65 research outputs found

    Salt marsh accretion with and without deep soil subsidence as a proxy for sea-level rise

    Get PDF
    The relation between salt marsh accretion and flooding regime was quantified by statistical analysis of a unique dataset of accretion measurements using sedimentation-erosion bars, on three barrier islands in the Dutch Wadden Sea over a period of c. 15 years. On one of the islands, natural gas extraction caused deep soil subsidence, which resulted in gradually increasing flooding frequency, duration, and depth, and can thus be seen as a proxy for sea-level rise. Special attention was paid to effects of small-scale variation e.g., in distance to tidal creeks or marsh edges, elevation of the marsh surface, and presence of livestock. Overall mean accretion rate was 0.44 ± 0.0005 cm year−1, which significantly exceeded the local rate of sea-level rise of 0.25 ± 0.009 cm year−1. A multiple regression approach was used to detect the combined effect of flooding regime and the local environment. The most important flooding-related factors that enhance accretion are mean water depth during flooding and overall mean water depth, but local accretion strongly decreases with increasing distance to the nearest creek or to the salt marsh edge. Mean water depth during flooding can be seen as an indicator for storm intensity, while overall mean water depth is a better indicator for storm frequency. The regression parameters were used to run a simple model simulating the effect of various sea-level scenarios on accretion and show that, even under extreme scenarios of sea-level rise, these salt marshes can probably persist for the next 100 years, although the higher parts may experience more frequent inundation

    External validation of prediction models for pneumonia in primary care patients with lower respiratory tract infection: an individual patient data meta-analysis

    Get PDF
    Pneumonia remains difficult to diagnose in primary care. Prediction models based on signs and symptoms (S&S) serve to minimize the diagnostic uncertainty. External validation of these models is essential before implementation into routine practice. In this study all published S&S models for prediction of pneumonia in primary care were externally validated in the individual patient data (IPD) of previously performed diagnostic studies

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore