118 research outputs found

    Slow Formation of Pseudorotaxanes in Water

    Get PDF
    The synthesis of two water-soluble oligophenylene-ethynylene (OPE)-rods with substituted iso- and terephthalate end groups is presented. Both undergo slow association with a Diederich-type cyclophane in aqueous solution. Formation of [2]pseudorotaxanes occurs with reaction half-lives of several hours. Characterization of the supermolecules by 1H-NMR spectroscopy reveals a high thermodynamic stability and kinetic inertness of the pseudorotaxanes. The phthalate precursors are functionalized with peripheral azide groups, which make them modular precursors for construction of mechanically interlocked molecules in water

    Changes in the bacterial community structure and diversity during bamboo retting

    Get PDF
    Microbial retting is a critical step in obtaining fiber bundles from bamboo culm using indigenous microorganisms. A cultivation-independent technique for monitoring the changes in bacteria community during bamboo retting was applied in this work. This technique involves genetic profiling of PCR-amplified small-subunit rRNA and the single-strand conformation polymorphism (SSCP) gel analysis of the PCR-amplified 16S rDNA fragments. The study revealed that both the structure and the diversity of investigated communities varied with the incubation periods and sample locations. The bacteria bands from SCCP gel profiles related to Bacillus sp. decreased in intensity, and Phaeospirillum sp. and Azospirillum brasilense completely disappeared during the 4th and 5th month of incubation, while the bands related to the Sphingomonas japonica, Alphaproteobacterium Ellin335 and Microbacterium sp. increased. The bands closely related to Sphingomonads, Brevundimonas brasilense, Pseudoclavibacter sp., Agrococcus jenensis and Oxalophagus oxalicus remained dominant during the whole incubation period. This study showed that the use of PCR assay targeting 16S rRNA and SCCP profiling provided valuable information on monitoring the bacteria dynamic changes occurring in the bacteria community during bamboo retting, which is crucial for controlling the quality of the retting process and improving the retting efficiency, and thus benefits for fiber recovery.This work was made possible by the support from the earmarked fund for Modern Agro-industry Technology Research System (nycytx-19-E23), the European Union Biorenew Project [Sixth Framework Programme (FP6-2004-NMP-NI-4)] and China Scholarship Council. The authors would like to thank Florian Schmid, Herbert Pobeheim, Stefan Wei\l=ss\, Michael Furnkranz, Christoph Schmidt and Endry Nugroho Prasetyo for a number of insightful comments and suggestions

    The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA

    Get PDF
    The DNA-binding protein RdgC has been identified as an inhibitor of RecA-mediated homologous recombination in Escherichia coli. In Neisseria species, RdgC also has a role in virulence-associated antigenic variation. We have previously solved the crystal structure of the E. coli RdgC protein and shown it to form a toroidal dimer. In this study, we have conducted a mutational analysis of residues proposed to mediate interactions at the dimer interfaces. We demonstrate that destabilizing either interface has a serious effect on in vivo function, even though a stable complex with circular DNA was still observed. We conclude that tight binding is required for inhibition of RecA activity. We also investigated the role of the RdgC finger domain, and demonstrate that it plays a crucial role in the binding of circular DNA. Together, these data allow us to propose a model for how RdgC loads onto DNA. We discuss how RdgC might inhibit RecA-mediated strand exchange, and how RdgC might be displaced by other DNA metabolism enzymes such as polymerases and helicases

    Interactions of the Human MCM-BP Protein with MCM Complex Components and Dbf4

    Get PDF
    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK

    Drosophila NMNAT Maintains Neural Integrity Independent of Its NAD Synthesis Activity

    Get PDF
    Wallerian degeneration refers to a loss of the distal part of an axon after nerve injury. Wallerian degeneration slow (Wld(s)) mice overexpress a chimeric protein containing the NAD synthase NMNAT (nicotinamide mononucleotide adenylyltransferase 1) and exhibit a delay in axonal degeneration. Currently, conflicting evidence raises questions as to whether NMNAT is the protecting factor and whether its enzymatic activity is required for such a possible function. Importantly, the link between nmnat and axon degeneration is at present solely based on overexpression studies of enzymatically active protein. Here we use the visual system of Drosophila as a model system to address these issues. We have isolated the first nmnat mutations in a multicellular organism in a forward genetic screen for synapse malfunction in Drosophila. Loss of nmnat causes a rapid and severe neurodegeneration that can be attenuated by blocking neuronal activity. Furthermore, in vivo neuronal expression of mutated nmnat shows that enzymatically inactive NMNAT protein retains strong neuroprotective effects and rescues the degeneration phenotype caused by loss of nmnat. Our data indicate an NAD-independent requirement of NMNAT for maintaining neuronal integrity that can be exploited to protect neurons from neuronal activity-induced degeneration by overexpression of the protein

    Conformation Effects of CpG Methylation on Single-Stranded DNA Oligonucleotides: Analysis of the Opioid Peptide Dynorphin-Coding Sequences

    Get PDF
    Single-stranded DNA (ssDNA) is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin) fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA

    Identification of ORC1/CDC6-Interacting Factors in Trypanosoma brucei Reveals Critical Features of Origin Recognition Complex Architecture

    Get PDF
    DNA Replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1–6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing

    Metabolic engineering of novel lignin in biomass crops

    Get PDF
    Lignin, a phenolic polymer in the secondary wall, is the major cause of lignocellulosic biomass recalcitrance to efficient industrial processing. From an applications perspective, it is desirable that second-generation bioenergy crops have lignin that is readily degraded by chemical pretreatments but still fulfill its biological role in plants. Because plants can tolerate large variations in lignin composition, often without apparent adverse effects, substitution of some fraction of the traditional monolignols by alternative monomers through genetic engineering is a promising strategy to tailor lignin in bioenergy crops. However, successful engineering of lignin incorporating alternative monomers requires knowledge about phenolic metabolism in plants and about the coupling properties of these alternative monomers. Here, we review the current knowledge about lignin biosynthesis and the pathways towards the main phenolic classes. In addition, the minimal requirements are defined for molecules that, upon incorporation into the lignin polymer, make the latter more susceptible to biomass pretreatment. Numerous metabolites made by plants meet these requirements, and several have already been tested as monolignol substitutes in biomimetic systems. Finally, the status of detection and identification of compounds by phenolic profiling is discussed, as phenolic profiling serves in pathway elucidation and for the detection of incorporation of alternative lignin monomers

    Pleiotropic Effects of Sox2 during the Development of the Zebrafish Epithalamus

    Get PDF
    The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants
    corecore