12 research outputs found

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    Search for squarks and gluinos in final states with jets and missing transverse momentum at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied

    Study of the rare decays of B-s(0) and B-0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector

    Get PDF
    A study of the decays B0s→μ+μ−Bs0→μ+μ− and B0→μ+μ−B0→μ+μ− has been performed using data corresponding to an integrated luminosity of 25 fb −1−1 of 7 and 8 TeV proton–proton collisions collected with the ATLAS detector during the LHC Run 1. For the B0B0 dimuon decay, an upper limit on the branching fraction is set at B(B0→μ+μ−)<4.2×10−10B(B0→μ+μ−)<4.2×10−10 at 95 % confidence level. For B0sBs0 , the branching fraction B(B0s→μ+μ−)=(0.9+1.1−0.8)×10−9B(Bs0→μ+μ−)=(0.9−0.8+1.1)×10−9 is measured. The results are consistent with the Standard Model expectation with a p value of 4.8 %, corresponding to 2.0 standard deviations

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β∗ are studied

    Measurement of the ttˉZt\bar{t}Z and ttˉWt\bar{t}W production cross sections in multilepton final states using 3.2 fb1^{-1} of pppp collisions at s\sqrt{s} =13 TeV with the ATLAS detector

    Get PDF
    A measurement of the ttˉZt\bar{t}Z and ttˉWt\bar{t}W production cross sections in final states with either two same-charge muons, or three or four leptons (electrons or muons) is presented. The analysis uses a data sample of proton-proton collisions at s=13\sqrt{s} = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015, corresponding to a total integrated luminosity of 3.2 fb1^{-1}, The inclusive cross sections are extracted using likelihood fits to signal and control regions, resulting in σttˉZ=0.9±0.3\sigma_{t\bar{t}Z} = 0.9 \pm 0.3 pb and σttˉW=1.5±0.8\sigma_{t\bar{t}W} = 1.5 \pm 0.8 pb, in agreement with the Standard Model predictions

    Search for single production of vector-like quarks decaying into Wb in pp collisions at root s=8 TeV with the ATLAS detector

    No full text
    A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge +2/3 or a Y quark with charge -4/3, is performed in proton-proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb(-1) and was produced with a centre-of-mass energy of root s = 8 TeV. This analysis targets Q -> Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant t (t) over bar background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q -> Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T -> Wb) = 0.5, whereas the expected limit is 1.10 TeV

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb -1 of proton-proton collision data at s=7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: Λ&lt;(22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, σ&lt;(27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and σ&lt;(15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Λ and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. © 2012 CERN

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: sigma < (22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, sigma < (27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and sigma < (15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Lambda and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved. RI Sivoklokov, Sergey/D-8150-2012; Li, Xuefei/C-3861-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Prokoshin, Fedor/E-2795-2012; Fazio, Salvatore /G-5156-2010; Orlov, Ilya/E-6611-2012; Doyle, Anthony/C-5889-2009; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Livan, Michele/D-7531-2012; Takai, Helio/C-3301-2012; Petrucci, Fabrizio/G-8348-2012; Jones, Roger/H-5578-2011; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Villa, Mauro/C-9883-2009; Delmastro, Marco/I-5599-201

    Search for diphoton events with large missing transverse momentum in 1 fb<sup>-1</sup> of 7 TeV proton–proton collision data with the ATLAS detector

    Get PDF
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb−1of proton–proton collision data at &#8730;s=7  TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: &#963;&#60;(22–129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, &#963;&#60;(27–91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and &#963;&#60; (15–27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale &#8743; and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date
    corecore