703 research outputs found
Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation
BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Developing priority variables ("ecosystem Essential Ocean Variables" â eEOVs) for observing dynamics and change in Southern Ocean ecosystems
Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predatorâprey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region â the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term.
Regional boundary: south of 30°S
'Communicate to vaccinate' (COMMVAC). building evidence for improving communication about childhood vaccinations in low- and middle-income countries: protocol for a programme of research
ABSTRACT: BACKGROUND: Effective provider-parent communication can improve childhood vaccination uptake and strengthen immunisation services in low- and middle-income countries (LMICs). Building capacity to improve communication strategies has been neglected. Rigorous research exists but is not readily found or applicable to LMICs, making it difficult for policy makers to use it to inform vaccination policies and practice. The aim of this project is to build research knowledge and capacity to use evidence-based strategies for improving communication about childhood vaccinations with parents and communities in LMICs. Methods and design This project is a mixed methods study with six sub-studies. In sub-study one, we will develop a systematic map of provider-parent communication interventions for childhood vaccinations by screening and extracting data from relevant literature. This map will inform sub-study two, in which we will develop a taxonomy of interventions to improve provider-parent communication around childhood vaccination. In sub-study three, the taxonomy will be populated with trial citations to create an evidence map, which will also identify how evidence is linked to communication barriers regarding vaccination. In the project's fourth sub-study, we will present the interventions map, taxonomy, and evidence map to international stakeholders to identify high-priority topics for systematic reviews of interventions to improve parent-provider communication for childhood vaccination. We will produce systematic reviews of the effects of high-priority interventions in the fifth sub-study. In the sixth and final sub-study of the project, evidence from the systematic reviews will be translated into accessible formats and messages for dissemination to LMICs. DISCUSSION: This project combines evidence mapping, conceptual and taxonomy development, priority setting, systematic reviews, and knowledge transfer. It will build and share concepts, terms, evidence, and resources to aid the development of communication strategies for effective vaccination programmes in LMIC
The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.This work was supported by the following grants: NHGRIU54HG003273 to R.A.G; EU Marie Curie ITN #215781 âEvonetâ to M.A.; a Wellcome Trust Value in People (VIP) award to C.B. and Wellcome Trust graduate studentship WT089615MA to J.E.G; Marine
rhythms of Lifeâ of the University of Vienna, an FWF (http://www.fwf.ac.at/) START award (#AY0041321) and HFSP (http://www.hfsp.org/) research grant (#RGY0082/2010) to KT-ÂâR; MFPL Vienna International PostDoctoral Program for Molecular Life Sciences (funded by Austrian Ministry of Science and Research and City of Vienna, Cultural Department -ÂâScience and Research to T.K; Direct Grant (4053034) of the Chinese University of Hong Kong to J.H.L.H.; NHGRI HG004164 to G.M.; Danish Research Agency (FNU), Carlsberg Foundation, and Lundbeck Foundation to C.J.P.G.; U.S. National Institutes of Health R01AI55624 to J.H.W.; Royal Society University Research fellowship to F.M.J.; P.D.E. was supported by the BBSRC via the Babraham Institute;This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pbio.100200
The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, PÂ =Â 1.65Â ĂÂ 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, PÂ =Â 2.3Â ĂÂ 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, PÂ =Â 3.98Â ĂÂ Â 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, PÂ =Â 4.99Â ĂÂ 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa.
Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable
differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous
reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase
Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted
protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial
(Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of
host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These
genome data provide a foundation for research into trypanosomiasis prevention and yield important
insights with broad implications for multiple aspects of tsetse biology.IS
The complex remuneration of human resources for health in low-income settings: policy implications and a research agenda for designing effective financial incentives
Background
Human resources for health represent an essential component of health systems and play a key role to accelerate progress towards universal health coverage. Many countries in sub-Saharan Africa face challenges regarding the availability, distribution and performance of health workers, which could be in part addressed by providing effective financial incentives.
Methods
Based on an overview of the existing literature, the paper highlights the gaps in the existing research in low-income countries exploring the different components of health workers' incomes. It then proposes a novel approach to the analysis of financial incentives and delineates a research agenda, which could contribute to shed light on this topic.
Findings
The article finds that, while there is ample research that investigates separately each of the incomes health workers may earn (for example, salary, fee-for-service payments, informal incomes, top-ups- and per diems, dual practice and non-health activities), there is a dearth of studies which look at the health workers' complex remuneration-, that is, the whole of the financial incentives available. Little research exists which analyses simultaneously all revenues of health workers, quantifies the overall remuneration and explores its complexity, its multiple components and their features, as well as the possible interaction between income components. However, such a comprehensive approach is essential to fully comprehend health workers' incentives, by investigating the causes (at individual and system level) of the fragmentation in the income structure and the variability in income levels, as well as the consequences of the complex remuneration- on motivation and performance. This proposition has important policy implications in terms of devising effective incentive packages as it calls for an active consideration of the role that complex remuneration- plays in determining recruitment, retention and motivation patterns, as well as, more broadly, the performance of health systems.
Conclusions
This paper argues that research focusing on the health workers' complex remuneration- is critical to address some of the most challenging issues affecting human resources for health. An empirical research agenda is proposed to fill the gap in our understanding.This article is about public relations expertise. It presents the results of an extensive empirical enquiry and is framed by the concept of profession and the sociological debates that surround it.sch_iih13pub3968pub6
- âŠ