29 research outputs found

    Recent data analysis to revisit the spin structure function of nucleon in Laplace space

    Full text link
    Considering a fixed-flavor number scheme and based on laplace transdormation, we perform a leading-order and next-to-leading-order QCD analysis which are including world data on polarized structure functions g1g_1 and g2g_2. During our analysis, taking the DGLAP evolution, we employ the Jacobi polynomials expansion technique. In our recent analysis we utilize the recent available data and consequently include more data than what we did in our previous analysis. we obtain good agreements between our results for the polarized parton densities and nucleon structure functions with all available experimental data and some common parametrization models.Comment: 16 pages,11 figures, 5 table

    Dibutyltin-induced alterations of interleukin 1beta secretion from human immune cells

    Get PDF
    Dibutyltin (DBT) is used to stabilize polyvinyl chloride plastics (including pipes that distribute drinking water) and as a de-worming agent in poultry. DBT is found in human blood, and DBT exposures alter the secretion of tumor necrosis factor alpha and interferon gamma from lymphocytes. Interleukin (IL)-1β is a proinflammatory cytokine that regulates cellular growth, tissue restoration and immune response regulation. IL-1β plays a role in increasing invasiveness of certain tumors. This study reveals that exposures to DBT (24 h, 48 h and 6 days) modify the secretion of IL-1β from increasingly reconstituted preparations of human immune cells (highly enriched human natural killer cells, monocyte-depleted [MD] peripheral blood mononuclear cells [PBMCs], PBMCs, granulocytes and a preparation combining both PBMCs and granulocytes). DBT altered IL-1β secretion from all cell preparations. Higher concentrations of DBT (5 and 2.5 μm) decreased the secretion of IL-1β, while lower concentrations of DBT (0.1 and 0.05 μm) increased the secretion of IL-1β. Selected signaling pathways were examined in MD-PBMCs to determine if they play a role in DBT-induced elevations of IL-1β secretion. Pathways examined were IL-1β converting enzyme (caspase 1), mitogen-activated protein kinases and nuclear factor kappa B. Caspase 1 and mitogen-activated protein kinase pathways appear to be utilized by DBT in increasing IL-1β secretion. These results indicate that DBT alters IL-1β secretion from human immune cells in an ex. vivo system utilizing several IL-1β regulating signaling pathways. Thus, DBT may have the potential to alter IL-1β secretion in an in vivo system. Copyright © 2016 John Wiley & Sons, Ltd

    Effect of symmetry breaking of polarized light sea quarks on the nucleon and nuclear structure functions, and sum rules

    Full text link
    In this study, we performed calculations and analyses of the structure functions of polarized nucleons and light nuclei, specifically 3^3He and 3^3H, using second-order Feynman diagrams. Our investigation focused on two main aspects: Firstly, we examined the symmetry properties of polarized light sea quarks. Secondly, we conducted a detailed investigation into the impacts of symmetry breaking on the structure functions of both nucleons and nuclei. To achieve this, we utilized the existing polarized Parton Distribution Functions (polarized PDFs) available in the literature. These PDFs were used to calculate and compare the polarized structure functions g1g_1 and g2g_2 of the nuclei. Additionally, we examined and analyzed the Bjorken and Efremov-Leader-Teryaev sum rules by utilizing the moments of the polarized structure functions. The Lorentz color force components, namely FEy,nF_E^{y,n} and FBy,nF_B^{y,n}, are determined using the twist-2, twist-3, and twist-4 matrix elements. When symmetry breaking is applied, it is observed that they have similar magnitudes but opposite signs. Our theoretical predictions for the polarized structure functions of nucleons and light nuclei, taking into account the symmetry breaking of light sea quarks, exhibit better agreement with experimental data.Comment: 13 pages, 12 figures, 3 table

    Serum magnesium in association with parathyroid hormone levels in routine hemodialysis patients

    Get PDF
    Abstract Introduction: The homeostasis of magnesium (Mg) is perturbed in chronic kidney disease. It has been supposed that plasma Mg has a principal role to regulate the secretion of parathyroid hormone (PTH). Plasma Mg is capable of modulating secretion of PTH. Recent investigations showed that low serum Mg levels in patients with kidney disease have been linked to increased mortality. Objectives: The aim of this study was to determine the relationship between serum Mg and PTH levels in hemodialysis patients. Patients and Methods: This cross-sectional study was conducted on 56 hemodialysis patients in hemodialysis center of Hajar hospital of Shahrekord in 2015. Regular hemodialysis patients who had at least three months history of dialysis were enrolled to the study. The serum levels of Mg, calcium, phosphorus, intact PTH (iPTH), alkaline phosphatase, albumin and bicarbonate were measured. Results: In this study, 61.5% of the 52 patients were male. Mean ± standard deviation (SD) of patients’ age was 60.5 ± 17.7 years with median of 63 years old. The average duration of dialysis was 44±39.5 months (median 36 months). Additionally the dialysis dose was 517 ± 479 weeks (median; 414 weeks). Mean ± SD of serum iPTH and Mg were 360.1 ± 238.2 pg/mL and 2.2 ± 0.2 mg/mL respectively. In this study we found a significantly positive correlation of iPTH with serum Mg levels (r=0.28, P=0.04). Conclusion: This study shows impact of Mg on parathormone secretion. Our findings require further investigations with larger and multicentric studies. Please cite this paper as: Fooladgar M, Malekpour A, Asgari-Savadjani S, Mardani S. Serum magnesium in association with parathyroid hormone levels in routine hemodialysis patients. J Parathyr Dis. 2018;6(1):13-15. DOI: 10.15171/jpd.2018.05. Copyright © 2018 The Author(s); Published by Nickan Research Institute. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work i

    Impacts of EMC effects on the D meson modification factor in equilibrating QGP

    Full text link
    In this article we employ the nuclear EMC effect to extract the parton distribution functions (PDFs) inside the Lead (Pb) and Gold (Au) nuclei. Extracted PDFs are utilized to obtain the transverse momentum dependent (TMD) ones, using the computing codes like Pythia 8 or MCFM-10. Through this procedure TMDPDFs for charm and bottom quarks in Au at sNN=200  GeV\sqrt{s_{NN}}=200\;GeV, Pb at sNN=2.76  TeV\sqrt{s_{NN}}=2.76\;TeV and sNN=5.02  TeV\sqrt{s_{NN}}=5.02\;TeV are calculated. To evaluate the validity of results and investigate the influence of nuclear EMC effect, the numerated TMDs are used as input to estimate heavy quark modification factor RAAR_{AA} at transverse plane PTP_T. This observable is calculated through numerical solution of the Fokker-Planck equation. For this purpose we need to extract the drag and diffusion coefficients, using the hard thermal loop correction. It is done in the frame work of the relativistic hydrodynamics up to the third order approximation of gradient expansion. The results are compared with same solutions when the input PFDs are considered inside the unbounded protons where the nuclear effect is not included. The comparison indicates a significant improvement of computed RAAR_{AA} with available experimental data when the EMC effect is considered.Comment: 16 pages 6 figures 1 table

    Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-Adjusted life-years for 29 cancer groups, 1990 to 2017 : A systematic analysis for the global burden of disease study

    Get PDF
    Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-Adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572000 deaths and 15.2 million DALYs), and stomach cancer (542000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601000 deaths and 17.4 million DALYs), TBL cancer (596000 deaths and 12.6 million DALYs), and colorectal cancer (414000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. © 2019 American Medical Association. All rights reserved.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd
    corecore