37 research outputs found

    Cost Implications of Improving Malaria Diagnosis: Findings from North-Eastern Tanzania

    Get PDF
    BACKGROUND: Over diagnosis of malaria contributes to improper treatment, wastage of drugs and resistance to the few available drugs. This paper attempts to estimate the rates of over diagnosis of malaria among children attending dispensaries in rural Tanzania and examines the potential cost implications of improving the quality of diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: The magnitude of over diagnosis of malaria was estimated by comparing the proportion of outpatient attendees of all ages clinically diagnosed as malaria to the proportion of attendees having a positive malaria rapid diagnostic test over a two month period. Pattern of causes of illness observed in a or=5 year age group in the lower transmission site (RR 14.0 95%CI 8.2-24.2). In the low transmission site the proportion of morbidity attributable to malaria was substantially lower in <2 year old cohort compared to children seen at routine care system. (0.08% vs 28.2%; p<0.001). A higher proportion of children were diagnosed with ARI in the <2 year old cohort compared to children seen at the routine care system ( 42% vs 26%; p<0.001). Using a RDT reduced overall drug and diagnostic costs by 10% in the high transmission site and by 15% in the low transmission site compared to total diagnostic and drug costs of treatment based on clinical judgment in routine health care system. IMPLICATIONS: The introduction of RDTs is likely to lead to financial savings. However, improving diagnosis to one disease may lead to over diagnosis of another illness. Quality improvement is complex but introducing RDTs for the diagnosis of malaria is a good start

    Cost-effectiveness of intermittent preventive treatment of malaria in infants (IPTi) for averting anaemia in Gabon: a comparison between intention to treat and according to protocol analyses

    Get PDF
    ABSTRACT: BACKGROUND: In Gabon, the impact of intermittent preventive treatment of malaria in infants (IPTi) was not statistically significant on malaria reduction, but the impact on moderate anaemia was, with some differences between the intention to treat (ITT) and the according to protocol (ATP) trial analyses. Specifically, ATP was statistically significant, while ITT analysis was borderline. The main reason for the difference between ITT and ATP populations was migration. METHODS: This study estimates the cost-effectiveness of IPTi on the reduction of anaemia in Gabon, comparing results of the ITT and the ATP clinical trial analyses. Threshold analysis was conducted to identify when the intervention costs and protective efficacy of IPTi for the ATP cohort equalled the ITT cost-effectiveness ratio. RESULTS: Based on IPTi intervention costs, the cost per episode of moderate anaemia averted was US12.88(CI9512.88 (CI 95% 4.19, 30.48) using the ITT analysis and US11.30 (CI 95% 4.56, 26.66) using the ATP analysis. In order for the ATP results to equal the cost-effectiveness of ITT, total ATP intervention costs should rise from US118.38toUS118.38 to US134 or the protective efficacy should fall from 27% to 18.1%. The uncertainty surrounding the cost-effectiveness ratio using ITT trial results was higher than using the ATP results. CONCLUSIONS: Migration implies great challenges in the organization of health interventions that require repeat visits in Gabon. This was apparent in the study as the cost-effectiveness of IPTp-SP worsened when drop out from the prevention was taken into account. Despite such challenges, IPTi was both inexpensive and efficacious in averting cases of moderate anaemia in infant

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Control, elimination, and eradication of river blindness: scenarios, timelines, and ivermectin treatment needs in Africa

    Get PDF
    River blindness (onchocerciasis) causes severe itching, skin lesions, and vision impairment including blindness. More than 99% of all current cases are found in sub-Saharan Africa. Fortunately, vector control and community-directed treatment with ivermectin have significantly reduced morbidity. Studies in Mali and Senegal proved the feasibility of elimination with ivermectin administration. The treatment goal is shifting from control to elimination in endemic African regions. Given limited resources, national and global policymakers need a rigorous analysis comparing investment options. For this, we developed scenarios for alternative treatment goals and compared treatment timelines and drug needs between the scenarios. Control, elimination, and eradication scenarios were developed with reference to current standard practices, large-scale studies, and historical data. For each scenario, the timeline when treatment is expected to stop at country level was predicted using a dynamical transmission model, and ivermectin treatment needs were predicted based on population in endemic areas, treatment coverage data, and the frequency of community-directed treatment. The control scenario requires community-directed treatment with ivermectin beyond 2045 with around 2.63 billion treatments over 2013-2045; the elimination scenario, until 2028 in areas where feasible, but beyond 2045 in countries with operational challenges, around 1.15 billion treatments; and the eradication scenario, lasting until 2040, around 1.30 billion treatments. The eradication scenario is the most favorable in terms of the timeline of the intervention phase and treatment needs. For its realization, strong health systems and political will are required to overcome epidemiological and political challenges

    The Outpatient Cost of diabetes Care in Italian Diabetes Centres

    No full text
    Objective: To provide resource utilization patterns and cost estimates of outpatient care for types I and II diabetes mellitus in Italy, based on retrospectively collected data. Design: Multicenter, retrospective observational study analyzing individual costs in a sample of patients with diabetes mellitus. Study population: A total of 2260 patients were stratified into eight groups by type of diabetes, glycemic control, and age. Setting: Thirty-five centers for diabetes care in Italy. Results: The per-patient cost of treatment was € 136.8 in two months for type I diabetes ( N 592) and € 123.3 for type II diabetes ( N 1668). Pharmaceutical therapy consisting of antidiabetic drugs only accounted for only 32% to 36% of treatments cost in type I patients and between 13% and 24% in type II. Diagnostic tests accounted for 27% to 42% of treatment costs in patients with both type I and type II diabetes, day-hospital days accounted for 15% to 22% in type I, 25% to 27% in type II, and consultations accounted for 16% to 20% in type I patients and between 17% and 21% in type II diabetes. Conclusion: Despite limitations caused by the short period considered, and considering that in Italy the cost of diabetes has received limited attention, we believe this study presents some interesting information on the burden of diabetes in this country

    Cost analysis of dialysis modalities in Italy.

    No full text
    This study analyses management and costs of dialysis in the Italian National Health Service (NHS). Information on efficacy and health-related quality of life (HRQOL) based on the existing literature also is presented. The clinical differences between the dialysis modalities seem to be related to their appropriateness to specific patient groups. Efficacy rates are similar and the only differences are in complications and HRQOL. Traditional haemodialysis (THD) can be done by Italian patients in dialysis centres or in hospital. Highflux haemodialysis (HFHD) is generally only done in hospital. Peritoneal dialysis (PD) is usually done at home. The cost analysis was performed on a sample of Italian dialysis centres and hospitals, according to the full cost method. As expected, HFHD was more expensive than THD and PD, but no marked differences emerged among the different HFHD modalities. THD modalities in dialysis centres were less costly than in hospitals. Automated PD (APD) was much more expensive (almost twice) than continuous ambulatory PD (CAPD), the cheapest method in absolute terms. This study confirms that dialysis is costly and that it is very difficult to assess the cost-effectiveness of the different approaches. Although this study has limits, it should provide sufficient analytical information to local healthcare managers for more rational allocation of financial resources to dialysis services
    corecore