92 research outputs found

    Bessel Process and Conformal Quantum Mechanics

    Full text link
    Different aspects of the connection between the Bessel process and the conformal quantum mechanics (CQM) are discussed. The meaning of the possible generalizations of both models is investigated with respect to the other model, including self adjoint extension of the CQM. Some other generalizations such as the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are discussed with respect to the underlying conformal group structure.Comment: 28 Page

    Bifurcation treatment with novel, highly flexible drug-eluting coronary stents in all-comers: 2-year outcome in patients of the DUTCH PEERS trial

    Get PDF
    Background: Percutaneous coronary intervention (PCI) in bifurcated lesions with second-generation drug-eluting stents (DES) was associated with increased myocardial infarction (MI) rates. Flexible stent designs that accommodate well to vessel tapering may be of benefit in challenging anatomies such as bifurcated target lesions, but so far data are scarce.Methods: We analyzed the 2-year follow-up data of the DUTCH PEERS (TWENTE II) trial, which randomized 1811 all-comer patients to PCI with newer generation resolute integrity zotarolimus-eluting (Medtronic) or promus element everolimus-eluting stents (Boston Scientific). In bifurcated lesions, provisional stenting was generally performed. Target vessel failure is a composite endpoint, consisting of cardiac death, target vessel MI, or target vessel revascularization.Results: Patients with at least one bifurcated lesion (n = 465, 25.7 %) versus patients with non-bifurcated target lesions only (n = 1346, 74.3 %) showed similar rates of clinical endpoints including target vessel failure (9.2 versus 7.9 %, p = 0.36) and definite stent thrombosis (0.4 versus 1.0 %, p = 0.38). Target vessel MI was more common in patients with bifurcated lesions (3.4 versus 1.6 %, p = 0.02); but after multivariate analysis with propensity score adjustment, bifurcation treatment was found not to be an independent predictor of target vessel MI (HR 1.40, 95 % CI 0.71–2.76; p = 0.34). Among patients with bifurcated lesions, DES type and side-branch size did not affect outcome, but periprocedural MI occurred more often after two-stent approaches (9.0 versus 2.1 %; p = 0.002).Conclusion: All-comer patients treated for bifurcated and non-bifurcated target lesions showed similar and low rates of clinical endpoints, suggesting that the DES used are efficacious and safe for treating bifurcated target lesions

    Have Superheavy Elements been Produced in Nature?

    Full text link
    We discuss the possibility whether superheavy elements can be produced in Nature by the astrophysical rapid neutron capture process. To this end we have performed fully dynamical network r-process calculations assuming an environment with neutron-to-seed ratio large enough to produce superheavy nuclei. Our calculations include two sets of nuclear masses and fission barriers and include all possible fission channels and the associated fission yield distributions. Our calculations produce superheavy nuclei with A ~ 300 that however decay on timescales of days.Comment: 12 pages, 11 figure

    Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−¹. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be σZ→bb¯fid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb, in good agreement with next-to-leading-order theoretical predictions

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for H→γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    Get PDF
    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb−14.5 fb−1 of proton–proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb−1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the tt¯H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the tt¯H and tH cross sections as well as the H→γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at −1.3 and +8.0 times the Yukawa coupling strength in the Standard Model

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)

    Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    Measurements of fiducial and differential cross sections of Higgs boson production in the H→ZZ∗ → 4ℓ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb−¹ of pp collision data, produced at √s = 8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found

    Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
    corecore