827 research outputs found
Jet disc coupling in black hole binaries
In the last decade multi-wavelength observations have demonstrated the
importance of jets in the energy output of accreting black hole binaries. The
observed correlations between the presence of a jet and the state of the
accretion flow provide important information on the coupling between accretion
and ejection processes. After a brief review of the properties of black hole
binaries, I illustrate the connection between accretion and ejection through
two particularly interesting examples. First, an INTEGRAL observation of Cygnus
X-1 during a 'mini-' state transition reveals disc jet coupling on time scales
of orders of hours. Second, the black hole XTEJ1118+480 shows complex
correlations between the X-ray and optical emission. Those correlations are
interpreted in terms of coupling between disc and jet on time scales of seconds
or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets -
from Planets to Quasars. Accepted for publication in Astrophysics & Space
Scienc
The geology of TianshuiâQin'an area of the western Loess Plateau and the chemical characteristics of its Neolithic pottery
The difference in the chemical compositions between Neolithic pottery from the eastern and western ends of the northern Chinese Loess Plateau has been known for some time and a number of possible explanations have been proposed. However, a full understanding of the difference is yet to be achieved. Based on recent geological studies of the Tianshui-Qinâan area on the western Loess Plateau, the present study establishes a logical connection between the chemical characteristics of Neolithic pottery from the western Loess Plateau and the primary sediments available in the area. Moreover, this study reveals that the chemical compositions of clay used for fine wares and coarse wares at Dadiwan also bear some clear differences. Based on these findings, the paper discusses possible clay selection methods by potters in the Neolithic western Loess Plateau to make their different wares based on the locales where suitable raw materials are available. The paper demonstrates that the raw materials available for pottery making on the eastern and western Loess Plateau differ significantly and this explains the marked difference in ceramic composition between the two locations
Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm
The general picture that emerged by the end of 1990s from a large set of
optical and X-ray, spectral and timing data was that the X-rays are produced in
the innermost hot part of the accretion flow, while the optical/infrared (OIR)
emission is mainly produced by the irradiated outer thin accretion disc. Recent
multiwavelength observations of Galactic black hole transients show that the
situation is not so simple. Fast variability in the OIR band, OIR excesses
above the thermal emission and a complicated interplay between the X-ray and
the OIR light curves imply that the OIR emitting region is much more compact.
One of the popular hypotheses is that the jet contributes to the OIR emission
and even is responsible for the bulk of the X-rays. However, this scenario is
largely ad hoc and is in contradiction with many previously established facts.
Alternatively, the hot accretion flow, known to be consistent with the X-ray
spectral and timing data, is also a viable candidate to produce the OIR
radiation. The hot-flow scenario naturally explains the power-law like OIR
spectra, fast OIR variability and its complex relation to the X-rays if the hot
flow contains non-thermal electrons (even in energetically negligible
quantities), which are required by the presence of the MeV tail in Cyg X-1. The
presence of non-thermal electrons also lowers the equilibrium electron
temperature in the hot flow model to <100 keV, making it more consistent with
observations. Here we argue that any viable model should simultaneously explain
a large set of spectral and timing data and show that the hybrid
(thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews
and as hard cover in the Space Sciences Series of ISSI - The Physics of
Accretion on to Black Holes (Springer Publisher
A combined network model for membrane fouling
Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by
contaminants, coverage of pore entrances, and deposition on the membrane surface. Each of these fouling mechanisms
results in a decline in the observed flow rate over time, and the decrease in filtration efficiency can be characterized
by a unique signature formed by plotting the volumetric flux, bQ
, as a function of the total volume of fluid processed,
bV . When membrane fouling takes place via any one of these mechanisms independently the bQ
bV signature is always
convex downwards for filtration under a constant transmembrane pressure. However, in many such filtration scenarios,
the fouling mechanisms are inherently coupled and the resulting signature is more difficult to interpret. For instance,
blocking of a pore entrance will be exacerbated by the internal clogging of a pore, while the deposition of a layer of
contaminants is more likely once the pores have been covered by particulates. As a result, the experimentally observed
bQ
bV signature can vary dramatically from the canonical convex-downwards graph, revealing features that are not captured
by existing continuum models. In a range of industrially relevant cases we observe a concave downwards bQ
bV signature,
indicative of a fouling rate that becomes more severe with time. We derive a network model for membrane fouling
that accounts for the inter-relation between fouling mechanisms and demonstrate the impact on the bQ
bV signature.
Our formulation recovers the behaviour of existing models when the mechanisms are treated independently, but also
elucidates the concave-downward bQ
bV signature for multiple interactive fouling mechanisms. The resulting model enables
post-experiment analysis to identify the dominant fouling modality at each stage, and is able to provide insight into
selecting appropriate operating regimes
Theoretical overview on high-energy emission in microquasars
Microquasar (MQ) jets are sites of particle acceleration and synchrotron
emission. Such synchrotron radiation has been detected coming from jet regions
of different spatial scales, which for the instruments at work nowadays appear
as compact radio cores, slightly resolved radio jets, or (very) extended
structures. Because of the presence of relativistic particles and dense photon,
magnetic and matter fields, these outflows are also the best candidates to
generate the very high-energy (VHE) gamma-rays detected coming from two of
these objects, LS 5039 and LS I +61 303, and may be contributing significantly
to the X-rays emitted from the MQ core. In addition, beside electromagnetic
radiation, jets at different scales are producing some amount of leptonic and
hadronic cosmic rays (CR), and evidences of neutrino production in these
objects may be eventually found. In this work, we review on the different
physical processes that may be at work in or related to MQ jets. The jet
regions capable to produce significant amounts of emission at different
wavelengths have been reduced to the jet base, the jet at scales of the order
of the size of the system orbital semi-major axis, the jet middle scales (the
resolved radio jets), and the jet termination point. The surroundings of the
jet could be sites of multiwavelegnth emission as well, deserving also an
insight. We focus on those scenarios, either hadronic or leptonic, in which it
seems more plausible to generate both photons from radio to VHE and high-energy
neutrinos. We briefly comment as well on the relevance of MQ as possible
contributors to the galactic CR in the GeV-PeV range.Comment: Astrophysics & Space Science, in press (invited talk in the
conference: The multimessenger approach to the high-energy gamma-ray
sources", Barcelona/Catalonia, in July 4-7); 10 pages, 6 figures, 2 tables
(one reference corrected
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated oÂĄenders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these âcompositionalâ and âcontextualâ explanations of cross-national diÂĄerences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the eÂĄects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) diÂĄerences. Furthermore, crossnational variation in victimization rates is not only shaped by diÂĄerences in national context, but
also by varying composition. More speciÂącally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Identification of neprilysin as a potential target of arteannuin using computational drug repositioning
ABSTRACT The discovery of arteannuin (qinghaosu) in the 20th Century was a major advance for medicine. Besides functioning as a malaria therapy, arteannuin is a pharmacological agent in a range of other diseases, but its mechanism of action remains obscure. In this study, the reverse docking server PharmMapper was used to identify potential targets of arteannuin. The results were checked using the chemical-protein interactome servers DRAR-CPI and DDI-CPI, and verified by AutoDock Vina. The results showed that neprilysin (also known as CD10), a common acute lymphoblastic leukaemia antigen, was the top disease-related target of arteannuin. The chemical-protein interactome and docking results agreed with those of PharmMapper, further implicating neprilysin as a potential target. Although experimental verification is required, this study provides guidance for future pharmacological investigations into novel clinical applications for arteannuin
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
- âŠ