77 research outputs found

    Stabilization of Neutral Thin Shells By Gravitational Effects From Electric Fields

    Full text link
    We study the properties of a system consisting of an uncharged spherically symmetric two dimensional extended object which encloses a stationary point charge placed in the shell's center. We show that there can be a static and stable configuration for the neutral shell, using only the gravitational field of the charged source as a stabilizing mechanism. In particular, two types of shells are studied: a dust shell and a string gas shell. The dynamical possibilities are also analyzed, including the possibility of child universe creation.Comment: 5 pages, 1 figur

    Gravitational Trapping Near Domain Walls and Stable Solitons

    Full text link
    In this work, the behavior of test particles near a domain wall of a stable false vacuum bubble is studied. It is shown that matter is naturally trapped in the vicinity of a static domain wall, and also, that there is a discontinuity in the test particle's velocity when crossing the domain wall. The latter is unexpected as it stands in contrast to Newtonian theory, where infinite forces are not allowed. The weak field limit is defined in order to show that there is no conflict with the non-relativistic behavior of gravitational fields and particle motions under these conditions.Comment: 8 pages, 1 figure, problem is reanalyzed using a continuous coordinate syste

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE γ\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE γ\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous γ\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    Health care and societal costs of the management of children and adolescents with attention-deficit/hyperactivity disorder in Spain: a descriptive analysis.

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental condition in childhood (5.3% to 7.1% worldwide prevalence), with substantial overall financial burden to children/adolescents, their families, and society. The aims of this study were to describe the clinical characteristics of children and adolescents with ADHD in Spain, estimate the associated direct/indirect costs of the disorder, and assess whether the characteristics and financial costs differed between children/adolescents adequately responding to currently available pharmacotherapies compared with children/adolescents for whom pharmacotherapies failed. Methods: This was a multicenter, cross-sectional, descriptive analysis conducted in 15 health units representative of the overall Spanish population. Data on demographic characteristics, socio-occupational status, social relationships, clinical variables of the disease, and pharmacological and non-pharmacological treatments received were collected in 321 children and adolescents with ADHD. Direct and indirect costs were estimated over one year from both a health care system and a societal perspective. Results: The estimated average cost of ADHD per year per child/adolescent was ¿5733 in 2012 prices; direct costs accounted for 60.2% of the total costs (¿3450). Support from a psychologist/educational psychologist represented 45.2% of direct costs and 27.2% of total costs. Pharmacotherapy accounted for 25.8% of direct costs and 15.5% of total costs. Among indirect costs (¿2283), 65.2% was due to caregiver expenses. The total annual costs were significantly higher for children/adolescents who responded poorly to pharmacological treatment (¿7654 versus ¿5517; P = 0.024), the difference being mainly due to significantly higher direct costs, particularly with larger expenses for non-pharmacological treatment (P = 0.012). Conclusions: ADHD has a significant personal, familial, and financial impact on the Spanish health system and society. Successful pharmacological intervention was associated with lower overall expenses in the management of the disorder

    Conceptual design of the International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few ×1012\times 10^{-12} GeV1^{-1} and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling gaeg_{ae} with sensitivity -for the first time- to values of gaeg_{ae} not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into 0.2\sim 0.2 cm2^2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for \sim12 h each day.Comment: 47 pages, submitted to JINS

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    VizieR Online Data Catalog: W49B with H.E.S.S. and Fermi-LAT (HESS+, 2018)

    Get PDF
    File hessmap.fit contains the gamma-ray excess map obtained with H.E.S.S. in the direction of the supernova remnant W49B
    corecore