218 research outputs found

    A long hard look at MCG-6-30-15 with XMM-Newton and BeppoSAX

    Full text link
    We summarise the primary results from a 320 ks observation of the bright Seyfert 1 galaxy MCG-6-30-15 with XMM-Newton and Beppo-SAX.Comment: 4 pages, 6 figures. Proc. of the meeting: "The Restless High-Energy Universe" (Amsterdam, The Netherlands), E.P.J. van den Heuvel, J.J.M. in 't Zand, and R.A.M.J. Wijers Ed

    X-ray Reflection By Photoionized Accretion Discs

    Get PDF
    We present the results of reflection calculations that treat the relevant physics with a minimum of assumptions. The temperature and ionization structure of the top five Thomson depths of an illuminated disc are calculated while also demanding that the atmosphere is in hydrostatic equilibrium. In agreement with Nayakshin, Kazanas & Kallman, we find that there is a rapid transition from hot to cold material in the illuminated layer. However, the transition is usually not sharp so that often we find a small but finite region in Thomson depth where there is a stable temperature zone at T \sim 2 x 10^{6} K due to photoelectric heating from recombining ions. As a result, the reflection spectra often exhibit strong features from partially-ionized material, including helium-like Fe K lines and edges. We find that due to the highly ionized features in the spectra these models have difficulty correctly parameterizing the new reflection spectra. There is evidence for a spurious R−ΓR-\Gamma correlation in the ASCA energy range, where RR is the reflection fraction for a power-law continuum of index Γ\Gamma, confirming the suggestion of Done & Nayakshin that at least part of the R-Gamma correlation reported by Zdziarski, Lubinski & Smith for Seyfert galaxies and X-ray binaries might be due to ionization effects. Although many of the reflection spectra show strong ionized features, these are not typically observed in most Seyfert and quasar X-ray spectra.Comment: 16 pages, accepted by MNRAS, Fig. 8 is in colour Figures and tables changed by a code update. Conclusions unchange

    X-ray Periodicity in AGN

    Full text link
    Significant (marginal) detections of periodic signals have been recently reported in 3 (4) Active Galactic Nuclei. Three of the detections were obtained from long EUVE light curves of moderate-luminosity Seyfert galaxies; the fourth was discovered in Chandra data from the low-luminosity Seyfert 1 galaxy NGC 4395. When compared with Cyg X-1, I find that the period is related to the luminosity as P∝L2/3P\propto L^{2/3} rather than the expected one-to-one relationship. This result might be explained if the QPO is associated with the inner edge of the optically thick accretion disk, and the inner edge radius depends on the source luminosity (or black hole mass). A discussion of uncertainties in the period detection methodology is also discussed.Comment: To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, eds. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Analysis of filament arrangements and generation of statistically equivalent composite micro-structures

    Get PDF
    An efficient method to describe and quantify the filament arrangement in fibre bundles based on the analysis of micrographs was developed. Quantitative measurement of relative filament positions indicated that the initially random arrangement of filaments shows increasingly strong characteristics of square and hexagonal configurations with increasing level of transverse compaction. An existing micro-structure generator was extended to incorporate the measured data allowing statistically equivalent filament arrangements to be generated at any fibre volume fraction. These can be used to determine micro-structural properties of actual fibre reinforced composites

    The Fragmentation of Pre-enriched Primordial Objects

    Full text link
    Recent theoretical investigations have suggested that the formation of the very first stars, forming out of metal-free gas, was fundamentally different from the present-day case. In this paper, we study the effect of metallicity on the evolution of the gas in a collapsing dark matter mini-halo. We model such a system as an isolated 3\sigma peak of mass 2x10^6 M_sun that collapses at z_coll=30, using smoothed particle hydrodynamics. The gas has a supposed level of pre-enrichment of either 10^-4 Z_sun or 10^-3 Z_sun. We find that the evolution proceeds very differently for the two cases. The gas in the lower metallicity simulation fails to undergo continued collapse and fragmentation, whereas the gas in the higher metallicity case dissipatively settles into the center of the dark matter halo. The central gas, characterized by densities n > 10^4 cm^-3, and a temperature, T \sim 90 K, which closely follows that of the CMB, is gravitationally unstable and undergoes vigorous fragmentation. We discuss the physical reason for the existence of a critical metallicity, Z_crit \sim 5x10^-4 Z_sun, and its possible dependence on redshift. Compared to the pure H/He case, the fragmentation of the 10^-3 Z_sun gas leads to a larger relative number of low-mass clumps.Comment: Minor revisions, 7 pages, 6 figures, MNRAS in pres

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore