201 research outputs found

    Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts

    Get PDF
    Background Subclinical hyperthyroidism (SHyper) has been associated with increased risk of hip and other fractures, but the linking mechanisms remain unclear. Objective To investigate the association between subclinical thyroid dysfunction and bone loss. Methods Individual participant data analysis was performed after a systematic literature search in MEDLINE/EMBASE (1946–2016). Two reviewers independently screened and selected prospective cohorts providing baseline thyroid status and serial bone mineral density (BMD) measurements. We classified thyroid status as euthyroidism (thyroid-stimulating hormone [TSH] 0.45–4.49 mIU/L), SHyper (TSH < 0.45 mIU/L) and subclinical hypothyroidism (SHypo, TSH ≥ 4.50–19.99 mIU/L) both with normal free thyroxine levels. Our primary outcome was annualized percentage BMD change (%ΔBMD) from serial dual X-ray absorptiometry scans of the femoral neck, total hip and lumbar spine, obtained from multivariable regression in a random-effects two-step approach. Results Amongst 5458 individuals (median age 72 years, 49.1% women) from six prospective cohorts, 451 (8.3%) had SHypo and 284 (5.2%) had SHyper. During 36 569 person-years of follow-up, those with SHyper had a greater annual bone loss at the femoral neck versus euthyroidism: %ΔBMD = −0.18 (95% CI: −0.34, −0.02; I2 = 0%), with a nonstatistically significant pattern at the total hip: %ΔBMD = −0.14 (95% CI: −0.38, 0.10; I2 = 53%), but not at the lumbar spine: %ΔBMD = 0.03 (95% CI: −0.30, 0.36; I2 = 25%); especially participants with TSH < 0.10 mIU/L showed an increased bone loss in the femoral neck (%Δ BMD = −0.59; [95% CI: −0.99, −0.19]) and total hip region (%ΔBMD = −0.46 [95% CI: −1.05, −0.13]). In contrast, SHypo was not associated with bone loss at any site. Conclusion Amongst adults, SHyper was associated with increased femoral neck bone loss, potentially contributing to the increased fracture risk

    The Work Role Functioning Questionnaire v2.0 Showed Consistent Factor Structure Across Six Working Samples

    Get PDF
    Objective: The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons' health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with mixed clinical conditions and job types to evaluate the comparability of the scale structure.  Methods: Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling demands, output demands, physical demands, mental and social demands, and flexibility demands). Model fit indices were calculated based on RMSEA ≤ 0.08 and CFI ≥ 0.95. After fitting the five-factor model, the multidimensional structure of the instrument was evaluated across samples using a second order factor model.  Results: The factor structure was robust across samples and a multi-group model had adequate fit (RMSEA = 0.63, CFI = 0.972). In sample specific analyses, minor modifications were necessary in three samples (final RMSEA 0.055-0.080, final CFI between 0.955 and 0.989). Applying the previous first order specifications, a second order factor model had adequate fit in all samples.  Conclusion: A five-factor model of the WRFQ showed consistent structural validity across samples. A second order factor model showed adequate fit, but the second order factor loadings varied across samples. Therefore subscale scores are recommended to compare across different clinical and working samples

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe

    Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models

    Get PDF
    Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96  TeV. With 4.8  fb-1 of integrated luminosity analyzed at CDF and 5.4  fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120  GeV, 0.38 pb at mH=165  GeV, and 0.83 pb at mH=200  GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurement of the Zγ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings

    Get PDF
    Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3.Abstract: The cross section for the production of Zγ in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb−1. Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZγ and Zγγ are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson

    Measurement of the production cross section ratio σ(χb2(1P))/σ(χb1(1P))in pp collisions at √s=8TeV

    Get PDF
    A measurement of the production cross section ratio σ(χb2(1P))/σ(χb1(1P))σ(χb2(1P))/σ(χb1(1P)) is presented. The χb1(1P)χb1(1P) and χb2(1P)χb2(1P) bottomonium states, promptly produced in pp collisions at View the MathML sources=8 TeV, are detected by the CMS experiment at the CERN LHC through their radiative decays χb1,2(1P)→ϒ(1S)+γχb1,2(1P)→ϒ(1S)+γ. The emitted photons are measured through their conversion to e+e−e+e− pairs, whose reconstruction allows the two states to be resolved. The ϒ(1S)ϒ(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7 fb−120.7 fb−1 is used to measure the cross section ratio in a phase-space region defined by the photon pseudorapidity, |ηγ|<1.0|ηγ|<1.0; the ϒ(1S)ϒ(1S) rapidity, |yϒ|<1.5|yϒ|<1.5; and the ϒ(1S)ϒ(1S) transverse momentum, View the MathML source7<pTϒ<40 GeV. The cross section ratio shows no significant dependence on the ϒ(1S)ϒ(1S) transverse momentum, with a measured average value of View the MathML source0.85±0.07(stat+syst)±0.08(BF), where the first uncertainty is the combination of the experimental statistical and systematic uncertainties and the second is from the uncertainty in the ratio of the χbχb branching fractions

    Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    Get PDF
    Peer reviewe
    corecore