10 research outputs found

    The Second-Generation Guide Star Catalog: Description and Properties

    Full text link
    The GSC-II is an all-sky database of objects derived from the uncompressed DSS that the STScI has created from the Palomar and UK Schmidt survey plates and made available to the community. Like its predecessor (GSC-I), the GSC-II was primarily created to provide guide star information and observation planning support for HST. This version, however, is already employed at some of the ground-based new-technology telescopes such as GEMINI, VLT, and TNG, and will also be used to provide support for the JWST and Gaia space missions as well as LAMOST, one of the major ongoing scientific projects in China. Two catalogs have already been extracted from the GSC-II database and released to the astronomical community. A magnitude-limited (R=18.0) version, GSC2.2, was distributed soon after its production in 2001, while the GSC2.3 release has been available for general access since 2007. The GSC2.3 catalog described in this paper contains astrometry, photometry, and classification for 945,592,683 objects down to the magnitude limit of the plates. Positions are tied to the ICRS; for stellar sources, the all-sky average absolute error per coordinate ranges from 0.2" to 0.28" depending on magnitude. When dealing with extended objects, astrometric errors are 20% worse in the case of galaxies and approximately a factor of 2 worse for blended images. Stellar photometry is determined to 0.13-0.22 mag as a function of magnitude and photographic passbands (B,R,I). Outside of the galactic plane, stellar classification is reliable to at least 90% confidence for magnitudes brighter than R=19.5, and the catalog is complete to R=20.Comment: 52 pages, 33 figures, to be published in AJ August 200

    BMP Signaling Modulates Hepcidin Expression in Zebrafish Embryos Independent of Hemojuvelin

    Get PDF
    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv

    Transferrin-a modulates hepcidin expression in zebrafish embryos

    No full text
    The iron regulatory hormone hepcidin is transcriptionally up-regulated in response to iron loading, but the mechanisms by which iron levels are sensed are not well understood. Large-scale genetic screens in the zebrafish have resulted in the identification of hypochromic anemia mutants with a range of mutations affecting conserved pathways in iron metabolism and heme synthesis. We hypothesized that transferrin plays a critical role both in iron transport and in regulating hepcidin expression in zebrafish embryos. Here we report the identification and characterization of the zebrafish hypochromic anemia mutant, gavi, which exhibits transferrin deficiency due to mutations in transferrin-a. Morpholino knockdown of transferrin-a in wild-type embryos reproduced the anemia phenotype and decreased somite and terminal gut iron staining, while coinjection of transferrin-a cRNA partially restored these defects. Embryos with transferrin-a or transferrin receptor 2 (TfR2) deficiency exhibited low levels of hepcidin expression, however anemia, in the absence of a defect in the transferrin pathway, failed to impair hepcidin expression. These data indicate that transferrin-a transports iron and that hepcidin expression is regulated by a transferrin-a–dependent pathway in the zebrafish embryo

    Use of cardiac imaging in chronic coronary syndromes: the EURECA Imaging registry.

    No full text

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text

    MRI evaluation and safety in the developing brain

    No full text
    corecore