, and surgery related risk factors were double-layer closure and less surgical experience. Multiparity and Vicryl suture material were protective factors. The prediction model in women undergoing elective CS revealed similar results. After internal validation, Nagelkerke R2 ranged from 0.01 to 0.05 and was considered low; median area under the curve (AUC) ranged from 0.56 to 0.62, indicating failed to poor discriminative ability. Conclusions: The model cannot be used to accurately predict the development of a niche after a first CS. However, several factors seem to influence scar healing which indicates possibilities for future prevention such as surgical experience and suture material. The search for additional risk factors that play a role in development of a niche should be continued to improve the discriminative ability

    Innovative Rational-Derived, Target-Based and Cytotoxic Therapies for Breast Cancer and Other Malignancies

    No full text

    Search for a heavy Standard Model Higgs boson in the channel HZZl+lqqˉH\rightarrow ZZ\rightarrow l^{+}l^{-} q\bar{q} using the ATLAS detector

    Get PDF
    A search for a heavy Standard Model Higgs boson decaying via H->ZZ->llqq, where l=e,mu, is presented. The search is performed using a data set of pp collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 1.04 fb^-1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.Comment: 11 pages plus author list (26 pages total), 4 figures, 1 table, final version to appear in Physics Letters

    Measurement of the isolated diphoton cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    No full text
    15 pages plus author list (27 pages total), 9 figures, 2 tables, submitted to Phys. Rev. DThe ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD

    The ATLAS experiment at the CERN Large Hadron Collider

    Get PDF
    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented

    Charged-particle multiplicities in <i>pp</i> interactions at &#8730;s = 900 GeV measured with the ATLAS detector at the LHC

    No full text
    The first measurements from proton–proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |η|&#60;2.5 and pT&#62;500 MeV. The measurements are compared to Monte Carlo models of proton–proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at η=0 is measured to be1.333&#177;0.003(stat.)&#177;0.040(syst.), which is 5–15% higher than the Monte Carlo models predict
    corecore