108 research outputs found
Interdecadal variability and oceanic thermohaline adjustment
Changes in the strength of the thermohaline overturning circulation are
associated, by geostrophy, with changes in the east-west pressure difference
across an ocean basin. The tropical-polar density contrast and the east-west
pressure difference are connected by an adjustment process. In flat-bottomed
ocean models the adjustment is associated with viscous, baroclinic Kelvin wave
propagation. Weak-high latitude stratification leads to the adjustment having
an interdecadal timescale. We reexamine model interdecadal oscillations in the
context of the adjustment process, for both constant flux and mixed surface
boundary conditions. Under constant surface flux, interdecadal oscillations are
associated with the passage of a viscous Kelvin wave around the model domain.
Our results suggest the oscillations can be self-sustained by perturbations to
the western boundary current arising from the southward boundary wave
propagation. Mixed boundary condition oscillations are characterized by the
eastward, cross-basin movement of salinity-dominated density anomalies, and the
westward return of these anomalies along the northern boundary. We suggest the
latter is associated with viscous Kelvin wave propagation. Under both types of
boundary conditions, the strength of the thermohaline overturning and the
tropical-polar density contrast vary out of phase. We show how the phase
relationship is related to the boundary wave propagation. The importance of
boundary regions indicates an urgent need to examine the robustness of
interdecadal variability in models as the resolution is increased, and as the
representation of the coastal, shelf/slope wave guide is improved. (Abriged
abstract)Comment: 20 pages, AGU LaTeX, 12 figures included using epsfig, to appear in
JGR, complete manuscript also available at
ftp://crosby.physics.mun.ca/pub/drew/papers/gp1.ps.g
Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow
The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water
Oceanic forcing of interannual and multidecadal climate variability in the southwestern Indian Ocean: evidence from a 160 year coral isotopic record (La Réunion, 55°E, 21°S)
We have developed a new 163-year bimonthly coral δ18O record from La Réunion (55°E, 21°S). Interannual variations in coral δ18O are coherent with the Southern Oscillation Index but not with regional sea surface temperature (SST). Correlations with the global SST field suggest more negative seawater δ18O (δ18Osw) during La Niña years. We propose that the signal results from changes in the strength of the South Equatorial Current and the Indonesian throughflow, which carry low salinity water. Multidecadal variations in coral δ18O are coherent with regional SST, but the sign is of opposite sense as expected from the coral δ18O-temperature relationship. This requires multidecadal changes in salinity large enough to overprint the SST contribution in the coral δ18O record. Our results suggest that multidecadal salinity variations result from modulations in the transport of the South Equatorial Current, which varies in response to the surface wind field and/or the Indonesian throughflow
Numerical wave propagation on the hexagonal C-grid
Copyright © 2008 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, Vol. 227, Issue 11 (2008), DOI: 10.1016/j.jcp.2008.02.010Inertio-gravity mode and Rossby mode dispersion properties are examined for discretizations of the linearized rotating shallow water equations on a regular hexagonal C-grid in planar geometry. It is shown that spurious non-zero Rossby mode frequencies found by previous authors in the f-plane case can be avoided by an appropriate discretization of the Coriolis terms. Three generalizations of this discretization that conserve energy even for non-constant Coriolis parameter are presented. A quasigeostrophic ββ-plane analysis is carried out to investigate the Rossby mode dispersion properties of these three schemes. The Rossby mode dispersion relation is found to have two branches. The primary branch modes are good approximations, in terms of both structure and frequency, to corresponding modes of the continuous governing equations, and offer some improvements over a quadrilateral C-grid scheme. The secondary branch modes have vorticity structures approximating those of small-scale modes of the continuous governing equations, suggesting that the hexagonal C-grid might have an advantage in terms of resolving extra Rossby modes; however, the frequencies of the secondary branch Rossby modes are much smaller than those of the corresponding continuous modes, so this potential advantage is not fully realized
Seasonal evolution of Aleutian low pressure systems: Implications for the North Pacific subpolar circulation
The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres
Why much of the Atlantic circulation enters the Caribbean Sea and very little of the Pacific circulation enters the Sea of Japan
Holocene Atlantic climate variations deduced from carbonate peri-platform sediments (leeward margin, Great Bahama Bank)
A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000–5100 years BP, 3500–2700 years BP, and 1600–700 years BP; lower current speeds existed during the time intervals 5100–3500 years BP, 2700–1600 years BP, and 700–100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation
Patterns of Pacific decadal variability recorded by Indian Ocean corals
We investigate Pacific Decadal Oscillation (PDO) signals recorded by two bimonthly resolved coral δ18O series from La Réunion and Ifaty (West Madagascar), Indian Ocean from 1882 to 1993. To isolate the main PDO frequencies, we apply a band pass filter to the time series passing only periodicities from 16 to 28 years. We investigate the covariance patterns of the coral time series with sea surface temperature (SST) and sea level pressure (SLP) of the Indian and Pacific Oceans. In addition, the empirical orthogonal functions of the filtered SST and SLP fields (single and coupled) are related to the filtered coral times series. The covariance maps show the typical PDO pattern for SST and SLP, confirming the coupling between the Indian and Pacific Oceans. Both corals show the strongest signal in boreal summer. The La Réunion (Ifaty) coral better records SST (SLP) than SLP (SST) pattern variability. We suggest that the filtered La Réunion coral δ18O represents δ18O of seawater that varies with the South Equatorial Current, which, in turn, is linked with the SST PDO. The filtered Ifaty coral δ18O represents SST and is remotely linked with the SLP PDO variability. A combined coral record of the Ifaty and La Réunion boreal summer δ18O series explains about 64% of the variance of the coupled SST/SLP PDO time series
A moist benchmark calculation for atmospheric general circulation models
A benchmark calculation is designed to compare the climate and climate sensitivity of atmospheric general circulation models (AGCMs). The experimental setup basically follows that of the aquaplanet experiment (APE) proposed by Neale and Hoskins, but a simple mixed layer ocean is embedded to enable air-sea coupling and the prediction of surface temperature. In calculations with several AGCMs, this idealization produces very strong zonal-mean flow and exaggerated ITCZ strength, but the model simulations remain sufficiently realistic to justify the use of this framework in isolating key differences between models. Because surface temperatures are free to respond to model differences, the simulation of the cloud distribution, especially in the subtropics, affects many other aspects of the simulations. The analysis of the simulated tropical transients highlights the importance of convection inhibition and air-sea coupling as affected by the depth of the mixed layer. These preliminary comparisons demonstrate that this idealized benchmark provides a discriminating framework for understanding the implications of differing physics parameterization in AGCMs.open101
Climate fluctuations of tropical coupled system: The role of ocean dynamics
The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate
- …
