We present the results of reflection calculations that treat the relevant
physics with a minimum of assumptions. The temperature and ionization structure
of the top five Thomson depths of an illuminated disc are calculated while also
demanding that the atmosphere is in hydrostatic equilibrium. In agreement with
Nayakshin, Kazanas & Kallman, we find that there is a rapid transition from hot
to cold material in the illuminated layer. However, the transition is usually
not sharp so that often we find a small but finite region in Thomson depth
where there is a stable temperature zone at T \sim 2 x 10^{6} K due to
photoelectric heating from recombining ions. As a result, the reflection
spectra often exhibit strong features from partially-ionized material,
including helium-like Fe K lines and edges. We find that due to the highly
ionized features in the spectra these models have difficulty correctly
parameterizing the new reflection spectra. There is evidence for a spurious
R−Γ correlation in the ASCA energy range, where R is the reflection
fraction for a power-law continuum of index Γ, confirming the suggestion
of Done & Nayakshin that at least part of the R-Gamma correlation reported by
Zdziarski, Lubinski & Smith for Seyfert galaxies and X-ray binaries might be
due to ionization effects. Although many of the reflection spectra show strong
ionized features, these are not typically observed in most Seyfert and quasar
X-ray spectra.Comment: 16 pages, accepted by MNRAS, Fig. 8 is in colour Figures and tables
changed by a code update. Conclusions unchange