1,494 research outputs found
Family Unification, Exotic States and Light Magnetic Monopoles
Models with fermions in bifundamental representations can lead naturally to
family unification as opposed to family replication. Such models typically
predict (exotic) color singlet states with fractional electric charge, and
magnetic monopoles with multiple Dirac charge. The exotics may be at the TeV
scale, and relatively light magnetic monopoles (greater than about 10^7 GeV)
can be present in the galaxy with abundance near the Parker bound. We focus on
three family SU(4)XSU(3)XSU(3) models.Comment: 37 page
Early star-forming galaxies and the reionization of the Universe
Star forming galaxies represent a valuable tracer of cosmic history. Recent
observational progress with Hubble Space Telescope has led to the discovery and
study of the earliest-known galaxies corresponding to a period when the
Universe was only ~800 million years old. Intense ultraviolet radiation from
these early galaxies probably induced a major event in cosmic history: the
reionization of intergalactic hydrogen. New techniques are being developed to
understand the properties of these most distant galaxies and determine their
influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted
version of the review formatted by the authors, in accordance with Nature
publication policies. For the official, published version of the review,
please see http://www.nature.com/nature/archive/index.htm
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)
Using a sample of 122 million Upsilon(3S) events recorded with the BaBar
detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for
the spin-singlet partner of the P-wave chi_{bJ}(1P) states in the
sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We
observe an excess of events above background in the distribution of the recoil
mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width
of the observed signal is consistent with experimental resolution, and its
significance is 3.1sigma, including systematic uncertainties. We obtain the
value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching
fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Impact of general practice endorsement on the social gradient in uptake in bowel cancer screening
This is a summary of independent research funded by the National Institute for Health. Research (NIHR)’s Programme Grants for Applied Research Programme (RP-PG-0609–10106
Amniotic fluid deficiency and congenital abnormalities both influence fluctuating asymmetry in developing limbs of human deceased fetuses
Fluctuating asymmetry (FA), as an indirect measure of developmental instability (DI), has been intensively studied for associations with stress and fitness. Patterns, however, appear heterogeneous and the underlying causes remain largely unknown. One aspect that has received relatively little attention in the literature is the consequence of direct mechanical effects on asymmetries. The crucial prerequisite for FA to reflect DI is that environmental conditions on both sides should be identical. This condition may be violated during early human development if amniotic fluid volume is deficient, as the resulting mechanical pressures may increase asymmetries. Indeed, we showed that limb bones of deceased human fetuses exhibited increased asymmetry, when there was not sufficient amniotic fluid (and, thus, space) in the uterine cavity. As amniotic fluid deficiency is known to cause substantial asymmetries and abnormal limb development, these subtle asymmetries are probably at least in part caused by the mechanical pressures. On the other hand, deficiencies in amniotic fluid volume are known to be associated with other congenital abnormalities that may disturb DI. More specifically, urogenital abnormalities can directly affect/reduce amniotic fluid volume. We disentangled the direct mechanical effects on FA from the indirect effects of urogenital abnormalities, the latter presumably representing DI. We discovered that both factors contributed significantly to the increase in FA. However, the direct mechanical effect of uterine pressure, albeit statistically significant, appeared less important than the effects of urogenital abnormalities, with an effect size only two-third as large. We, thus, conclude that correcting for the relevant direct factors allowed for a representative test of the association between DI and stress, and confirmed that fetuses form a suitable model system to increase our understanding in patterns of FA and symmetry development.Research Fund of the University of Antwerp, mobility grant from the Research Foundation – Flanders (FWO)
Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions
Purpose: Extracellular Fe(III) reduction plays an important role in a variety of biogeochemical processes. Several mechanisms for microbial Fe(III) reduction in pH-neutral environments have been proposed, but pathways of microbial Fe(III) reduction within alkaline conditions have not been clearly identified. Alkaline soils are vastly distributed; thus, a better understanding of microbial Fe(III) reduction under alkaline conditions is of significance. The purpose of this study is to explore the dominant mechanism of bacterial iron reduction in alkaline environments. Materials and methods: We used antraquinone-2,6-disulfonate (AQDS) as a representative of quinone moities of humic substances and elemental sulfur and sulfate as sulfur species to investigate the potential role of humic substances and sulfur species in mediating microbial Fe(III) reduction in alkaline environments. We carried out thermodynamic calculations to predict the ability of bacteria to reduce Fe(III) (oxyhydr)oxides under alkaline conditions and the ability of AQDS and sulfur species to serve as electron acceptors for microbial anaerobic respiration in an assumed alkaline soil environments. A series of incubation experiments with two model dissimilatory metal reducing bacteria, Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA as well as mixed bacteria enriched from a soil were performed to confirm the contribution of AQDS and sulfur species to Fe(III) reduction under alkaline conditions. Results and discussion: Based on thermodynamic calculations, we predicted that, under alkaline conditions, the enzymatic reduction of Fe(III) (oxyhydr)oxides would be thermodynamically feasible but very weak. In our incubation experiments, the reduction of ferrihydrite by anaerobic cultures of Shewanella oneidensis MR-1, Geobacter sulfurreducens PCA or microbes enriched from a soil was significantly increased in the presence of S0 or AQDS. Notably, AQDS contributed more to promoting Fe(III) reduction as a soluble electron shuttle than S0 did under the alkaline conditions probably because of different mechanisms of microbial utilization of AQDS and S0. Conclusions: These results suggest that microbial reduction of Fe(III) (oxyhydr)oxides under alkaline conditions may proceed via a pathway mediated by electron shuttles such as AQDS and S0. Considering the high ability of electron shuttling and vast distribution of humic substances, we suggest that humic substance-mediated Fe(III) reduction may potentially be the dominant mechanism for Fe(III) reduction in alkaline environments
- …
